COMPUTATIONAL AERODYNAMICS LABORATORY

VI Semester: AE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AAE109	Core	L	Т	Р	С	CIA	SEE	Total	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36				Total Classes: 36			

OBJECTIVES:

The course should enable the students to:

- I. Experience in computing aerodynamic problems and understanding flow physics over the objects.
- II. Knowledge in estimating flow analysis for different mach numbers.
- III. Determining the aerodynamic forces like mainly lift and drag.
- IV. Analyze the errors and cause of errors in computational analysis.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Understand the behavior of flows around different structured objects.
- 2. Implement the computational fluid dynamic and computational aerodynamic fundamentals by using advanced solvers.
- 3. Explain the usage of modern tools like ICEM-CFD& FLUENT
- 4. Understand the flow properties of flat plate to demonstrate Reynolds number,
- 5. Understand the Aerodynamic properties for flow through circular pipe.
- 6. Understand the Aerodynamic properties foe flow through cylinder.
- 7. Observe the properties at separation region and wake region of circular cylinder at different Reynolds numbers
- 8. Understand the aerodynamic properties of supersonic flow over a wedge
- 9. Understand the aerodynamic properties of flow over an airfoil.
- 10. Differentiate the flow properties around symmetrical and cambered airfoil
- 11. Analyze the errors and cause of errors in the computational analysis.
- 12. Analyze the coefficient of pressure, lift, drag and moment for different bodies for different flow conditions.
- 13. Determine the shock wave around cone and wedges for supersonic flow conditions..
- 14. Observe flow properties and compare the computation results with experimental results
- 15. Observe the shock waves and 3D relieving effect around the cone at supersonic mach number;
- 16. Solve the One dimensional wave equation using explicit method of lax equations using finite difference method
- 17. Solve the One dimensional heat conduction equation using explicit method
- 18. Generate the Algebraic and Elliptic grids for computational domains.

	LIST OF EXPERIMENTS				
Week-1	INTRODUCTION				
Introduction to computational aerodynamics, the major theories, approaches and methodologies used in computational aerodynamics. Applications of computational aerodynamics for classical aerodynamic's problems.					
Week-2	INTRODUCTION TO GAMBIT				
Introduction to gambit, geometry creation, suitable meshing types and boundary conditions.					
Week-3	INTRODUCTION TO FLUENT				
Introduction to fluent, boundary conditions, solver conditions and post processing results.					
Week-4	FLOW OVER A FLAT PLATE				
Flow over a flat plate at low Reynolds numbers, observe the boundary layer phenomena, no slip condition and velocity profile inside the boundary layer.					
Week-5	FLOW THROUGH PIPE				
Flow through pipe at different Reynolds numbers; observe the velocity changes for laminar and turbulent flows.					
Week-6	FLOW OVER A CIRCULAR CYLINDER				
Flow over and wake r	a circular cylinder at different Reynolds numbers, observe the properties at separation region egion.				
Week-7	FLOW OVER A CAMBERED AEROFOIL				
Flow over a cambered aerofoil at different velocities, observe flow properties and compare the computation results with experimental results (consider the model from aerodynamics laboratory).					
Week-8	FLOW OVER A SYMMETRIC AEROFOIL				
Flow over a symmetric aerofoil at different velocities, observe flow properties and compare the computation results with experimental results (consider the model from aerodynamics laboratory).					
Week-9	FLOW OVER WEDGE				
Flow over wedge body at supersonic mach number; observe the shock wave phenomena and change of properties across the shock wave.					
Week-10	FLOW OVER A CONE				
Flow over	a cone at supersonic mach number; observe the shock waves and 3D relieving effect.				
Week-11	CODE DEVELOPEMENT				
Solution fo I. One di II. One di	r the following equations using finite difference method mensional wave equation using explicit method of lax. mensional heat conduction equation using explicit method.				
Week-12	CODE DEVELOPEMENT				
Generation of the following grids					
II. Elliptic	e grids.				
II. Elliptic	e grids.				

Text Books:

- J. D. Anderson, Jr., "Computational Fluid Dynamics- The Basics with Applications", McGrawHill Inc, 2012.
 D A Anderson, J C Tannehill, R H Pletcher, "Computational Fluid Mechanics and Heat Transfer", 1st edition,
- 1997.

Reference Books:

- 1. Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Vol. I, Butter worth-Heinemann, 2nd edition, 2007.
- 2. Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics for Engineers", Engineering Education Systems, 4th edition, 2000.
- 3. Patankar, S.V., "Numerical Heat Transfer and Fluid Flow", Hemisphere Pub. Corporation, 1st edition, 1980.
- 4. H K Varsteeg, W Malalasekera, "An Introduction to Computational Fluid Dynamics The Finite Volume MEthod", Longman Scientific and Technical, 1st edition, 1995.