THEORY OF MACHINES LABORATORY

VI Semester: ME									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AME111	Core	L	Т	Р	С	CIA	SEE	Total	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil]	Practical Classes: 36 Total Classes: 36				es: 36		

OBJECTIVES:

The course should enable the students to:

- I. Understand the basic principles of kinematics and the related terminology of machines.
- II. Discriminate mobility; enumerate links and joints in the mechanisms.
- III. Formulate the concept of analysis of different mechanisms.

COURSE OUTCOMES (COs):

CO1: Understand principles of balancing of masses to various links, mechanisms and engines.

CO2: Visualize the working principles of brakes and dynamometer

CO3: Apply the concept of balancing of masses of rotating and reciprocating machine elements.

CO4: Understand the principles of gyroscope and governors

CO5: Ability to determine the vibration parameters of different systems

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Understand basic units of measurement, convert units, and appreciate their magnitudes.
- 2. Utilize basic measurement techniques of theory of machines.
- 3. Perform kinematic analysis of mechanisms
- 4. Perform dynamic analysis of mechanisms
- 5. Calculate position, velocity, and acceleration of linkages
- 6. Calculate speed ratio of gear trains
- 7. Identify mechanisms in real life applications.
- 8. Perform kinematic analysis of simple mechanisms.
- 9. Perform static and dynamic force analysis of slider crank mechanism.
- 10. Determine moment of inertia of rigid bodies experimentally.
- 11. Determine the Gyroscope couple.
- 12. Determine the bearing life of Ball bearing.

LIST OF EXPERIMENTS

Week-1GOVERNORSTo study the function of a Governor

Week-2 GYROSCOPE

To determine the Gyroscope couple.

Week-3 STATIC FORCE ANALYSIS

To draw free body diagram and determine forces under static condition.

Week-4 DYNAMIC FORCE ANALYSIS

To draw free body diagram and determine forces under dynamic condition.

Week-5 BALANCING

To determine balancing forces and reciprocating masses.

Week-6	BEARINGS				
To determine the bearing life.					
Week-7	VIBRATIONS				
To determine the longitudinal and transfer vibration.					
Week-8	WHIRLING				
To determine critical speed of a shaft.					
Week-9	MECHANISMS				
To design various mechanism and their inversions					
Week-10	DIFFERENTIAL GEAR BOX				
To study automobile differential gear box.					
WeeK-11	INDEXING				
To study various intermittent mechanism.					
Week-12	EXAMINATIONS				
Text Books:					
 Joseph E. Shigley, "Theory of Machines and Mechanisms", Oxford University Press, 4th Edition, 2010. 					
2 Thomas	2 Thomas Bevan, "Theory of Machines", Pearson, 3 rd Edition, 2009.				