

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ELECTRONIC CIRCUITS AND PULSE CIRCUITS LABORATORY					
Course Code	AEC102					
Programme	B.Tech					
Semester	IV EC	CE				
Course Type	Core					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	2	
Chief Coordinator	Mrs. N Anusha Assistant Professor					
Course Faculty	Mr. J Siva Mrs. J Swe	rama Krishna, Mr. etha, Mrs. N Anus	C Srihari, Mr. ha, Mr. S Laxr	. K Ravi, Mrs. G Sw nana Chary, Mr. B N	arnalatha Jaresh	

I. COURSE OVERVIEW:

2000

This laboratory course builds on the lecture course "Electronic circuit analysis" and "pulse and digital circuits" which is mandatory for all students of electronics and communication engineering. The course aims at practical experience with the characteristics and theoretical principles of linear and non linear devices and pulse circuits.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC001	III	Electronic Devices and Circuits	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Electronic Circuits and Pulse Circuits Lab	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	×	Videos
×	Open Ended Expe	riments					

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following	g criteria:
---	-------------

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: A	ssessment pattern	for	CIA
------------	-------------------	-----	-----

Component	nent Laboratory		Total Marks	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Warks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an	3	Lab related Exercises
	engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Lab related
	literature, and analyze complex engineering problems reaching		Exercises
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 5	Modern tool usage: Create, select, and apply appropriate	2	Lab related
	techniques, resources, and modern engineering and IT tools		Exercises
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	2	Lab related
	concepts in Electronics & Communication Engineering and to		Exercises
	apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of complex		
	systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	-	-
	Electronics and communication Engineering problems, using		
	latest hardware and software tools, along with analytical skills		
	to arrive cost effective and appropriate solutions.		
PSO 3	Successful Career and Entrepreneurship: An understanding	-	-
	of social-awareness & environmental-wisdom along with		
	ethical responsibility to have a successful career and to sustain		
	passion and zeal for real-world applications using optimal		
	resources as an Entrepreneur.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:		
Ι	To understand different amplifier circuits.		
Π	To understand different oscillating circuits.		
III	To indentify the linear and non linear wave shaping.		
IV	To observe the applications of diodes like clippers and clampers.		
V	To analyze the switching characteristics of transistor.		
VI	To design and illustrate the characteristics of Multivibrators.		

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AEC102.01	CLO 1	Understand the response of high pass RC and	PO 1	3
		low pass RC circuits to different non	PO 5	
		sinusoidal inputs with different time		
		constants and identify RC circuit's		
		applications.		
AEC102.02	CLO 2	Understand the various clipper circuits using	PO 1	3
		switching components like diodes, transistors	PO 2	
		and design various clipper circuits with and		
		without reference voltages.		
AEC102.03	CLO 3	Formulate clamping circuit theorem and	PO 1	3
		design practical clamping circuits by	PO 5	
		understanding the different diode clamper		
		circuits.		
AEC102.04	CLO 4	Evaluate triggering points, hysteresis width	PO 1	2
		of Schmitt trigger circuit and also design	PO 2	
		practical Schmitt trigger circuit		
AEC102.05	CLO 5	Analyze the multivibrator circuits with	PO 5	2
		applications and evaluate time, frequency		
		parameters.		
AEC102.06	CLO 6	Analyze the unijunction transistor acts as	PO 1	2
		relaxation oscillator.	PO 2	
AEC102.07	CLO 7	Design various amplifier circuits using	PO 2	2
		Bipolar Junction Transistors in Common	PO 5	
		Emitter, Common Base and Common		
		Collector configurations.		
AEC102.08	CLO 8	Apply the usefulness of amplifiers using	PO 5	2
		semiconductor devices in various real time		
		circuit making.		
AEC102.09	CLO 9	Design various sinusoidal Oscillators like RC	PO 5	2
		Phase shift, Hartley and Colpitts oscillator for		
		various frequency ranges.		
AEC102.10	CLO 10	Analyze various types of feedback amplifiers	PO 2	2
		like voltage series, current series, current		
		shunt and voltage shunt.		
AEC102.11	CLO 11	Acquire experience in building and	PO 5	1
		troubleshooting simple electronic analog		
		circuits using Bipolar Junction Transistor.		
AEC102.012	CLO 12	Acquire the knowledge and develop	PO 1	3
		capability to succeed national and		
		international level competitive examinations		

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	Program Outcomes (POs)										PSOs				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3				2								1		
CLO 2	2	3											1		
CLO 3	3				3								1		

CLO	Program Outcomes (POs)										PSOs				
CLUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 4	2				2								2		
CLO 5					2								3		
CLO 6	2	2											1		
CLO 7		2			2								2		
CLO 8					2								1		
CLO 9		3			2								2		
CLO 10		2											1		
CLO 11					1								2		
CLO 12	3												2		

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 5	SEE Exams	PO 1, PO 2 PO 5	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 5	Student Viva	PO 1, PO 2 PO 5	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Г

LIST OF EXPERIMENTS							
	a. Simulate frequency response of common emitter amplifier and common base						
Week-1	amplifier.						
	b. Design RC low pass and high pass circuit for different time constants.						
Calculate	the frequency response of CE and CB amplifier.						
Calculate	the different time constants of RC LPF and HPF.						
	a. Simulate frequency response of common emitter amplifier and common base						
Week-2	amplifier.						
	b. Design RC low pass and high pass circuit for different time constants.						
Calculate	the frequency response of CE and CB amplifier.						
Calculate	the different time constants of RC LPF and HPF.						
Week 2	a.Simulate frequency response of two stage RC coupled amplifier.						
week-5	b.Design transfer characteristics of clippers and clampers						
Calculate	Calculate the frequency response of two stage RC Coupled Amplifier.						
Verify th	e transfer characteristics of Clippers and Clampers.						

	LIST OF EXPERIMENTS
Wook-1	a.Simulate frequency response of two stage RC coupled amplifier.
WCCK-4	b.Design transfer characteristics of clippers and clampers
Calculate	the frequency response of two stage RC Coupled Amplifier.
Verify the	e transfer characteristics of Clippers and Clampers.
Wook 5	a. Simulate a single tuned amplifier.
week-5	b. Design transistor as a switch.
Calculate	the frequency of Single tuned amplifier
Calculate	the switching times of a transistor.
Week 6	a. Simulate a single tuned amplifier.
week-o	b. Design transistor as a switch.
Calculate	the frequency of Single tuned amplifier
Calculate	the switching times of a transistor.
***	a. Simulate voltage series feedback amplifier and current shunt feedback amplifier.
Week-7	b. Design different types of multivibrators and plot its waveforms.
Calculate	the frequency response of feedback amplifiers
	a Simulate voltage gavies feedback amplifier and surrent shurt feedback amplifier
Week-8	a. Simulate voltage series feedback amplifier and current shunt feedback amplifier.
Cala lata	b. Design different types of multiviorators and plot its waveforms.
Calculate	the frequency response of feedback amplifiers
Calculate	the RC time constant and plot the waveform of a Multivibrators.
	a. Simulate sine wave generated for a particular frequency by an RC phase shift
Week-9	oscillator.
	b. Design a Schmitt trigger circuit.
Calculate	the frequency of oscillations in RC phase shift oscillator
Calculate	the LTP, UTP and plot the waveform of a Multivibrators.
	a. Simulate sine wave generated for a particular frequency by an RC phase shift
Week-10	oscillator.
	b. Design a Schmitt trigger circuit.
Calculate	the frequency of oscillations in RC phase shift oscillator
Calculate	the LTP, UTP and plot the waveform of a Multivibrators.
	a. Simulate sine wave generated for a particular frequency by Colpitts and Hartley
Week-11	oscillator.
	b. Design a UJT Relaxation Oscillator.
Calculate	the frequency of oscillations in Colpitts and Hartley oscillator
Calculate	the negative resistance path of the UJT.
	a. Simulate sine wave generated for a particular frequency by Colpitts and Hartley
Week-12	oscillator.
	b. Design a UJT Relaxation Oscillator.
Calculate	the frequency of oscillations in Colpitts and Hartley oscillator
Calculate	e the negative resistance path of the UJT.
Text Boo	ks:
1. Ja 2. Da	cob Millman, Christor C Halkias,- Integrated Electronicsl, Tata McGraw Hill, 1 st Edition, 2008. avid A.Bell," Solid State Pulse Circuits",PHI learing,4 th Edition.
Referenc	e Books:
1. Da	avid A. Bell —Electronic Devices & Circuits 5 th Edition, Oxford university press, 7 th Edition.
2. 20	09.
3. Ro	obert L. Boylestad, Louis Nashelsky, —Electronic Devices and Circuits Theory, Pearson
ed	ucation, 9 ^{ee} Edition, 2008.
4. Ro	bald J. 10cci, Fundamentals of Pulse and Digital Circuits", PHI learning, 3 ⁴⁴ Edition, 2008.

XIV. COURSE PLAN:

Week No.	Topics to be covered	CLOs	Reference
1	Calculate the frequency response of CE and CB amplifier.	CLO 1, CLO 7	T1-2.1 to 2.7
2	Calculate the different time constants of CE and CB amplifier. Calculate the different time constants of RC LPF and HPF.	CLO 1, CLO 7	T1-20.1 to 20.2
3	Calculate the frequency response of two stage RC Coupled Amplifier. Verify the transfer characteristics of Clippers and Clampers	CLO 2, CLO 3, CLO 7	T1-8.1 to 8.2
4	Calculate the frequency response of two stage RC Coupled Amplifier. Verify the transfer characteristics of Clippers and Clampers.	CLO 2, CLO 3, CLO 7	T1-8.3 to 8.7
5	Calculate the frequency of Single tuned amplifier Calculate the switching times of a transistor.	CLO 2, CLO 7, CLO 8	T1-10.1 to 10.10
6	Calculate the frequency of Single tuned amplifier Calculate the switching times of a transistor.	CLO 2, CLO 7, CLO 8	T1-10.11 to10.13
7	Calculate the frequency response of feedback amplifiers Calculate the RC time constant and plot the waveform of Multivibrators.	CLO 5, CLO 10	T1-11.1 to 11.5
8	Calculate the frequency response of feedback amplifiers Calculate the RC time constant and plot the waveform of a Multivibrators.	CLO 5, CLO 10	T1 –11.12
9	Calculate the frequency of oscillations in RC phase shift oscillator Calculate the LTP, UTP and plot the waveform of a Multivibrators.	CLO 4, CLO 9	T1–17.1 to 17.6
10	Calculate the frequency of oscillations in RC phase shift oscillator. Calculate the LTP, UTP and plot the waveform of a Multivibrators.	CLO 4, CLO 9	T1–14.1 to 14.3
11	Calculate the frequency of oscillations in Colpitts and Hartley oscillator Calculate the negative resistance path of the UJT.	CLO 6, CLO 9	T1-14.9
12	Calculate the frequency of oscillations in Colpitts and Hartley oscillator Calculate the negative resistance path of the UJT.	CLO 6, CLO 9	T1-19.1 to 19.3

The course plan is meant as a guideline. Probably there may be changes.

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1, PO 2	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 2, PO5	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 5	PSO 1

Prepared by:

Mrs.N Anusha, Assistant Professor