ENGINEERING PHYSICS LABORATORY

		A 277 / 2		TT C	COT /	TO 1 OT 1	-
1	Semester:	AE/I	CE/ME	II Semester:	CSE /	IT / CE /	EEE

Course Code	Course Code Category		ours /	/ Week	Credits	Maximum Marks		
AHSB10	Foundation	L	T	P	C	CIA	SEE	Total
Ansbio		-	-	3	1.5	30	70	100
Contact Classes: Nil Tutorial Classes: Nil			Practical Classes: 45			Total Classes: 45		

OBJECTIVES:

The course should enable the students to:

- I. Upgrade practical knowledge in optics.
- II. Enlighten the real time application of electromagnetic theory.
- III. Enrich the knowledge of electric and magnetic properties.

COURSE OUTCOMES (COs):

- CO 1: Understand the basic principles of physics and correlate with experiments.
- CO 2: Explore the working principles of semiconducting devices.
- CO 3: Summarize various phenomenon of optics like interference and diffraction.
- CO 4: Analyze the basic theory of semiconductor diode in electronic devises.
- CO 5: Explain the concept of hysteresis curve of a ferromagnetic material.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Evaluate the carrier density of a semiconductor using the principle of Hall Effect.
- 2. Perform Melde's experiment to understand propagation of longitudinal and transverse waves.
- 3. Examine the magnetic field produced in a coil to verify the Tangent's law.
- 4. Analyze the hysteresis property of a ferromagnetic material.
- 5. Evaluate the energy gap of a semiconductor diode.
- 6. Determine the numerical aperture of an optical fiber.
- 7. Understand the phenomena of diffraction to determine wavelength of laser.
- 8. Estimate the value of Planck's constant using light emitting diode.
- 9. Examine the behavior of LED by studying its V-I characteristics.
- 10. Apply the concept of Newton's rings to determine the radius of curvature of convex lens.
- 11. Determine the slit width using the phenomena of diffraction.
- 12. Understand the sensitivity of photo diode to light intensity.
- 13. Evaluate time constant of a RC circuit.
- 14. Verify L-I characteristics of a solar cell.
- 15. Correlate the basic principles of physics with laboratory experiments.

LIST OF EXPERIMENTS						
Week-l	INTRODUCTION TO PHYSICS LABORATORY					
Do's and Doi	Do's and Don'ts in physics laboratory. Precautions to be taken in laboratory.					
Week-2	HALL EFFECT (LORENTZ FORCE)					
Determination	Determination of charge carrier density.					
Week-3	Veek-3 MELDE'E EXPERIMENT					
Determination	on of frequency of a given tuning fork.					
Week-4	STEWART GEE'S APPARATUS					
Magnetic fie	Magnetic field along the axis of current carrying coil-Stewart and Gee's method.					
Week-5	B-H CURVE WITH CRO					
To determine	To determine the value of retentivity and coercivity of a given magnetic material.					
Week-6	ENERGY GAP OF A SEMICONDUCTOR DIODE					
Determination	Determination of energy gap of a semiconductor diode.					
Week-7	PIN AND AVALANCHE DIODE					
Studying V-I	Studying V-I characteristics of PIN and Avalanche diode.					
Week-8	OPTICAL FIBER					
Evaluation of	Evaluation of numerical aperture of a given optical fiber.					
Week-9	WAVE LENGTH OF LASER LIGHT					
Determination	Determination of wavelength of a given laser light using diffraction grating.					
Week-10	PLANK'S CONSTANT					
Determination of Plank's constant using LED.						
Week-11	LIGHT EMITTING DIODE					
Studying V-I characteristics of LED						
Week-12	NEWTONS RINGS					
Determination of radius of curvature of a given plano-convex lens.						
Week-13	SINGLE SLIT DIFFRACTION					
Determination	on of width of a given single slit.					

Text Books:

- 1. C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012.
- 2. Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

Reference Books:

- 1. C.F. Coombs, "Basic Electronic Instrument Handbook", McGraw-Hill Book Co., 1972.
- 2. C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995.

Web References:

- 1. https://www.scribd.com/doc/143091652/ENGINEERING-PHYSICS-LAB.
- 2. https://www3.nd.edu/~wzech/LabManual_0907c.pdf.
- 3. https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/978-3-330-34402.