
TECHNICAL WRITING AND CONTENT DEVELOPMENT

LABORATORY

LAB MANUAL

Academic Year : 2019 – 2020

Subject Code : AHS108

Regulations : IARE – R16

Class : VI Semester

Prepared By

S.Selvaprakash

ASSISTANT PROFESSOR

DEPARTMENT OF CIVIL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal – 500 043, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

DEPARTMENT OF CIVIL ENGINEERING

Program: Bachelor of Technology (B. Tech)

VISION OF THE DEPARTMENT

To produce eminent, competitive and dedicated civil engineers by imparting latest technical

skills and ethical values to empower the students to play a key role in the planning and

execution of infrastructural & developmental activities of the nation.

MISSION OF THE DEPARTMENT

To provide exceptional education in civil engineering through quality teaching, state-of-the-

art facilities and dynamic guidance to produce civil engineering graduates, who are

professionally excellent to face complex technical challenges with creativity, leadership,

ethics and social consciousness.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500 043

DEPARTMENT OF CIVIL ENGINEERING

Program: Bachelor of Technology (B. Tech)

PROGRAM OUTCOMES (PO’s)

PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO 2 Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO 3 Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO 4 Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

PO 6 The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

PO 7 Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO 9 Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and
give and receive clear instructions.

PO 11 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary
environments.

PO 12 Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500 043

DEPARTMENT OF CIVIL ENGINEERING

Program: Bachelor of Technology (B. Tech)

The Program Specific outcomes (PSO’s) listed below were developed specifically to meet

the Program Educational Objectives (PEO’s). The focus of these PSO’s is consistent with

the set of required PO’s identified in the NBA accreditation guidelines.

The Civil Engineering PSO’s require that graduates receiving a Bachelor of Technology in

Civil Engineering degree from IARE demonstrate the following.

PROGRAM SPECIFIC OUTCOMES (PSO’s)

PSO1 ENGINEERING KNOWLEDGE: Graduates shall demonstrate sound knowledge in

analysis, design, laboratory investigations and construction aspects of civil engineering

infrastructure, along with good foundation in mathematics, basic sciences and technical

communication

PSO2 BROADNESS AND DIVERSITY: Graduates will have a broad understanding of

economical, environmental, societal, health and safety factors involved in infrastructural

development, and shall demonstrate ability to function within multidisciplinary teams

with competence in modern tool usage.

PSO3 SELF-LEARNING AND SERVICE: Graduates will be motivated for continuous self-

learning in engineering practice and/or pursue research in advanced areas of civil

engineering in order to offer engineering services to the society, ethically and

responsibly.

TECHNICAL WRITING AND CONTENT DEVELOPMENT

LABORATORY SYLLABUS

Experiment

No.
NAME OF THE EXPERIMENT

1 Introduction to Research Methodology, Documentation and Content Development

2 Topic selection, Research Formulation and Design for writing working paper by students

3 Data Collection and Sampling Design exercises for writing working paper by students

4 Data Collection and Sampling Design exercises for writing working paper by students

5 Abstract Writing by using LATEX software

6 Writing a Working Paper using LATEX software (Introduction)

7 Writing a Working Paper using LATEX software (Literature Survey with References)

8 Report Submission and Seminar of Working Paper (till Literature Survey only)

9 Writing a Working Paper using LATEX software (Research Methodology)

10 Writing a Working Paper using LATEX software (Research Methodology)

11 Writing a Working Paper using LATEX software (Results and Discussion)

12 Writing a Working Paper using LATEX software (Results and Discussion)

13 Writing Working Paper using LATEX software (Conclusion)

14 Proof reading exercises on Working Paper

15 Plagiarism Analysis and Paraphrasing Exercises on Working Paper

16 Report Submission and Seminar on Full Length Working Paper

TeXstudio : User manual

Contents:

• 1. Configuring TeXstudio
◦ 1.1 Configuring the editor
◦ 1.2 Configuring the latex related commands
◦ 1.3 Configuring the build system
◦ 1.4 Configuring some general issues
◦ 1.4.1 Configuring the spell checker
◦ 1.4.2 Configuring the thesaurus
◦ 1.4.3 Configuring the latex syntax checker
◦ 1.4.4 Configuring the grammar checker
◦ 1.5 Configuring the autocompletion
◦ 1.6 Configuring shortcuts
◦ 1.7 Configuring the Latex/Math-Menu
◦ 1.8 Configuring the Custom Toolbar
◦ 1.9 Configuring SVN support

• 2. Editing a TeX document
◦ 2.1 Usual commands
◦ 2.2 Creating a new document
◦ 2.2.1 Setting the preamble of a TeX document
◦ 2.2.2 Using Templates to start a new document
◦ 2.3 Structure of a document
◦ 2.4 Browsing your document
◦ 2.5 Formatting your text
◦ 2.6 Spacings
◦ 2.7 Inserting a list
◦ 2.8 Inserting a table
◦ 2.8.1 Manipulating a table
◦ 2.9 Inserting a "tabbing" environment
◦ 2.10 Inserting a picture
◦ 2.10.1 Inserting a picture using a "wizard"

◦ 2.11 Cross References and notes
◦ 2.12 Inserting math formulae
◦ 2.13 Auto completion
◦ 2.14 Thesaurus
◦ 2.15 Special Commands

3. Compiling a document
◦ 3.1 Compiling
◦ 3.2 The log files

4. Other features
◦ 4.1 About documents separated in several files
◦ 4.2 Syntax Check
◦ 4.3 Bibliography
◦ 4.4 SVN Support
◦ 4.5 Personal macros
◦ 4.6 Pstricks support
◦ 4.7 Metapost support
◦ 4.8 The "Convert to Html" command
◦ 4.9 "Forward/Inverse search" with TeXstudio
◦ 4.10 Advanced header usage
◦ 4.11 Synopsis of the TeXstudio command
◦ 4.12 Keyboard shortcuts
◦ 4.13 Description of the cwl format
◦ 4.14 Using table templates

5. Experimental Features
◦ 5.1 Advanced Scripting
◦ 5.2 Style Sheets
◦ 5.3 Writing your own language definitions

Changelog

1. Configuring TeXstudio

Before using TeXstudio, you should configure the editor and latex related commands via the "Configure TeXstudio" command in the "Options" menu ("Preferences" under Mac OS X).
Note that there are two levels of detail. More advanced or less often used options are only visible if you toggle "Show advanced options" in the lower left corner.

1.1 Configuring the editor

You may change the default encoding for new files ("Configure TeXstudio" -> "Editor" -> "Editor Font Encoding") if you don't want utf8 as encoding. Don't forget to set the same
encoding in the preamble of your documents. (e.g. \usepackage[utf8]{inputenc}, if you use utf-8).
TeXstudio can auto detect utf-8 and latin1 encoded files, but if you use a different encoding in your existing documents you have to specify it in the configuration dialog before
opening them. (and then you also have to disable the auto detection)

• "Folding" toggles the editors code-folding capability (hide sections of the text).
• The selection box "Indentation mode" lets you select, whether indented lines are followed by lines of the same indentation after pressing Enter or letting TeXstudio do automatic

indentation.

1.2 Configuring the latex related commands

LaTeX comes with a number of command line tools to compile and manipulate LaTeX documents. The commands section defines there location and arguments.

The default settings should work with the recent and standard LaTeX distributions, but you could have to modify them ("Configure TeXstudio" -> "Commands"). To change a
command, just click on the button at the end of the corresponding line and select the command in the file browser : TeXstudio will automatically adapt the syntax of the
command.

You can use a number of special characters / character sequences to address the context of the current document. They are expanded at runtime:
Special Character Expands to

% filename of the root document for of current document without extension

@ current line number

? followed by further characters See the instruction at the bottom of the configuration dialog.

[txs-app-dir] Location of the TeXstudio executable (useful for portable settings)

[txs-settings-dir] Location of the settings file (texstudio.ini)

The section Forward/Inverse search gives some example commands for common viewers.

You can always restore the original settings using the revert button to the right.

1.3 Configuring the build system

TeXstudio provides general commands for translating latex.
The default settings use "pdflatex" and the internal pdf viewer. Other commands and viewer can be selected as well as a different bibliography translator.
The "embedded pdf viewer" does not open a new window for viewing the pdf document but presents it directly next to the text in the editor.
A useful alternative might be using the "latexmk" as compile command (if the command is installed on your system), as it handles dependencies with biblatex and index very well.
The advanced options allows finer customization which is in general not necessary.

User commands can be defined here by "adding" them. Each user command has a name with a pattern <command id>:<display name>, e.g. user0:User Command 0.
The command id has to be unique and must not contain spaces. In advanced mode, you can reference it using txs:///"<command id>. The display name will be shown in the
tools menu. The user commands can be activated either by short cut (alt+shift+F%n) or by the tools menu (Tools/User).
User commands can either consist of a combination of known commands by selecting them from a list of available commands. This is triggered by clicking the spanner-symbol.
Alternatively a command can be directly selected through the file system.

1.3.1 Advanced configuration of the build system

If you enable the advanced options, you can configure the build system in more detail.

Every txs-command is a list of external programs/latex-commands and other txs-commands to call. An external program can be called with its usual command line, while a txs-
command with id "foobar" is called by txs:///foobar.
The commands in the list are separated by |, which is just a separator (i.e. it will not pass the stdout from one program to the stdin of the next).

Note: Use command lists only for the meta and user commands listed at Options -> Build. Do not use then at Options -> Commands. The latter should just be single
commands (i.e. do not use | there). While it's currently working in some cases, generally we do not guarantee this behavior. It can have surprising side effects such abortion of
compilation in some cases. Also, the use of | at Commands may be prohibited completely without further notice in the future.

Each of these txs-command has a unique id, which is shown as tooltip of the displayed name for "normal" commands and in the edit box for user commands. Some important
commands are usual: txs:///quick (Build & View, the old quickbuild), txs:///compile (Default compiler), txs:///view (Default viewer), txs:///latex (latex), txs:///pdflatex
(pdflatex), txs:///view-pdf (Default Pdf Viewer), txs:///view-pdf-external (External pdf viewer).

For example, in a typical build configuration you might call txs:///quick by pressing F1, which calls txs:///compile, which first calls txs:///pdflatex that calls the actual pdflatey,
and then calls txs:///view, which calls txs:///view-pdf, which calls txs:///view-pdf-internal, which displays the pdf.

There is no difference between commands defined as command on the command config page, commands defined as build on the build config page, or commands defined as user
commands. They are just separated in the GUI to simplify the interface.
This also means that you can change every command as you want, ignoring its old definition (you could even change its id, when editing the ini file.).

There are however three always defined internal commands, which can only be called and not modified:

txs:///internal-pdf-viewer Opens the internal viewer for the current document

txs:///view-log Views the log file for the current document

txs:///conditionally-recompile-bibliography Checks if the bib files have been modified, and calls txs:///recompile-bibliography, iff that is the case

The internal pdf viewer also accepts the following options (txs:///internal-pdf-viewer) to modify its behaviour:

--embedded Opens the viewer embedded

--windowed Opens the viewer windowed (default if no option is given)

--close-(all|windowed|embedded) Close all open viewers, or just viewers of a specific kind

--preserve-existing Does not change any existing viewers (i.e. always opens a new one)

--preserve-(embedded|windowed) Does not change any existing embedded/windowed viewers

--preserve-duplicates Only opens the pdf in the first opened viewer

--(no-)auto-close Determines whether the viewer should be closed, when the corresponding tex file is closed (default: auto-close iff embedded)

--(no-)focus Determines whether the viewer should be focused (default: focus iff windowed)

--(no-)foreground Determines whether the viewer should be brought to front (default: foreground)

filename
Determines the file to open. Like in other commands, file patterns are supported. If this parameter is not provided, TXS uses "?am.pdf",
i.e. the absolute path of the main file. If the parameter is not an absolute filename, it is searched for in the directory of the main file as
well as in Options -> Build -> Build Options -> Additional Search Paths -> PDF Files

It is also possible to modify the arguments of called subcommands with argument modifiers or by adding a new argument . These modifiers are passed through called lists, so it will
always change the arguments of the finally called program, even if the directly called subcommand is just a wrapper around another command:

txs:///foobar --xyz This will add the xyz option

txs:///foobar[--xyz=123] This will change the value of the xyz option to 123 (i.e. removing any xyz option defined in foobar)

txs:///foobar{--xyz=123} This will remove --xyz=123 from the foobar command line, ignoring xyz options with other values

txs:///foobar{--xyz} This will remove any --xyz option from the foobar command line, regardless of its value

txs:///foobar{} This will remove all options from the foobar command line, leaving only the name of the executable

Finally, there are also hidden options, which can only be changed by modifying the ini-file: Tools/Kind/LaTeX, Tools/Kind/Rerunnable, Tools/Kind/Pdf, Tools/Kind/Stdout,
Tools/Kind/Viewer, which give a list of commands that are treated as latex compiler (e.g. show the log afterwards), rerunnable (repeat command call, if there are warnings), pdf
generators (e.g. pdflatex), commands that prints to stdout (e.g. bibtex), and viewers (e.g. only open once).

1.3.2 Details of the execution environment

Environment Variables

The environment variables available within the execution are the same as the ones that are available in the context in which TeXstudio was started. In particular this is true for
the PATH. On Linux/OS X the PATH may depend on the way you started TeXstudio. Programs started from the GUI may have a different PATH setting than programs started from a
shell (because some variables may only defined in the context of a shell (e.g. via ~/.bashrc).

By default, TeXstudio parses environment variables in your commands. The syntax is adapted to the according operating system. A variable MYVAR would be written as %MYVAR%
on Windows and $MYVAR on Linux and OS X. Windows environment variables are case-insensitive, whereas they are case-sensitive on Linux and OS X. Parsing of environment
variables can be deactivated in the Build section of the options.

Working Directory

The working directory is set to the path of root document.

Shell Functionality

All commands specified in the configuration (i.e. Commands and User Commands) are executed directly. There is no shell involved. So most shell functionality does not work.

Output Redirection

TeXstudio provides limited output redirection capabilities. You can only output to the message panel (> txs:///messages) or suppress output (> /dev/null). The default
setting depends on the command. The same targets are allowed for stderr: 2> txs:///messages, 2> /dev/null. Additionally, you can redirect to the same target as
stdout by using 2>&1.

A typical usecase would be to suppress all output of a command: >/dev/null 2>&1

Note: Instead of the Linux/Unix notation > /dev/null, you may alternatively use the Windows notation > nul. Because these commands are directly interpreted by TXS, both
variants work on all operating systems.

Using other shell functionality

If you need shell functionality, you have to explicitly run a shell. You can either do this directly in the user command:

sh -c "/path/to/testscript foo > bar"

or on Windows:

cmd /C "/path/to/testscript.bat foo > bar"

Alternatively, you can call a wrapper script in the user command

/path/to/wrapperscript foo bar

and do the actual work inside the wrapper script:

#!/bin/sh
I am wrapperscript
/path/to/testscript $1 > $2

1.4 Configuring some general issues

This panel allows the setting of some general aspects.

• The "style" and "color scheme" of TeXstudio can be selected. The modern variant is closer to texmaker 1.9.
• The symbol list can either appear "tabbed" (old behaviour, tabbed activated) or can have small symbol tabs besides the symbol lists which leaves more room for the symbols.

• Also the log viewer can appear tabbed which allows faster change between error table, log view and previewer ...
• The language of the menus can be changed directly to ignore system settings.

1.4.1 Configuring the spell checker

TeXstudio offers an integrated spellchecker which can be used either via a dialog or directly while typing. All text outside of LaTeX commands is checked. Additionally, text in
options of LaTeX commands is also checked. TeXstudio determines if an option contains natural text and thus should be spell checked by looking up its definition in the completion
word lists. For more information on completion word lists see the section on completion and the description of the cwl format.

The spell checker uses the Hunspell dictionary format, which is widely used, e.g. in OpenOffice, LibreOffice and Firefox. The each dictionary consists of two files (.dic
and .aff). French, British and German dictionaries are distributed with TeXstudio. You can add additional dictionaries yourself by placting them in the dictionary path. A
particularly convenient way to get additional dictionaries is downloading a dictionary extension of http://wiki.services.openoffice.org/wiki/Dictionaries or LibreOffice and
importing them using the button Import Dictionary in the options.

You can specify one or more search paths for the dictionaries in the options. Multiple paths need to be separated by semicolon. With the paths you can use the special strings
[txs-app-dir] and [txs-settings-dir]. These are expanded to the path of the executable and the config file (texstudio.ini) respectively. This expansion is
particularly useful if you use a portable version on a USB stick in which the actual location of the program may depend on the computer you are using.

To make life easy TeXstudio lets you choose a preferred language for the spell checker. However, if you frequently work with files in different languages you may want to override
the default behavior. This can be done in two ways. First you can specify the language of the file via the language menu in the status line. This setting will be lost as soon as the
file is closed. To permanently save the language of the file TeXstudio supports a special "magic comment" % !TeX spellcheck = de_DE. If this comment is present in a file,
its language is automatically set when the file is loaded.

Please note: spell checking with Ctrl+Shift+F7 starts at the cursor position and not at the beginning of the document.

If the interactive spell checker is enabled (default), any incorrectly spelled word is underlined with a red wave. Right-click on the word to open a menu with a list of possible
corrections. In this context menu you can also add the word to the ignore list. If your dictionary is very large (> 5MB), opening the context menu and showing possible suggestions
can take some seconds. If you don't need the suggestion, you can press shift while right clicking and don't have to wait.

Since the internal structure of the dictionaries is complex (e.g. contains rules how to generate a word with in different inflections) it is not possible to simply add words to the
dictionary. Instead if a word is missing in the dictionary, you can add it to an ignore list, so that the spell checker won't complain about it. The ignore list is normally saved in the
same directory as the dictionary. It's a plain text file with the extension .ign. If this isn't possible (e.g. missing access rights) the list is stored in the user configuration directory.

1.4.2 Configuring the thesaurus

The thesaurus uses OpenOffice.org 2.x databases. Only GPL French and US-English and German databases are distributed with TeXstudio.
Users can download others databases here : http://wiki.services.openoffice.org/wiki/Dictionaries

1.4.3 Configuring the latex syntax checker

The latex syntax checker takes the list of possible completion commands to determine if a command is correct. Furthermore the completion list contains partially additional
information to determine in which context a command is valid, whether it is valid only in math-mode or only in tabular-mode.

1.4.4 Configuring the grammar checker

The grammar checker is based on the standard http API of LanguageTool, and requires a separate installation of LanguageTool and java.

Once LanguageTool is installed, you can try it by starting the LanguageTool standalone application, and start TeXstudio afterward. LanguageTool then creates a locally running
server at the address http://localhost:8081/ and TeXstudio automatically connects to it at startup. When the connection is established, all typed paragraphs are send to LT and
after a short delay the possible grammar errors are highlighted.

To automatically start LanguageTool with TeXstudio, you need to enter the path to LT jar in the grammar page of the config dialog. If the java executable is not in the default
PATH, you also need to set the path to it there.

In the advanced config mode, you can also mark certain LT rules as "special" whose matches will then be highlighted in a different/customizable way. This can be useful to do a
stylistic analysis, e.g. by creating a own rule in LT highlighting all verbs or all adverbs.

Independent from LanguageTool, TeXstudio also checks for repeated and bad (imprecise/slang) words. The repetition check looks several words behind and marks repetition of
short words in the immediate vicinity and repetition of long words up to 10 words before. These distances and lengths can be changed in the advanced grammar config page.

1.5 Configuring the autocompletion

TeXstudio has taken up completion word lists from kile which extended the number of known commands for completion considerably. TeXstudio understands the use of
\documentclass and \usepackage in order to select valid lists of commands for completion as well as syntax checking. However TeXstudio allows one to select the additional word
lists under "Configure TeXstudio" -> "Editor" -> "". The names of the word lists corresponds to the package for which they are made. The list latex.cwl contains the standard latex
commands.
Concerning auto completion, TeXstudio allows one to adapt the behaviour to your liking. The following options are available:

• Completion enabled: self explanatory
• Case sensitive: lets you complete e.g. \Large from \la ...
• in first character: ?
• Auto Complete Common Prefix: if only one item is in the list or all items in the completion list share common starting characters, the common characters are directly inserted,

like pressing the key Tab.
• Complete selected text when non-word character is pressed: when in completion mode, pressing a non-word character like space, leads to accepting the selected word. This

may speed up typing.
• Enable ToolTip-Help: show tool tips on selected latex commands in the completion list.
• Use Placeholders: if the completed commands have options which need to be filled out, placeholders are put at these positions and they can be jumped to by using

Ctrl+Right/Ctrl+Left.

If your favorite package is not yet present for completion (and syntax checking), you can provide a list of your own by placing a file "packagename.cwl" in the config directory. This
directory is placed in ~/.config/texstudio under Linux and usually "c:\Documents and Settings/User/AppData/Roaming/texstudio" under Windows. Basically the file contains a list
of valid commands. A description of the exact format and an example are given in the appendix.

1.6 Configuring shortcuts

Shortcuts can be changed by double clicking on "Current Shortcut" or "Additional Shortcut". A shortcut can be selected from the drop down list or put in as text directly. A shortcut
can be assigned a multiple keystroke combinations, for example CTRL+M,CTRL+A (either upper or lower case is allowed, but the comma is important). If a shortcut should be set
to default value or removed completely, the items "<default>" or "<none>" at the top of the list can be selected respectively.

A rough overview of the available (default) keyboard shortcuts can be found in Section 4.12.

1.7 Configuring the Latex/Math-Menu (Advanced option)

The Math/Latex-Menu can be adapted to user likings. For this menu items can be renamed and a new Latex-Code can be placed. The appropriate item can be be directly edited by
doubleclicking on them.

1.8 Configuring the Custom Toolbar (Advanced option)

One Custom Toolbar is present in TMX. This toolbar can be filled with actions from the Latex-, Math- and User-Menu. Since many of those item don't have icons, user icons can be
loaded as well. This is achieved by applying "load other icon" from the context menu on a item in the custom toolbar list in the configure dialog.

1.9 Configuring SVN support

To supports SVN (subversion) for document versioning. To make use of it, the SVN commandline tools need to be installed. Linux and Mac OSX normally provide already SVN tools,
for Windows, the installation of "SlikSVN" is recommended.

The complete path to the command "svn" and "svnadmin" need to be adjusted in the aprioriate field of the Commands page in the options. On the SVN page you can can choose the
degree of automation (see below) WSVN, see below.

Note: You cannot checkout a repository via TeXstudio. Just use the normal tools for this (either SVN checkout on the command line or the GUI of your choice). Once you have a
working copy, TeXstudio can operate on it.

"Automatically check in after save" allows TeXstudio to perform an SVN check in after every save of a document, thus providing a very complete history of the creation of a
document. Since text documents are rather small compared to disk spaces, size of the SVN database should not be a problem. In addition newly saved files (save as) are
automatically added to SVN control,provided that the directory is already under SVN control. If that is not the case, TeXstudio searches in "SVN Directory Search Depth" directory
above the current diorectory for a SVN controlled directory to which the subdirectories and the TeX-Document will be added. If no appropriate directory is found, a repository is
automatically generated in a directory called "./repo" and the document is added. Thus the user does not need to look up the necessary commands to set up a repository. This
functionality is only activated when "Auto checkin in" is enabled !

With "User SVN revisions to undo before last save" TeXstudio will perform undo as usually, but if there are no further undoable commands in the internal storage, the document will
be changed to the previous version in SVN history. Further undo commands allows one to back further to older revisions, whereas a redo goes forward to more recent versions. This
is a more interactive approach than choosing SVN revisions directly via a menu command, see section 4.4.

2. Editing a TeX document

2.1 Usual commands

The standard commands (cut, copy, find...) can be launched via the "Edit" menu and the "Edit" tool bar.

2.2 Creating a new document

There are two different ways to create a new document that are described in the following subsections:

2.2.1 Setting the preamble of a TeX document

To define the preamble of your document, you can use the "Quick start" wizard ("Wizard" menu).

This dialog allows you to set the main features of your document (class, paper size, encoding...).
Note : You can add other options by clicking the "+" buttons. All your settings are recorded.

You can also type your own preamble model in the editor : with the "Copy/paste" or "Save As" commands, you can use it for a new document.

2.2.2 Using Templates to start a new document

For new documents, templates can be used by using the command "File/New from template". A dialogue gives a selection of templates.

You can either create a new editor document from the template or create it as file(s) on disk and open these in the editor. The former option is not available for multi-file
templates.

New templates can be created by using the command "File/Make Template" on a opened document which you like to have has a template. Note that this dialog currently does not
support the full capabilities of the template system. In particular you cannot supply a preview image or create a multi-file template with it. You'll have to do this manually (see
the template format).

User added templates can be edited or deleted by using the context menu in the template selection dialogue. Built-in templates can not be changed.

User templates are saved in the /templates/user/ subdirectory of the config directory.

2.2.2.1 The Template Format

In its simplest form, a template is only a .tex file. Multi-file templates can be created by packaging all .tex files in a zip archive. Optionally, meta data can be stored in JSON
format in a separate file with the same name, but extension ".json" instead of ".tex" or ".zip". Currently the following entries are supported in the meta data:

{
"Name" : "Book",
"Author" : "TXS built-in",
"Date" : "04.01.2013",
"Version" : "1.1",
"Description" : "Default LaTeX class for books using separate files for each chapter.",
"License" : "Public Domain",
"FilesToOpen" : "./TeX_files/chapter01.tex;main.tex"
}

FilesToOpen only has an effect for mutli-file documents. You may add a preview image next to the template file. Again, it must have the same name, but extension ".png".

2.3 Structure of a document

To define a new part (section,subsection...) in your document with TeXstudio, just use this combo box button in the tool bar :

2.4 Browsing your document

The "Structure View" (left panel) lets you quickly reach any part of your document. All you need to do is to click on any item (label, section...) and you will be taken to the
beginning of the corresponding area in the editor. The mechanism for jumping to a line does not anymore only consider line numbers but really remembers text lines. Thus adding
and removing lines will not lead to jumps to wrong locations.

A grey background shows the present cursor position in the text in the structure view as well. A greenish background denotes sections which are in the appendix.

The "Structure View" is automatically updated as you type. You can also use the "Refresh Structure" (menu "Idefix") command at any moment.

The structure view shows labels, sections, includes and beamer blocks and todos.

There are two kind of todos that will be listed a) todos from a todo-like command, e.g. \todo{} from the package todonotes. b) todo-comments: This is a comment with a "% TODO"
or "%todo". You can adapt the regular expression for other comments to be marked as todo-comment in options/advanced editor/Regular Expression for TODO comment, e.g "%\s?
[A-Z][A-Z_\-]+" for any comment starting with at least two capital letter only comment.

The structure view also offers a context menu which allows one to copy/cut all text which belongs to a section (including subsection) and paste it before or after a section. Section
can be indented/unindented which means that the hierarchy level is changed by one, i.e. \section is changed to \subsection, and all subsections are treated accordingly

For each file, three bookmarks can be used to speed up navigation : just click on a line number to add or remove a bookmark. When you have already defined three bookmarks,
you must remove one of them to add a new bookmark. To jump to the line corresponding to a bookmark in the editor, just click on the buttons in the status bar.

2.5 Formatting your text

You can quickly set the format of a part of your text with this tool bar :

Additional option: a selected text can be directly framed by certain environments. Example: while clicking on the button "Bold" after having selected the word "Hello" , you will
obtain the code: \textbf{Hello}.
This option is available for all the environments indicated by "[selection]" in the "LaTeX" menu.

Capitalisation

The menu "Edit" -> "Text Operations" contains a few methods for changing the capitalization of selected text:

• To Lowercase
• To Uppercase
• To Titlecase (strict)
• To Titlecase (smart)

Both variants of "To Titlecase" leave small words like a, the, of etc. in lowercase. Additionally, "To Titlecase (smart)" does not convert any words containing capital letters,
assuming they are acronymes which require a fixed capitalization (e.g. "TeXstudio").

Escaping reserved characters

If you have text containing reserved TeX characters and want the text to appear literally in your document, you have to escape the reserved characters to prevent LaTeX from
interpreting them. The following functions take care of that (Menu: Idefix)

• Paste to LaTeX: Takes the text from the clipboard and escapes reserved characters prior to pasting into the editor.
• Convert to LaTeX: Escapes the reserved characters in the current selection.

For example: "Less than 10% of computer users know the meaning of $PATH." will be converted to "Less than 10\% of computer users know the meaning of \$PATH."

2.6 Spacings

The usual "spacing" commands are available in the "LaTeX" and "Math" menus.

2.7 Inserting a list

The usual list environments code can be insert quickly via the "LaTeX-List" menu.
Note : the shortcut for the \item command is Ctrl+Shift+I.

2.8 Inserting a table

With the "Tabular" wizard ("Wizard" menu), the LaTeX code for a tabular environment can be quickly inserted :

You can set the main features of your table.
Note : this dialog allows you to type directly the code in the cells.
The corresponding LaTeX code is automatically inserted in the editor.

2.8.1 Manipulating tables

TeXstudio provides some commands to ease handling of tables. The commands are located at LaTeX → Manipulate Table and in the Table toolbar. Please be aware that some
unexpected results may arise, if the table constructing commands get too complex. Following commands are offered:

• Add Row after the current row
• Remove Row: removes the table row in which the cursor
• Add Column: add a column in the complete table after current cursor position. If the cursor is positioned at start of line,first column, the column is added as new first column.
• Remove Column: remove current column
• Add/Remove \hline: add/remove \hline in all rows following the current row. If already a command \hline is present, no second command is placed.
• Align Columns: Aligns the column separators (ampersand) by introducing whitespace. The text in the cells is aligned according to the specification in the table header. This helps

reading the table source.
• Remodel the table after a template. This allows one to force uniform table set-up in a document. Some templates are predefined, more can be added though it needs some

programming in java script. This command is only present in the menu (math/tables)

TeXstudio also allows block cursors. Press <Ctrl>+<Alt>+<Shift> and drag the cursor with the mouse. The block cursor works like a set of normal cursors. You can copy and paste
text as usual. Also you can type in new text, which will be added in every row.

2.9 Inserting a "tabbing" environment

To help you to insert a "tabbing" code, you can use the "Tabbing" wizard ("Wizard" menu) :

2.10 Inserting a picture

To insert a picture in your document, just use the "\includegraphics" command in the "LaTeX" menu. Then, click on the "browser" button in the dialog to select the graphic file.
Note : you can insert a "figure" LaTeX environment ("LaTeX - Environments" menu) before inserting the picture.

2.10.1 Inserting a picture using a "wizard"

Properly inserting figures is a challenge for LaTeX beginners and still quite a bit of text to type for the expert. Therefore TeXstudio offers a wizard for handling graphics insertion
code in your document. "Graphics options" defines the optional parameter of \insertgraphics[options]{file}. While the most used width/height attributes can be
easily set, alternatively you have full control with the user defined setting.
Place the graphic inside a figure environment if it does not have to be at an exact position in the text. Then LaTeX will determine an optimal position on the page.
By pressing the "Save as default" button the current settings (except file, caption and label) are stored and will hence be used as default when you open the wizard.
The wizard also comes into play when you drag drop an image file to your document or use copy in explorer and paste in TeXstudio. Together with the adjustable default
parameters this makes insertion of new pictures very fast. Furthermore, if you start the wizard while the cursor is on picture code, the wizard is used to manipulate the existing
picture settings.

2.11 Cross References and notes

This toolbox in the toolbar allows you to insert quickly the label, cite, ref, footnote... code.
Note : the labels used in your documents are displayed in the "Structure View".

Additional option:for the \ref command, a dialog box allows you to select directly the label.

2.12 Inserting math formula

You can toggle in the "in-line math" environment with the "f(x)" button in the toolbar (shortcut : Ctrl+Alt+M) or with the "Math" menu. The shortcut for the "display math"
environment is : Alt+Shift+M.
The "Math" toolbar allows you to insert the most currents mathematical forms (frac, sqrt...) like the \left and \right tags.

With the "symbols panels" in the structure view, you can insert the code of 400 mathematical symbols.

You can also define the format of your mathematical text via the "Math" menu.
For the "array" environments, a wizard (like the "Tabular" wizard) is available in the "Wizard" menu. With this wizard, you can select the environment : array, matrix, pmatrix....
The cells can be directly completed.

2.13 Auto Completion

Whenever you press \ followed by a letter, a list of possible LaTeX tags is shown where you select the right one. If you type additional letters, the list is filtered, so that only the
tags starting with the already written text are shown. If the list contains words which all start with the same letter combination, you can press Tab to complete all common
letters. If only one element is present in the list, Tab selects this one to do the completion, like Enter. This behaviour is similar to tab completion in bash shells. You can also press
Ctrl+Space to open this list whenever you want.
If a tag has different options, a short descriptive text is inserted into your text, telling you the meaning of each option. You can press Ctrl+Left, Ctrl+Right to select all positions.
Furthermore normal text can be completed by starting to type a word and pressing Ctrl+Space. All appropriate words in the current document are used as possible suggestions.
If an environment is to be inserted, typing in the beginning of the environment name and pressing Ctrl+Alt+Space gives suggestions for adequate environments which are inserted
completely with \begin{env}..\end{env}.
And finally, user tags can be assigned an abbreviation which can also be used with completion. Just type in the start of the abbreviation and start the completion with Ctrl+Space.
The abbreviation should show up in the completion list, especially marked with “abbreviation (template)”.
If you change a command by completing a new command, only the command name is substituted. The same is true for environments, where the environment is changed in the
\begin- and \end-command.

The completer has several operation modes which are shown in the tabs below the command list.

• Typical: list only typical commands and filter out rather unusual commands.
• Most used: list only commands which have already been used in the completer by the user. Is empty if txs has not been used before.
• Fuzzy: search the command in a fuzzy way. The command needs to contain all given letters in the same order though with a arbitrary of letters between them. E.g. \bf lists,

among others, \begin{figure}
• All: list all known commands.

2.14 Thesaurus

TeXstudio has integrated a simple thesaurus. OpenOffice 2.x databases are used for this. By placing the cursor on a word and activating the thesaurus (Ctrl+Shift+F8 or
Edit/Thesaurus), it tries to find synonyms for this word. Please be patient if you start the thesaurus at first time since loading the database just occurs then and can take a few
moments.

The first line to the left contains the word, for which a synonym is searched for. The list below gives a list of word classes. The can be chosen to reduce the number of suggestions.
The column to the right contains the list of suggested synonyms. A selected word from this list apears in the first line to the right as proposition for replacement of the text. This
word can be changed manually. It is also used to do further investigations for words and their synonyms which "start with" or "contain" that word. With "lookup" it can be directly
used to look for a synonym for that word.

2.15 Special Commands

Delete word/command/environment

With the shortcut Alt+Del, the word under the cursor is deleted. If it is a command, the command is deleted including opening and closing braces. E.g. "\textbf{text}" leave "text".
If it is an environment, the enclosing begin/end are removed.

Rename environment

If you place the cursor on an environment name or the corresponding begin- or end-command, after a moment a mirror-cursor is activated on the environment name which allows
synchronous change of the environment name in the begin- and end-command. So if you want to change a "\begin{tabular}...\end{tabular}" construction to "\begin{tabularx}...\end
{tabularx}", place the text cursor on "tabular", wait for a second and then, after the mirror-cursor appears, change "tabular" to "tabularx".

Cut Buffer

If you select something and then start to type in a command and complete it, the selection is put in as first argument. E.g. you have a "text", select it and start typing "\textbf",
command which is completed. The resulting text is "\textbf{text}"

3. Compiling a document

3.1 Compiling

The easiest way to compile a document is to use the "Compile" command or the "Build&View" command ("Compile" button - shortcut : F6). You can select the default command via
the "Configure TeXstudio" dialog.
(You can also launch each command one by one in the "Tools" menu).
Note : the "Clean" command in the "Tools menu" allows you to erase the files (dvi, toc, aux...) generated by a LaTeX compilation (except the ps and pdf files).

Warning: all your files must have an extension and you can't compile an "untitled" file or a file with a space in its name.

3.2 The log files

With the "Quick Build" command, the log file is automatically displayed in the "Messages / Log file" pannel. While clicking on a number in the "Line" column, the cursor is placed on
the corresponding line in the editor and the error is displayed.
Remark : a summary of the latex errors and warnings is displayed before the full log file.

The "Next Latex Error"and "Previous LaTeX Error" commands allow to get to the errors detected during compilation.

Lines with errors, warnings, bad boxes will be highlighted with red, yellow or blue background and you can jump between them using Ctrl+Up/Down. (Ctrl+Shift for errors only,
Ctrl+Alt for warnings only, Alt+Shift for bad boxes only)
A tool tip will show more details of the mistake if you jump to a line (it is also shown if you move the mouse over the mark left from the line numbers).

4. Other features

4.1 About documents separated in several files

LaTeX documents may be spread over multiple files. TeXstudio automatically understands parent/child relations of loaded documents. This includes the detection of the root
document and knowledge on defined labels and commands.

4.1.1 Root Document

The root document is the top-most file in a multi-file document. For a single-file document this is the file itself. By default, all calls to LaTeX will be performed on the root
document.

TeXstudio automatically detects the root document. If that does not work, you can place a magic comment % !TeX root = root-filename at the top of your included
files.

As a last resort, you may set an explicit root document via Options -> Root Document -> Set Current Document As Explicit Root. This setting takes
absolute precedence. All the commands of the "Tools" menu will be called on this document (to be more precise, the build system will expand the placeholder % to the root
document), no matter which document is active in the editor. Additionally, labels and usercommands which are defined in any open document, can be used for completion in any
open document.

In earlier versions, the explicit root document was somewhat misleadingly called master document.

4.1.2 Loaded Documents

Obviously, TeXstudio can only use information (defined commands, labels, document hirachy, etc.) that it is aware of. We use the information in all opened files, but if a label in a
multi-file document is defined in a not-loaded files, TeXstudio does not know about it and will mark it as missing in references. To remedy this, you can just open the
corresponding file as well.

More recent versions of TeXstudio have an advanced option Editor -> Automatically load included files. It's disabled by default for performance reasons with
older systems. When you enable this option, TeXstudio will automatically load and parse all files of multi-file-documents as soon as one of the files is opened. You may have to set
the magic comment % !TeX root = root-filename if you do not have the root document open. With this option enabled TeXstudio will always know about your complete
document and act accordingly when performing highlighting or completion.

4.2 Syntax Check

The latex syntax checker takes the list of possible completion commands to determine if a command is correct. The completion list contains partially additional information to
determine in which context a command is valid, whether it is valid only in math-mode or only in tabular-mode.
Furthermore the correctness of tabulars is checked in a little more detail. The number of columns is analyzed and checked in the subsequent rows. If more or less columns are
given in a row, a warning maker is shown.

4.3 Bibliography

For the "bib" files , the "Bibliography" menu enables you to directly insert the entries corresponding to the standard types of document.
Note: the optional fields can be automatically deleted with the "Clean" command of the "Bibliography" menu.

4.4 SVN Support

Apart from the supported SVN features already describes in section 1.8, TeXstudio supports two more commands.

"File/chekin" performs an explicit save and check in, with a input dialog which asks for an checkin in message which is stored in the SVN history.

"File/Show old Revisions" pops up a dialog, which shows all available revisions. A selection of an older revision leads to instantaneous change of the current document to that older
revision. You can select and copy old parts to transfer them to the most recent version of your document, by copying the parts and then going back to most recent version. If you
start editing that document directly, the dialog is closed and the present text will be your new most recent version though yet unsaved.

4.5 Personal macros

TeXstudio allows you to insert your own macros. These macros are defined with the "Macros - Edit Macros" menu. Macros can consist of simple text which is directly placed into txs.
It can also be an "environment" which are automatically extended by begin/end or it can be a java script. The needed functionality can be selected by checkbox.
The "abbreviation" is a pseudo-command for the latex completer. If the pseudo-command is completed, the macro will be inserted instead. Note that the pseudo-command needs
to start with a backslash ("\").
"Trigger" is a regular expression which triggers the inclusion of the macro: When the last written characters match this expression, they are removed and the macro is
inserted/executed. (see below for more details).
Some macros can be directly downloaded from an internet repository. The dialog is started with the button "Browse". For easier data exchange, macros can be im- and exported to
a file. If you want to add a macro of your own to that repository, you can hand it in as a feature request on Github.
Each macro can be assigned a fixed shortcut in the "Shortcut" box.
The list of macros on the left-hand side represents the macro ordering in the macro-menu. It is rearranged with the "up"/"down"/"add"/"remove" buttons or with drag and drop.
Folders can be added to sort a larger number of macros sensibly. To move macros into/from folders, only drag and drop works.
The "run script" button directly executes a script in the editor for testing.

4.5.1 Text macros

Apart from normal text, some special codes are recognized and replaced on insertion.

• If you write %| somewhere the cursor will be placed at that place in the inserted text. (A second %| will select everything between them).
• Write %<something%> to mark it as placeholder which is highlighted in the text and can be selected by Ctrl+Left/Right.

Additional properties of the placeholder can be set after a %:, e.g. %<something%:persistent,id:123,mirror%>. The available properties are:
◦ select: The placeholder will be selected (similar to %|)
◦ multiline: The placeholder is used for multiline text. If a macro insertion replaces an existing text, the replaced text is again inserted into a placeholder in the macro. If

the original text spans more than one line, it will be inserted into a placeholder with the multiline property. Otherwise in a placeholder with the select-property.
◦ persistent: The placeholder is not automatically removed, when its text is changed in the editor
◦ mirror: The placeholder is a mirror of another placeholder in the macro and thus will always have the same content as the original placeholder. You should set an id, so it

knows which placeholders are connected

◦ id:123: The id of the placeholder
◦ columnShift:-12: The placeholder is not placed where the %< markers are, but some columns to the left of it
◦ translatable: The text of the placeholder should be added to translations (only applicable to macros that are known during the compilation of texstudio).

• The option %(filefilter%) will be replaced by a filename which is asked for in a file dialog. The file filter is the standard Qt-Filefilterformat. For example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)", see also Qt-Doc

4.5.2 Environment macros

The text will be used as environment-name, thus "%environment" will be inserted as:
\begin{environment }

\end{environment }

Note: texstudio needs that the env-name starts with "%", though that character is not placed on insertion.

4.5.3 Script Macros

Instead of using code snippets, you can also make use of scripting with QtScript. QtScript is an application scripting language based on ECMAScript. Since QtScript and JavaScript
are both an implementation of ECMAScript, you'll pick up QtScript easily if you are familiar with JavaScript.

Put "%SCRIPT" in the first line to declare a macro as a script. Here are the objects that provide the interface to the TeXstudio internals:

• "editor" allows some top level operations like searching/save/load. in the current document
• "cursor" gives access to cursor operations like moving, inserting and deleting texts.
• "fileChooser" gives access to the filechooser dialog, a very simple file selection dialog
• "app" to access application wide things like the clipboard or the menus

The following table gives an overview on the possible commands.

Command Description

Global scope

alert(str), information(str), warning(str) or critical(str) shows str in a messagebox with a certain icon

confirm(str) or confirmWarning(str) shows str as a yes/no question in a messagebox

debug(str) prints str to stdout

writeFile(name, value) Writes value to file name (requires write privileges)

readFile(name) Reads the entire file name (requires read privileges)

system(cmd, workingDirectory="")

Calls cmd and returns a ProcessX object which has this methodes:

• waitForFinished: Wait until the process is finished
• readAllStandardOutputStr: Returns the stdout
• readAllStandardErrorStr: Returns the stderr
• exitCode: The exit code
• exitStatus: The qt exit status
• terminate or kill: Stops the process

If workingDirectory is not set, the working directory will be inherited from the TeXstudio executable.

setGlobal(name, value) Sets a temporary, global variable

getGlobal(name) Reads a global variable

hasGlobal(name) Checks for the existence of a global variable

setPersistent(name, value) Sets a global configuration variable. (can change the values of the ini file, requires write privileges)

getPersistent(name) Reads a global configuration variable. (can read all values of the ini file, requires read privileges)

hasPersistent(name) Checks if a global configuration variable exists. (requires read privileges)

hasReadPrivileges() Checks if the script has read privileges

hasWritePrivileges() Checks if the script has write privileges

registerAsBackgroundScript([id]) Allows the script to run in the background (necessary iff the script should handle events/signals)

triggerMatches Matches of the regular trigger expression, if the script was called by an editor trigger.

triggerId Numeric id of the trigger, if the script was called by an event trigger.

include(script) Includes another script. Can be a filename or the name of a macro.

pdfs List of all open, internal pdf viewers .

Editor object

editor.search(searchFor, [options], [scope], [callback])

Searches something in the editor.

• searchFor is the text which is searched. It can be either a string (e.g. "..") or a regexp (e.g. /[.]
{2}/).

• options is a string and a combination of "i", "g", "w" to specify a case-insensitive search, a global
search (continue after the first match) or a whole-word-only search.

• scope is a cursor constraining the search scope (see editor.document().cursor).
• callback is a function which is called for every match. A cursor describing the position of the match

is passed as first argument.

All arguments except searchFor are optional, and the order may be changed (which may not be future
compatible). The function returns the number of found matches.

editor.replace(searchFor, [options], [scope], [replaceWith])
This function searches and replaces something in the editor. It behaves like editor.search apart from the
replaceWith argument which can be a simple string or a callback function. If it is a function the return
value of replaceWith is used to replace the match described by the cursor passed to replaceWith.

editor.replaceSelectedText(newText, [options])

This function replaces the current selections with newText or inserts newText, if nothing is selected.
If newText is a function, it will be called with the selected text and corresponding cursor, and the return
value will be the newText.
It is recommended to use this function for all text replacements/insertions, since it is the easiest way to
handle multiple cursors/block selections correctly. Though it is only available in txs >= 2.8.5.

Options is an object that can have the following properties:

• {"noEmpty": true} only replaces; does not insert anything if the selection is empty
• {"onlyEmpty": true} only inserts at the cursor position; does not change non empty selected

text
• {"append": true} appends newText to the current selection, does not remove the old text
• {"prepend": true} prepends newText to the current selection, does not remove the old text
• {"macro": true} Treats newText as normal macro text, e.g. inserting %< %> placeholders

Examples:
editor.replaceSelectedText("world", {"append": true}) Appends "world" to the
current selections.
editor.replaceSelectedText(function(s){return s.toUpperCase();}) Converts the
current selection to uppercase.

editor.insertSnippet(text); Inserts a text snippet into the editor. For a list of extended features and syntax see Text Macros.

editor.undo(); undo last command in editor

editor.redo(); redo last command in editor

editor.cut(); cut selection to clipboard

editor.copy(); copy selection to clipboard

editor.paste(); paste clipboard contents

editor.selectAll(); select all

editor.selectNothing(); select nothing (clear selections)

editor.cutBuffer
If a macro was triggered by a key press and there was a selection previous to the key press, the
content of the selection is stored in the cutBuffer. The selection and its content is removed before the
macro is entered.

editor.find(); activate "find panel"

editor.find(QString text, bool highlight, bool regex, bool word=false,
bool caseSensitive=false);

activate "find panel" with predefined values

editor.find(QString text, bool highlight, bool regex, bool word, bool
caseSensitive, bool fromCursor, bool selection);

activate "find panel" with predefined values

editor.findNext(); find next

editor.replacePanel(); replace (if find panel open and something is selected)

editor.gotoLine(); activate "goto line panel"

editor.indentSelection(); indent selection

editor.unindentSelection(); unindent selection

editor.commentSelection(); comment selection

editor.uncommentSelection(); uncomment selection

editor.clearPlaceHolders(); clear place holders

editor.nextPlaceHolder(); jump to next place holder

editor.previousPlaceHolder() jump to previous place holder

editor.setPlaceHolder(int i, bool selectCursors=true); set Placeholder

editor.setFileName(f); set filename to f

editor.write(str)
inserts str at the current cursors position (if there are cursor mirrors, str will be inserted by all of
them)

editor.insertText(str)
inserts str at the current cursor position (cursor mirrors are ignored, so it is preferable to use
replaceSelectedText or write instead)

editor.setText(text) replace the whole text of the current document by text

editor.text() return the text of the complete document

editor.text(int line) return text of line

Document object

editor.document().lineCount() Returns the number of lines

editor.document().visualLineCount() Returns the number of visual lines (counting wrapped lines)

editor.document().cursor(line, [column = 0], [lineTo = -1], [columnTo
= length of lineTo])

Returns a cursor object. If lineTo is given the cursor has a selection from line:column to
lineTo:columnTo, otherwise not.

editor.document().text([removeTrailing = false], [preserveIndent =
true])

Returns the complete text of the document

editor.document().textLines() Returns an array of all text lines

editor.document().lineEndingString() Returns a string containing the ending of a line (\n or \n\r)

editor.document().canUndo() Returns true if undo is possible

editor.document().canRedo() Returns true if redo is possible

editor.document().expand(lineNr) Expands the line

editor.document().collapse(lineNr) Collapse the line

editor.document().expandParents(lineNr) Expand all parents of the line until it is visible

editor.document().foldBlockAt(bool unFold, lineNr); Collapses or expands the first block before lineNr

editor.document().getMasterDocument(); Returns the open document which directly includes this document

editor.document().getTopMasterDocument(); Deprecated: Use getRootDocument() instead

editor.document().getRootDocument();
Returns the open document which indireclty includes this document and is not itself included by any
other document

editor.document().getMagicComment(name); Returns the content of a magic comment, if it exists

editor.document().updateMagicComment(name, value, [create =
false]);

Changes a magic comment

editor.document().labelItems/refItems/bibItems Returns the ids of all labels/references or included bibliography files.

editor.document().getLastEnvName(lineNr) Returns the name of the current environment (at the end of the line).

Document Manager object

documentManager.currentDocument
Current document (usually the same as editor.document(), unless the script is running in background
mode)

documents.masterDocument Master document

[documentManager.]documents Array of all open documents

documentManager.findDocument(fileName) Returns the open document with a certain file name

documentManager.singleMode() Returns if there is no explicit master document

documentManager.getMasterDocumentForDoc(document) Deprecated: Use getRootDocumentForDoc(document) instead

documentManager.getRootDocumentForDoc(document) Returns the open document (possibly indirectly) including the given document

documentManager.findFileFromBibId(id) Returns the file name of the bib file containing an entry with the given id

Cursor object

cursor.atEnd() returns whether the cursor is at the end of the document

cursor.atStart() returns whether the cursor is at the start of the document

cursor.atBlockEnd() returns whether the cursor is at the end of a block

cursor.atBlockStart() returns whether the cursor is at the start of a block

cursor.atLineEnd() returns whether the cursor is at the end of a line

cursor.atLineStart() returns whether the cursor is at the start of a line

cursor.hasSelection() return whether the cursor has a selection

cursor.lineNumber() returns the line number of the cursor

cursor.columnNumber() returns the column of the cursor

cursor.anchorLineNumber() returns the line number of the anchor.

cursor.anchorColumnNumber() returns the column of the anchor.

cursor.shift(int offset) Shift cursor position (text column) by a number of columns (characters)

cursor.setPosition(int pos, MoveMode m = MoveAnchor) set the cursor position after pos-characters counted from document start (very slow)

cursor.movePosition(int offset, MoveOperation op = NextCharacter,
MoveMode m = MoveAnchor);

move cursor offset times. MoveOperations may be:

• cursorEnums.NoMove
• cursorEnums.Up
• cursorEnums.Down
• cursorEnums.Left
• cursorEnums.PreviousCharacter = Left
• cursorEnums.Right
• cursorEnums.NextCharacter = Right
• cursorEnums.Start

• cursorEnums.StartOfLine
• cursorEnums.StartOfBlock = StartOfLine
• cursorEnums.StartOfWord
• cursorEnums.StartOfWordOrCommand
• cursorEnums.PreviousBlock
• cursorEnums.PreviousLine = PreviousBlock
• cursorEnums.PreviousWord
• cursorEnums.WordLeft
• cursorEnums.WordRight
• cursorEnums.End
• cursorEnums.EndOfLine
• cursorEnums.EndOfBlock = EndOfLine
• cursorEnums.EndOfWord
• cursorEnums.EndOfWordOrCommand
• cursorEnums.NextWord
• cursorEnums.NextBlock
• cursorEnums.NextLine = NextBlock

Options for MoveMode are:

• cursorEnums.MoveAnchor
• cursorEnums.KeepAnchor
• cursorEnums.ThroughWrap

cursor.moveTo(int line, int column); move cursor to line and column

cursor.eraseLine(); remove current line

cursor.insertLine(bool keepAnchor = false); insert empty line

cursor.insertText(text, bool keepAnchor = false)
insert text text at cursor (this function will ignore indentations and mirrors, see editor.write and
editor.insertText)

cursor.selectedText() return the selected text

cursor.clearSelection(); clears selection

cursor.removeSelectedText(); removes selected text

cursor.replaceSelectedText(text); replace selected text with text

cursor.deleteChar(); removes char right to the cursor

cursor.deletePreviousChar(); removes char left to the cursor

cursor.beginEditBlock();
begins a new edit block. All cursor operations encapsulated in an edit block are undone/redone at
once.

cursor.endEditBlock(); ends an edit block

App object

app.getVersion() Current version (0xMMmm00)

app.clipboard Property to read/write to the clipboard

app.getCurrentFileName() File name of currently edited file

app.getAbsoluteFilePath(rel, ext = "") Converts a relative filename to an absolute one

app.load(file) Loads an file

app.fileOpen/Save/Close/.../editUndo/.../QuickBuild/...
All menu commands (i.e. all slots in the texmaker.h file). You can view a list of all currently
existing slots on the "menu" page of the config dialog.

app.newManagedMenu([parent menu,] id, caption) Creates a new menu and returns it

app.getManagedMenu(id) Returns a QMenu with a certain id

app.newManagedAction(menu, id, caption)

Creates a new action and returns it

• menu: Parent menu
• id: Id of the new action (the final, unique id will be menu id/action id)
• caption: Visible text

You can use action.triggered.connect(function(){ ... }); to link a function to the returned action
(for details see the qt signal/slot documentation).

app.getManagedAction([id])
Returns an QAction with a certain id (all ids have the form main/menu1/menu2/.../menuN/action,
with usually one menu, e.g. "main/edit/undo", see texmaker.cpp)

app.createUI(file, [parent]) Loads a certain ui file and creates a QWidget* from it

app.createUIFromString(string, [parent]) Creates a QWidget* described in the string

app.slowOperationStarted()/slowOperationEnded() Notify txs about the start/end of a slow operation to temporary disable the endless loop detection.

app.simulateKeyPress(shortcut)
Trigger a KeyPress event for the given shortcut, e.g. app.simulateKeyPress
("Shift+Up"). Note: this is mainly intended for shortcuts and navigation. Currently, it does not
support all functions of a KeyPress event. In particular, you cannot type any text.

UniversalInputDialog class

new UniversalInputDialog() Creates a new dialog

dialog.add(defaultValue, [description, [id]])
Adds a new variable with the given default value, optional description and id to the dialog; and
returns the corresponding qt component.
A string default value becomes a QLineEdit, a number a QSpinBox and an array a QComboBox.

dialog.get(nr/id) Returns the current value of the nr-th added variable or the variable with a certain id.

dialog.getAll()
Returns the value of all variables as combined numerical/associative array. You can use
returnvalue[i] to get the i-th variable, and returnvalue.id to get the variable with a certain id.

dialog.exec() Displays the dialog. Returns 1 if the user accepted the dialog, 0 if it was canceled.

dialog.show() Displays the dialog asynchronously.

UniversalInputDialog([[defaultValue_0, description_0, id_0],
[defaultValue_1, description_1, id_1], ...])

Short form: Creates a new dialog, adds all variables of the array and call exec on it.

FileChooser object

fileChooser.exec() show dialog and wait until it is closed again

fileChooser.setDir(dir) set directory in the dialog to dir

fileChooser.setFilter(filter) set file filter to filter, using the QT-format, see above

fileChooser.fileName() return selected filename (after exec)

Some examples:

• Copy current file name to clipboard:

%SCRIPT
app.clipboard = editor.fileName();

• Execution of editor text:

%SCRIPT
eval(editor.text());

• Show all properties of an object:

%SCRIPT
function write_properties(obj) {
 app.fileNew();
 newEditor = documentManager.currentDocument.editorView.editor; //access the newly created document
 newEditor.setText(Object.getOwnPropertyNames(obj).join("\n")); //print the properties
}

obj = editor; //object to show (e.g. the current editor)
write_properties(obj)

• Additional action in the edit menu

%SCRIPT
var menu = app.getManagedMenu("main/edit"); //get edit menu
var act = app.newManagedAction(menu, "script", "scripttest"); //add action
act.triggered.connect(function(){alert("called");}); //register simple handler
registerAsBackgroundScript("test"); //keep handler valid

• Asynchronous dialog:

%SCRIPT
var ui = createUI(" ... path to your ui file ..."); //load dialog
ui.accepted.connect(function(){alert("x");}) //react to dialog closing
registerAsBackgroundScript("abc"); //keep function valid
ui.show(); //show dialog

The dialog is described in an ui file which can be created with the Qt Designer.

More examples can be found in the Wiki.

4.5.4 Triggers

4.5.4.1 Regular Expressions

In its simplest form, the trigger is simply a text, which is replaced by the macro. E.g. trigger="eg" macro="example given", "eg" in "the leg" is replaced on pressing "g" by "example
given"
As the trigger is a regular expression, more elaborate triggers can be created. TXS makes use of look-behind searching: "(?<=\s)%" is used to replace a "%" if the previous character is
a space. More help on regular expressions can be found on the internet.

You can access the matched expression in the script via the global variable triggerMatches. triggerMatches is an array. It's zero-th component is the match to the
complete regexp. The following elements are matches to groups (if groups are defined).

Example:

Trigger: #([a-z])
Typed text: #a

triggerMatches[0] == '#a'
triggerMatches[1] == 'a'

Note: Triggers are inactive while the completer is active. For example you cannot trigger on \\sec if the completer is open suggesting to complete \section.

4.5.4.2 Limitation of Scope

To the scope in which a macro will be active, you can prepend an expression of the pattern (?[scope-type]:...).

Scope Limiting Expression Meaning

(?language:...)
The macro is only active if the highlighting of the document matches the given language.
Example: (?language:latex)

(?highlighted-as:...)
Restrict the macro to certain highlighted environments. The possible values correspond to the list on the syntax highlighting config page.
Example: (?highlighted-as:numbers,math-delimiter,math-keyword)

(?not-highlighted-as:...) Similar to (?highlighted-as:...), but the macro is deactivated in the given environments.

You may combine (?language:...) and (?highlighted-as:...) expressions. However, combing (?highlighted-as:...) and (?not-highlighted-
as:...) does not make sense logically and has undefined behavior.

Note that you still need the regular expression of the trigger itself. Here's a full complex example: (?language:latex)(?highlighted-as:comment,commentTodo)
FIXME. This trigger responds to typing "FIXME", but only in comments and todo-notes of latex documents.

4.5.4.3 Event Triggers

Additionally the following special trigger terms (without parentheses) can be used to execute the script when the corresponding event occurs:

Special Trigger Executed on Event

?txs-start TeXstudio is started.

?new-file A new file is created

?new-from-template A new file is created from a template

?load-file A file is loaded

?load-this-file The file containing the macro is loaded (only makes sense, if the script is defined as magic comment)

?save-file A file is saved

?close-file A file is closed

?master-changed A document is un/defined as master document

?after-typeset A latex-like command has ended

?after-command-run A command run has ended (e.g. a compile command that calls latex twice and opens the viewer, will trigger this event once, but after-typeset twice)

Multiple of these special triggers can be combined by | symbols.

4.6 Pstricks support

The main pstricks commands can be inserted with the "Pstricks" panel in the "Structure View".

4.7 Metapost support

The metapost keywords can be inserted with the "Metapost" panel in the "Structure View" and the "mpost" command can be launched via the "Tools" menu.

4.8 The "Convert to Html" command

This command (from the "Tools" menu) produces a set of html pages from a LaTeX source file with one image for each html page. Each page in the slide presentation corresponds
to one of the postscript pages you would obtain running LaTeX.
The command also produces an index page corresponding to the table of contents you would obtain with LaTeX. Each item of the index page includes a link to the corresponding
html page.

You can create links in the html pages by using the \ttwplink{}{} command in the tex file.
Synopsis :
\ttwplink{http://www.mylink.com}{my text} (external link)
\ttwplink{page3.html}{my text} (internal link)
\ttwplink{name_of_a_label}{my text} (internal link)
Warning : You can't use this command with the hyperref package (and some others packages). This command can only be used with the "Convert to html" tool.

4.9 "Forward/Inverse search" with TeXstudio

Integrated pdf-viewer

TeXstudio provides an integarted pdf-viewer which offers forward- and inverse-search. Make sure that synctex is activated in the pdflatex command (option -synctex=1 needs to be
added), though TeXstudio will ask you if it can correct the command itself if it is not set correctly.
Forward search is automatically done every time the pdf-viewer is opened. TeXstudio will jump to the position where your cursor is currently positioned. Additionally you can
CTRL+left click on a word in the text editor to jump to the pdf or use the context menu and select "Go To PDF".
Inverse can be activated by clicking in the pdf with CTRL+left mouse button or by slecting "jump to source" in the context menu, which is activated with a right mouse button click.
Furthermore it is possible to enable "Scrolling follows Cursor" in pdf-viewer/configure. This will keep the pdf-viewer position synchronous to your cursor opposition in the editor.
Likewise "Cursor follows Scrolling" keeps the editor position synchronous to pdf-viewer position.

General Set-up for external viewers

Some (dvi) viewers can jump to (and visually highlight) a position in the DVI file that corresponds to a certain line number in the (La)TeX source file.
To enable this forward search, you can enter the command line of the corresponding viewer either as command line for an user tool in the User menu (User/User
Commands/Edit...) or in the viewer command line in the config dialog ("Options/Configure TeXstudio" -> "Commands"). When the viewer is launched, the @-placeholder will be
replaced by the current line number and ?c:ame by the complete absolute filename of the current file.

On Windows, you can execute DDE commands by inserting a command of the form: dde:///service/control/[commands...] or (since TeXstudio 1.9.9) also
dde:///programpath:service/control/[commands...] to start the program if necessary.

Below you can find a list of commands for some common viewers. Of course, you have to replace (your program path) with the path of the program on your computer, if you want
to use a command.

Sumatra

Launch Sumatra from TeXstudio and configure Sumatra for inverse search: "(your sumatra path)" -reuse-instance -inverse-search "\"(your
TeXstudio path)\" \"%%f\" -line %%l" "?am.pdf"

Jump to a line in a running Sumatra (Windows only): dde:///SUMATRA/control/[ForwardSearch("?am.pdf","?c:am.tex",@,0,0,1)]

Launch Sumatra if it is not running and jump to a line in it (Windows only): dde:///(your sumatra path):SUMATRA/control/[ForwardSearch("?am.pdf","?
c:am.tex",@,0,0,1)]

Launch TeXstudio from Sumatra: "(your TeXstudio path)" "%f" -line %l

A possible value for (your Sumatra path) is C:/Program Files/SumatraPDF/SumatraPDF.exe

Foxit Reader

Launch Foxit Reader from TeXstudio: "(your Reader path)" "?am.pdf"

Acrobat Reader

Launch Acrobat Reader from TeXstudio: "(your Reader path)" "?am.pdf"

Naviation and closing are achieved via DDE commands. Since version 10 of the adobe products the DDE service name contains a letter for the Product and the version number.

Product Service name

Adobe Reader 9 acroview

Adobe Acrobat 9 acroview

Adobe Reader 10 acroviewR10

Adobe Acrobat 10 acroviewA10

Adobe Reader 11 acroviewR11

Adobe Acrobat 11 acroviewA11

Adobe Reader DC acroviewR15

Adobe Acrobat DC acroviewA15

The following example is for Adobe Reader DC:
Jump to a position in a running Adobe Reader (Windows only): dde:///acroviewR15/control/[DocOpen("?am.pdf")][FileOpen("?am.pdf")]
[DocGotoNameDest("?am.pdf","jump-position")] jump-position can be defined with the hyperref package
If you have the problem that Adobe Reader does not open, you have to add the program path like this: dde:///"C:\Program Files (x86)\Adobe\Acrobat Reader
DC\Reader\AcroRd32.exe":acroviewR15/control/[DocOpen("?am.pdf")][FileOpen("?am.pdf")][DocGotoNameDest("?am.pdf","jump-
position")]

Close the document in a running Adobe Reader (Windows only): dde:///acroviewR15/control/[DocOpen("?am.pdf")][FileOpen("?am.pdf")][DocClose
("?am.pdf")]

Note: Since Adobe Reader blocks writing to PDFs which are open in the Reader, you have to close the PDF before recompiling. You can define a User Command for the above DDE-
command and call it at the beginning of your build chain. This ensures that the file will be closed and thus is writable when compiling.

Yap (Yet Another Previewer)

Launch Yap from TeXstudio: "(your Yap path)" -1 -s @?c:m.tex %.dvi

Launch TeXstudio from Yap: "(your TeXstudio path)" "%f" -line %l

A possible value for (your Yap path) is C:\Program Files\MiKTeX 2.7\miktex\bin\yap.exe

xdvi

Launch xdvi from TeXstudio: xdvi %.dvi -sourceposition @:?c:m.tex

Launch xdvi from TeXstudio and enable inverse search: xdvi -editor "texstudio %f -line" %.dvi -sourceposition @:%.tex

kdvi

Launch kdvi from TeXstudio: kdvi "file:%.dvi#src:@ ?c:m.tex"

Okular

Launch okular from TeXstudio: okular --unique %.dvi#src:@?c:m.tex

Launch TeXstudio from Okular: texstudio %f -line %l

Skim

Launch Skim from TeXstudio: (your Skim path)/Contents/SharedSupport/displayline @ ?am.pdf ?c:ame

Launch TeXstudio from skim: Command: /applications/texstudio.app/contents/macos/texstudio with arguments: "%file" -line %line

A possible value for (your Skim path) is /Applications/Skim.app

qpdfview

Launch qpdfview from TeXstudio: qpdfview --unique ?am.pdf#src:?c:am.tex:@:0 2> /dev/null

Launch TeXstudio from qpdfview: texstudio "%1" -line %2

4.10 Advanced header usage

So called "magic comments" are a way to adapt the options of the editor on a per-document level. The concept was originally introduced in TeXshop and has been adopted in a
number of editors since. TeXstudio supports the following magic comments:

% !TeX spellcheck = de_DE

Defines the language used for spell checking of the document. This overrides the global spellchecking settings. Nevertheless, an appropriate dictionary has to be installed.

% !TeX encoding = utf8

Defines the character encoding of a document.

% !TeX root = filename

Defines the root document for this file (i.e. the file which will be passed to the LaTeX compiler when building). This setting override the automatic root detection in
TeXstudio. In turn, it's overridden, if an explicit root document is set at Options -> Root Document.

% !TeX program = pdflatex

Defines the compiler to be used for the document. To be precise, it overrides the default compiler (command txs:///compile) which is used in the actions "Build &
View" as well as "Compile".

% !TeX TXS-program:bibliography = txs:///biber

This is a TeXstudio-specific setting. It overrides the build-system command specified to the left by the one on the right. In the example, we tell TXS to use the biber
command (txs:///biber) for the general "Bibliography command (txs:///bibliography). See also the description of the build system.

% !TeX TXS-SCRIPT = foobar
% //Trigger = ?load-this-file
% app.load("/tmp/test/test.tex");
% app.load("/tmp/test/a.tex");
% TXS-SCRIPT-END

This defines a temporary script macro which is executed, when the file is loaded, and which in turns loads the two files in /tmp/test. .

The macros defined via TXS-SCRIPT are active in all files of a document (e.g. included files). You cannot run them manually. They are run via the trigger (regular
expression or special trigger, see section on triggers). The macro is just read once, when the file is opened. Changes during an edit session will only take effect when you
reopen the file.

% !BIB program = biber

The special % !BIB program command is understood for compatibility with TeXShop and TeXWorks (also in the variant % !BIB TS-program). This is equivalent to
% !TeX TXS-program:bibliography = txs:///biber

4.11 Synopsis of the TeXstudio command

texstudio file [--config DIR] [--root] [--line xx[:cc]] [--insert-cite citation] [--start-always] [--pdf-viewer-only] [--
page yy] [--no-session]

--config DIR use the specified settings directory.

--ini-file
FILE

deprecated:use --config instead.

--root defines the document as explicit root document (formerly called master document).

--master deprecated:use --root instead.

--line xx
[:cc]

position the cursor at line LINE and column COL, e.g. "--line 2:5" will jump to column 5 in line 2.

--insert-
cite
citation

pushes a bibtex key to TeXstudio, that will be inserted at the cursor position. This is intended as an interface for external bibliography managers to push
citations to TeXstudio. You may either pass an (also custom) command like \mycite{key} or just the key. In the latter case, it is expanded to \cite{key}.
Also comma separated keylists are supported. TeXstudio recognizes, if the cursor is already within a citation macro. If so, only the key is inserted at an
appropriate position, otherwise the full citation command is inserted.

--start-
always

start a new instance, even if TXS is already running. This allows using of multiple instances.

--pdf-
viewer-only

run as a standalone pdf viewer without an editor

--page display a certain page in the pdf viewer

--no-session do not load/save the session at startup/close

Additional options only available in debug versions of texstudio:

--disable-tests Prevent running any tests.

--execute-tests Force running the most common tests.

--execute-all-tests Force running all tests.

Note: The most common tests are run automatically, if there were changes to the executable (i.e. TXS has been compiled since the last run). Furthermore all tests are run once a
week.

4.12 Keyboard shortcuts

The keyboard shortcuts can be modified at Options -> Shortcuts.

The following list is a rough overview of the defaults keyboard shortcuts. Depending on the operating system, there may be some deviations to adapt for OS-specific shortcut
conventions.

• "File" menu :
◦ New : Ctrl+N
◦ Open : Ctrl+O
◦ Save : Ctrl+S
◦ Save as: Ctrl+Alt+S
◦ Save all: Ctrl+Shift+Alt+S
◦ Close : Ctrl+W
◦ Print Source Code : Ctrl+P
◦ Exit : Ctrl+Q

• "Edit" menu :
◦ Undo : Ctrl+Z
◦ Redo : Ctrl+Y
◦ Copy : Ctrl+C
◦ Cut : Ctrl+X
◦ Paste : Ctrl+V
◦ Select All : Ctrl+A
◦ Expand Selection to Word : Ctrl+D
◦ Expand Selection to Line : Ctrl+L
◦ Delete Line : Ctrl+K
◦ Delete to End of Line : Alt+K
◦ Find : Ctrl+F
◦ Find next : F3 / Ctrl+G
◦ Find prev : Shift+F3 / Ctrl+Shift+G
◦ Replace : CTrl+R
◦ Go to line : Ctrl+G
◦ Go to previous change: Ctrl+H
◦ Go to to next change: Ctrl+Shift+H
◦ Go to Bookmark 0..9: Ctrl+0..9
◦ Set Bookmark 0..9: Ctrl+Shift+0..9
◦ Set Unnamed Bookmark: Ctrl+Shift+B
◦ Next Marker: Ctrl+Down
◦ Previous Marker: Ctrl+Up
◦ Go Back : Alt+Left
◦ Go Forward : Alt+Right
◦ Insert Unicode Character : Ctrl+Alt+U

• "Idefix" menu :
◦ Erase Word/Cmd/Env: Alt+Del
◦ Paste as LaTeX: Ctrl+Shift+V
◦ Show preview : Alt+P
◦ Comment : Ctrl+T
◦ Uncomment : Ctrl+U
◦ Next Latex Error: Ctrl+Shift+Down
◦ Previous Latex Error: Ctrl+Shift+Up
◦ Next Latex Bad Box: Shift+Alt+Down
◦ Previous Latex Bad Box: Shift+Alt+Up
◦ Go to definition: Ctrl+Alt+F
◦ Normal Completion: Ctrl+Space

◦ \begin Completion: Ctrl+Alt+Space
◦ Normal Text Completion: Alt+Shift+Space
◦ Close Last Open Environment: Alt+Return
◦ Remove Placeholders: Ctrl+Shift+K

"Tools" menu :
◦ Build & View : F5
◦ Compile : F6
◦ View : F7
◦ Bibliography : F8
◦ Glossary : F9
◦ Check spelling : Ctrl+:
◦ Thesaurus : Ctrl+Shift+F8

"LaTeX" menu :
◦ item : Ctrl+Shift+I
◦ Italic : Ctrl+I
◦ Slanted : Ctrl+Shift+S
◦ Bold : Ctrl+B
◦ Typewriter : Ctrl+Shift+T
◦ Small caps : Ctrl+Shift+C
◦ Emphasis : Ctrl+Shift+E
◦ New line : Ctrl+Return
◦ begin{environment} : Ctrl+E
◦ Insert reference to next label : Ctrl+Alt+R

"Math" menu :
◦ Inline math mode : Ctrl+Shift+M
◦ Display math mode : Alt+Shift+M
◦ Numbered equations : Ctrl+Shift+N
◦ Subscript : Ctrl+Shift+D
◦ Superscript : CTrl+Shift+U
◦ Frac : Alt+Shift+F
◦ Dfrac : Ctrl+Shift+F
◦ Sqrt : Ctrl+Shift+Q
◦ Left : Ctrl+Shift+L
◦ Right : Ctrl+Shift+R

"User" menu :
◦ User tags : Shift+F1...Shift+F10
◦ User commands : Shift+Alt+F1...Shift+Alt+F10

"View" menu :
◦ Previous Document : Ctrl+PgDown
◦ Next Document : Ctrl+PgUp
◦ Focus Editor : Ctrl+Alt+Left
◦ Focus Viewer : Ctrl+Alt+Right
◦ Close Something : Esc
◦ Editor Zoom In : Ctrl++
◦ Editor Zoom Out : Ctrl+-
◦ Fullscreeen Mode : F11

4.13 Description of the cwl format

cwl stands for completion word list and is a file format originally used in Kile to define the commands listed in the completer. TeXstudio uses an extended format of cwls to include
additional semantic information and allow for cursor and placeholder placement. It uses them for the following purposes:

• Populating the autocompletion
• Knowledge on the valid commands in the current document (depending on \usepackage statements)
• Semantic information that provide additional context in the editor; e.g. a \ref-like command will check for the existence of the referenced label

4.13.1 cwl file format

Each line of a cwl file defines a command. Comment lines are possible and start with #. The command syntax is

<command>[#classification]

If no classification is given, the command is considered valid at any position in a LaTeX document. The char # cannot be used inside a command, as it has special meaning:

• #include:<packagename> (at start of line): also load packagename.cwl. This should be used to indicate that a package depends on other packages.
• #repl:<search> <replacement> (at start of line): define a letter replacement, e.g. "a -> ä for German. Only used for letter replacement in spell checking (babel)
• #keyvals:<command> (at start of line): start definition of keyvals for command, see graphicx.cwl in source code. To specify possible values for keys, add them after # e.g.
mode=#text,math
Instead of single keys/values, complete special lists can be given, e.g. color=#%color, see also tikz.cwl.
command can consist of two parts, e.g. \documentclass/thesis which is only valid when the command \documentclass uses thesis as argument.
If #c is added, the keyvals are only used for completion, not for syntax checking

• #endkeyvals (at start of line): end definition of keyvals, see graphicx.cwl in source code
• #ifOption:<option> (at start of line): the following block is only loaded if <option> was used in the usepackage command, e.g. \usepackage[svgnames]{color} ->

option=svgnames
• #endif (at start of line): end conditional block
• # (at start of line with the exception of #include,#repl,#keyvals or #endkeyvals): This line is a comment and will be ignored.
• # (in the middle of a line): Separates the command from the classification

cwl files should be encoded as UTF-8.

4.13.2 Command format

In its simplest form the command is just a valid LaTeX expression as you find it in the documentation, e.g. \section{title}. By default, every option is treated as a
placeholder. Alteratively, you may either just define a stop position for the cursor by %| (Example: \left(%|\right)) or use %< %> to mark only part of an option as
placeholder (Example: \includegraphics[scale=%<1%>]{file}). New lines can be included in a command by %\.

Argument Names

The argument names are visible in the completer window and after completion as placeholders in the editor. In general, you are free to name the arguments as you like. We
encurage to provide meaningful names e.g. \parbox[position]{width}{text} instead of \parbox[arg1]{arg2}{arg3}.

There are a few argument names that have special meaning:

• text or ends with %text: The spellchecker will operate inside this argument (by default arguments are not spellchecked).
• title or short title: The spellchecker will operate inside this argument (by default arguments are not spellchecked). Furthermore the argument will be set in bold text

(like in section)
• bibid and keylists: If used in a command classified as "C". See the classifier description below.
• cmd and command or ends with %cmd: definition for command, e.g. \newcommand{cmd}. This "cmd" will considered to have no arguments and convey no functionality.
• def and definition: actual definition for command, e.g. \newcommand{cmd}{definition}. This "definition" will ignored for syntax check.
• args: number of arguments for command, e.g. \newcommand{cmd}[args]{definition}.
• package:package name, e.g. \usepackage{package}
• citekey:definition of new citation key name, e.g. \bibitem{citekey}
• title and short title:section name, e.g. \section[short title]{title}
• color:color name, e.g. \textcolor{color}
• width,length,height or ends with %l:width or length option e.g. \abc{size%l}
• cols and preamble:columns definition in tabular,etc. , e.g. \begin{tabular}{cols}
• file:file name
• URL:URL
• options:package options, e.g. \usepackage[options]
• imagefile:file name of an image
• ends with %todo: The argument is highlighted as todo. Note: To add the element to the todo list in the structure panel, you have to additionally add the classifier D. See

todonotes.cwl for an example.
• key:label/ref key
• label with option #r or key ending with %ref:ref key
• label with option #l or key ending with %labeldef:defines a label
• labellist:list of labels as employed by cleveref
• bib file and bib files:bibliography file
• class:document class
• placement and position:position of env
• %plain: options ending with %plain are interpreted to have no special meaning. This way, you can e.g. define label%plain to have a placeholder named label without

the semantics that it defines a label.
• beamertheme:beamer theme, e.g. \usebeamertheme{beamertheme}
• keys,keyvals and %<options%>:key/value list
• envname:environment name for \newtheorem, e.g. \newtheorem{envname}#N (classification N needs to be present !)

A %-suffix takes precedence over detection by name, i.e. an argument file%text will be treated as text not as file.

4.13.3 Classification format

The following classifications are known to TXS:

Classifier Meaning

* unusual command which is used for completion only in with the "all" tab. This marker may be followed by other classifications.

S do not show in completer at all. This marker may be followed by other classifications.

M do not use this as command description.

m valid only in math environment

t valid only in tabular environment (or similar)

T valid only in tabbing environment

n valid only in text environment (i.e. not math env)

r this command declares a reference like "\ref{key}"

c this command declares a citation like "\cite{key}"

C this command declares a complex citation like "\textcquote{bibid}{text}". The key needs to be given as bibid
l this command declares a label like "\label{key}"

d this command declares a definition command like "\newcommand{cmd}{def}"

g this command declares an include graphics command like "\includegraphics{file}"

i this command declares an include file command like "\include{file}"

u this command declares an used package like "\usepackage{package}"

b this command declares a bibliography like "\bibliography{bib}"

U this command declares a url command like "\url{URL}, where URL is not checked"

K this command declares a bracket-like command like "\big{"

D
this command declares a todo item (will be added to the todo list in the side panel). Note: To highlight the item in the editor, you have to additionally add the
suffix %todo. See todonotes.cwl for an example.

B this command declares a color (will be used for color completion only, no syntax checking)

s
this command declares a special definition, the definition class is given after a "#". The class name needs a preceding %. (e.g. %color), also see the examples
below.

V this command declares a verbatim-like environment "\begin{Verbatim}"

N this command declares a newtheorem-like command like "\newtheorem{envname}"

L0 to L5 this command declares a structure command. The level is between L0 (\part-like) down to L5 (\subparagraph-like). Structure commands are highlighted in
the code, can be folded and appear in the structure outline.

/env1,env2,... valid only in environment env1 or env2 etc.

\env environment alias, means that the environment is handled like the "env" environment. This is useful for env=math or tabular.

Examples:

Line Explanation

test comment

\typein{msg}#* unusual command which is only shown in completion "all"

\sqrt{arg}#m only in math mode valid

\pageref{key}#r declares a reference command which is used correctly for completion

\vector(xslope,yslope){length}#*/picture unusual command which is valid only in the picture environment

\begin{align}#\math declares that the "align"-environment is handled like a math-env, concerning command validity and syntax
highlighting!

\definecolor{name}{model}{color-spec}
#s#%color

adds name to the special list %color

\myplot{file}{label}{params}#l defines the second argument as label. Note: the argument has to be named label for this to work.

\myplot{file}{customname%labeldef} defines the second argument as label, but you are free to choose the name customname which will be used as a
placeholder in the completer.

\myplot{file}{label1%labeldef}
{label2%labeldef}

defines the second and third arguments as labels.

4.13.4 cwl guidelines

Though TeXstudio can automatically create cwls from packages, these autogenerated cwls do not contain meaningful argument names and no classification of commands.
Therefore we ship hand-tuned cwls for many packages. We encourage users to contribute new cwl files. These should have the following attributes:

• package-based: Each cwl should correspond to a package. The exception are some cwls containing fundamental (La)TeX commands, but we've already written them so you
should not have to bother. The cwl should be named like the package so that automatic loading works. If you \usepackage{mypackage} TeXstudio will load mypackage.cwl
if available.

• complete: The cwl should contain all commands in the package. If you use a non-specified command in the editor, the syntaxchecker will mark it as unknown.
• specific: The commands should be classified if possible. This allows TeXstudio to give additional context to the command (e.g. warn if a math command is used outside of a

math environment or check references and citations.
• priorized: Some packages may specify very many commands. Mark the unusual ones by the *-classifier to prevent the completer from overcrowding with rarely used commands.

4.13.4 cwl file placement

cwl files can be provided from three locations. If present, the user provided cwl is taken, if not built-in versions are taken. As a last resort, txs automatically generates cwls from latex
styles, though these only serve to provide syntax information. Context information for arguments are not available and no completion hints are given.

• %appdata%\texstudio\completion\user or .config/texstudio/completion/user user generated cwls
• built-in
• %appdata%\texstudio\completion\autogenerated or .config/texstudio/completion/autogenerated auto-generated cwls

4.14 Using table templates

Texstudio offers the possibility to reformat an existing latex table after a table template.
For example, you have entered following table into txs:

\begin{tabular}{ll}
a&b\\
c&d\\
\end{tabular}

Place the cursor inside the table and select the menu "Latex/Manipulate Tables/Remodel Table Using Template".
Now you can select a template which defines the formatting of the table. A number of templates are predefined by txs:

• fullyframed_firstBold
• fullyframed_longtable
• plain_tabular
• plain_tabularx
• rowcolors_tabular

By selecting the first entry, the table is reformated to:

\begin{tabular}{|l|l|}
\hline
\textbf{a}&\textbf{b}\\ \hline
c&d\\ \hline
\end{tabular}

These templates give the opportunity to easily reformat tables after a predefined fashion, thus achieving a uniform table style in a document, even if the tables are entered in a
very simple style.

4.14.1 Creating table templates

The templates can be defined by the user as well. They have to be place in the config directory (Linux: ~/.config/texstudio) and need to named after the scheme
tabletemplate_name.js.

Meta data is used to provide additional information for the template. It can be stored in a metaData object in the source code. The code var metaData = { has to start on
the first line of the file. Currently only string values are accepted. It is possible to use html tags for formatting. Example:

var metaData = {
"Name" : "Colored rows",
"Description" : "Formats the table using alternate colors for rows.
 <code>\usepackage[table]{xcolor}</code> is necessary.",
"Author" : "Jan Sundermeyer",
"Date" : "4.9.2011",
"Version" : "1.0"
}

The template itself is a javascript (see above) with some prefined variables which contain the whole table. The new table is just placed as replacement of the old one, using
information from that variables. 3 variables are given:

• def the simplified table definition without any formatting (i.e. ll instead of |l|l|)
• defSplit the table definition split by column (array=l,l,p{2cm})
• env the actual environment name of the old table like "tabular" or "longtable"
• tab the actual table. It is a list of lines, each line is a list of columns which contains the cell content as string

To see the principle of work, the source for the "plain_tabular" template is given here.

function print(str){ //define this function to make source more readable
cursor.insertText(str)
}
function println(str){ //define this function to make source more readable
cursor.insertText(str+"\n")
}
var arDef=def.split("") // split the table definition (ll -> 'l' 'l')
println("\\begin{tabular}{"+arDef.join("")+"}") //print table env
for(var i=0;i<tab.length;i++){ // loop through all rows of the table

var line=tab[i]; // line is a list of all columns of row[i]
for(var j=0;j<line.length;j++){ // loop through all columns of a row

print(line[j]) // print cell
if(j<line.length-1) // if not last columns

print("&") // print &
}
println("\\\\") // close row with \\, note that js demands for backslashes in the string

}
println("\\end{tabular}") // close environment

As can be seen in the example, the table has to be rebuilt completely, thus allowing new formatting. A second example gives a slightly more elaborate table
(fullyframed_firstBold):

function print(str){
cursor.insertText(str)
}
function println(str){
cursor.insertText(str+"\n")
}
if(env=="tabularx"){
 println("\\begin{tabularx}{\\linewidth}{|"+defSplit.join("|")+"|}")
}else{
 println("\\begin{"+env+"}{|"+defSplit.join("|")+"|}")
}
println("\\hline")
for(var i=0;i<tab.length;i++){

var line=tab[i];
for(var j=0;j<line.length;j++){

 var col=line[j];
 var mt=col.match(/^\\textbf/);
 if(i==0 && !mt)
 print("\\textbf{")

print(line[j])
 if(i==0 && !mt)
 print("}")

if(j<line.length-1)
print("&")

}
println("\\\\ \\hline")

}
println("\\end{"+env+"}")

5. Tentative Features

These features allow you to modify core aspects of TeXstudio and thus provide a great flexibility of adapting TeXstudio to your needs. Since these features are either complex or
are tightly bound to the internals, we cannot guarantee functionality in all cases and forever. For once, we do not have enough resources to provide full support. Additionally, the
dependence on internals conflicts with our need to freely change internals without restriction for future development.

Nevertheless, we decided that these features may be of interest for experiended users. As a compromise, we provide these features tentatively.

We do not guarantee any of this will still be working in future versions. Functionality may change or be removed without notice.

5.1 Advanced Scripting

You can modify the behavior or add new functionality using Script Macros. The section above lists the core commands, but there are more commands which are not documented. A
number of them are used in the examples section in the wiki. The names and signatures of these functions are directly bound to the internal C++ code of TeXstudio and thus may
change as we further develop TeXstudio.

5.2 Style Sheets

Qt supports modifying the appearance of an application using style sheets. You may use this to adapt the GUI of the main window by placing a file stylesheet.qss into the
settings directory. The file is read at program startup.

Please note that the style sheet may interfere with other ways of configuring the GUI, in particular the style color scheme and other options. Therefore we do not guarantee a
consistent behavior when using style sheets

5.3 Writing your own language definitions

TeXstudio uses QCodeEdit as editor component. It specifies languages in a special xml format named QNFA. This includes highlighting, parentheses (for matching) and code folding.
In a normal TeXstudio installation you won't find any .qnfa files, because we compile the files of the included languages into the binary. You can add your own languages or
overwrite the default ones by placing appropriate .qnfa files in a languages folder inside the settings directory. Definitions here take precedence over the builtin ones.

The .qnfa file specifies the syntax of the language. The actual format information is specified in a .qxf file. You can either use the formats specified in defaultFormats.qxf or
provide your own .qxf file along with the .qnfa file.

You should read the syntax format specification and have a look at the formats shipped with TeXstudio.

Note: We expose the language specification to you as end-user to give you more flexibility in adapting TeXstudio to your needs. But you should take it as is, because we don't have
the capacity to give support here. It's a powerful API, but neither polished nor fully featured. You might find some constructs in the shipped .qnfa files, which are not documented
in the syntax format specification. Additionally, the regular-expression based formatting of QNFA is not sufficient to define all the highlighting we wanted for LaTeX. Therefore we

have extra highlighting functionality directly implemented in the sourcecode for the "(La)TeX" language, e.g. the highlighting inside the parentheses of \begin and \end. You
won't be able to modify this or add it to other languages.

Example

The following is a small example which specifies some highlighting of python code:

python.qnfa

<!DOCTYPE QNFA>
<QNFA language="Python" extensions="py" defaultLineMark="">

<sequence parenthesis="round:open" parenthesisWeight="00">\(</sequence>
<sequence parenthesis="round:close" parenthesisWeight="00">\)</sequence>

<!-- highlight def and function name -->
<sequence id="python/definition" format="python:definition">def$s?$w*</sequence>

<sequence id="python/number" format="python:number">[0-9]+</sequence>

<list id="python/keyword" format="python:keyword">
<word>return</word>
<word>if</word>
<word>elif</word>
<word>else</word>

</list>
</QNFA>

python.qxf

<!DOCTYPE QXF>
<QXF version="1.0" >

<!-- full specification -->
 <format id="python:keyword" >
 <bold>false</bold>
 <italic>false</italic>
 <overline>false</overline>
 <underline>false</underline>
 <strikeout>false</strikeout>
 <waveUnderline>false</waveUnderline>
 <foreground>#B200FF</foreground>
 </format>

<!-- but it is sufficient to specify deviations from default -->
 <format id="python:number" >
 <italic>true</italic>
 <overline>false</overline>
 <foreground>#007F0E</foreground>
 </format>
 <format id="python:definition" >
 <bold>true</bold>
 </format>
</QXF>

The results is the following highlighting:

Changelog

The changelog can be found in the Github repository.

