FLIGHT CONTROL LABORATORY

III Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AAE107	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	2	1	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 24				Total Classes: 24		

OBJECTIVES:

The course should enable the students to:

- I. Learn the basic MATLAB simulation of un-accelerated flight for takeoff, cruise and landing conditions by solving equations of motions.
- II. Understand the concept behind the conventional and unconventional airfoil performance and stability conditions.
- III. Identify the functions of the basic controls like ailerons, elevators and rudders used in typical airplanes.
- IV. Understand the dynamics of the aircraft flight simulator and it's functioning in different flight conditions like takeoff, landing and cruise condition.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Learn the basics of MATLAB codes related to flight simulations.
- 2. Understand and simulate the effects altitude and temperature in International Standard Atmosphere (ISA).
- 3. Explain and simulate the Equations of Motions in one degree of Freedom (1-DOF).
- 4. Understand the application of Equations of Motions in 2-DOF.
- 5. Simulate the equations of motion by using MATLAB Software in 2-DOF.
- 6. Observe the Aerodynamic performance of a symmetrical airfoil by experiment.
- 7. Understand the impact of corrugated Airfoil in the study of aerodynamic performance.
- 8. Analyze the Aerodynamic performance and stability of a corrugated airfoil.
- 9. Evaluate the flight performance of a symmetrical airfoil.
- 10. Evaluate the flight stability and control of a symmetrical airfoil.
- 11. Analyze the flight performance of a corrugated airfoil.
- 12. Compare the performance of symmetrical and corrugated airfoil.
- 13. Analyze the Aerodynamic efficiency of a Delta wing aircraft.
- 14. Analyze the Aerodynamic stability of a Delta wing aircraft.
- 15. Analyze the takeoff and landing performance of airplane by using simulator and assessing difficulties.
- 16. Understand the concept of flight control application on the flight simulator operation to perform takeoff and landing.

LIST OF EXPERIMENTS					
Week-1	MATLAB				
Introduction to flight with MAT LAB.					
Week-2	ISA PROFILE FOR FLIGHT				
Determination of the International Standard Atmosphere (ISA).					
Week-3	EQUATION OF MOTION IN 1-D				
Study of equation of motion with one degree of freedom by using simulating software.					
Week-4	EQUATION OF MOTION IN 2-D				
Study of equation of motion with two degree of freedom by using simulating software.					
Week-5	AERODYNAMIC PERFORMANCE STUDY OF A SYMMETRICAL AIRFOIL				
Study the aerodynamic performance of a symmetrical airfoil wing with varying angles of attack and velocity.					
Week-6	AERODYNAMIC PERFORMANCE STUDY OF A CORRUGATED WING				
Performance test on a corrugated wing by using wind tunnel by varying angles of attack and Reynolds number.					
Week-7	AERODYNAMIC PERFORMANCE STUDY OF A DELTA WING				
Performance test on a delta wing by using wind tunnel by varying angles of attack and Reynolds number.					
Week-8	AERODYNAMIC STABILITY STUDY OF A SYMMETRICAL AIRFOIL				
Static stability analysis on a symmetrical airfoil by using wind tunnel by varying angles of attack and Reynolds number.					
Week-9	AERODYNAMIC STABILITY STUDY OF A CORRUGATED WING				
Static stability analysis on a corrugated wing by using wind tunnel by varying angles of attack and Reynolds number.					
Week-10	AERODYNAMIC STABILITY STUDY OF A DELTA WING				
Static stability analysis on a Delta wing by using wind tunnel by varying angles of attack and Reynolds number.					
WeeK-11	FLIGHT SIMULATION OF TAKEOFF AND LANDING				
Study of the takeoff and landing performance on a flight simulator with constant wind condition.					
Week-12 FLIGHT SIMULATION OF TAKEOFF AND LANDING AT DIFFERENT WIND CONDITIONS					

Study of the takeoff and landing performance on a flight simulator with varying wind condition.

Reference Books:

- 1. Anderson, J.D. Jr., "Aircraft Performance and Design", International Edition McGraw Hill, 1st Edition, 1999.
- 2. Yechout, T.R. et al., "Introduction to Aircraft Flight Mechanics", AIAA Education Series, AIAA, 1st Edition, 2003.