ANALOG AND PULSE CIRCUITS LABORATORY

IV Semester: ECE								
Course Code	Category	Hours /Week			Credits	Maximum Marks		
AECB15	Core	L	Т	P	С	CIA	SEE	Total
		-	-	3	1.5	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Pra	ctical	Classe	es: 36	Total Classes: 36		

OBJECTIVES:

The course should enable the students to:

- I. Simulate and analyze single stage and multistage amplifiers and oscillators.
- II. Demonstrate the principles of feedback amplifiers and oscillators through simulation.
- III. Implementation of circuits for linear and non-linear wave shaping.
- IV. Analyze the characteristics of different multivibrators.

LIST OF EXPERIMENTS

WEEK-1 BASIC AMPLIFIERS

Simulate frequency response of common emitter amplifier and common base amplifier.

WEEK-2 TWO STAGE RC COUPLED AMPLIFIER

Simulate frequency response of two stage RC coupled amplifier.

WEEK-3 SINGLE TUNED AMPLIFIERS

Simulate a single tuned amplifier.

WEEK-4 FEEDBACK AMPLIFIERS

Simulate voltage series feedback amplifier and current shunt feedback amplifier.

WEEK-5 RC PHASE SHIFT OSCILLATOR USING TRANSISTOR

Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.

WEEK-6 OSCILLATORS

Simulate sine wave generated for a particular frequency by Colpitts and Hartley oscillator.

WEEK-7 POWER AMPLIFIERS

Simulate class A power amplifier (transformer less) and class B power amplifier.

WEEK -8 LINEAR WAVESHAPING

Design RC low pass and high pass circuit for different time constants.

WEEK - 9 NON-LINEAR WAVESHAPING

Design transfer characteristics of clippers and clampers.

WEEK-10 MULTIVIBRATORS ASTABLE

Design Astable multivibrator and plot its waveforms.

WEEK-11 MULTIVIBRATORS BISTABLE

Design Bistable multivibrator and plot its waveforms.

WEEK-12 SCHMIT TRIGGER

Design a Schmitt trigger circuit.

WEEK-13 COMPARATOR

Design a Comparator and plot its waveforms.

WEEK-14 Transistor as a switch

Design a Switch and plot its waveforms.

Reference Books:

- 1. Jacob Millman, Herbert Taub, Mothiki S. PrakashRao, "Pulse Digital and Switching Waveforms", Tata McGraw-Hill, 3rd Edition, 2008.
- 2. David A. Bell, "Solid State Pulse Circuits", PHI, 4th Edition, 2002.
- 3. J. Millman, C. C. Halkias, "Integrated Electronics", Tata McGraw-Hill. 1st Edition, 2008.
- 4. B. P. Singh, Rekha Singh, "Electronic Devices and Circuits", Pearson, 1st Edition, 2006.
- 5. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw-Hill, 1st Edition, 2002.

Web References:

- 1. http://www.tedpavlic.com/teaching/osu/ece327/
- 2. http://www.ee.iitkgp.ac.in
- 3. http://www.citchennai.edu.in