COMPUTATIONAL STRUCTURAL ANALYSIS LABORATORY

VII Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AAE111	Core	L	Т	Р	С	CIE	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36				Total Classes: 36		

OBJECTIVES:

The course should enable the students to:

- I. To apply the basic principles learnt from pre-requisites subjects to solve the structural problem.
- II. To adopt any computational structural analysis software and learns how to perform analysis.
- III. Analyze structural problems related to Aerospace industry.
- IV. Interpret the results and how to apply them on the real-life structure.

COURSE LEARNING OUTCOMES (CLOs):

The students should able to:

- 1. Understand the basic features of an analysis package.
- 2. Understand how to apply the theoretical process to solve the problem computationally.
- 3. Build the mathematical model using modern tools to formulate the problem.
- 4. Computationally solve the 2D and 3D trusses, beams, plates under various loadings.
- 5. Determined different stresses, deflections, shear force and bending moment diagrams.
- 6. Demonstrate the modal analysis on different structural members of different materials.
- 7. Calculate the natural frequencies under various boundary conditions and analyze with forcing functions.
- 8. Analyze the non-linear behavior of the material to determine the large deflections.
- 9. Illustrate the harmonic responses of the spring-mass systems and interpret them for real time problem.
- 10. Model the 3D components and execute the results for the applied loads to measure the results.
- 11. Apply the static analysis results to assess the dynamic behavior of the structure.
- 12. Identify the forces acting on landing gear and analyze the basic landing gear to find the stresses.
- 13. Use the ANSYS ACP application for building the composite structure.
- 14. Examine the composite behavior of the structure and evaluate the results.
- 15. Work on ANSYS APDL & Workbench platforms to evaluate the results for basic aerospace structure.

LIST OF EXPERIMENTS

Week-I INTRODUCTION AND BASIC FUCTIONS

- a. Starting up of ANSYS/Nastran
- b. Description of user interface

Week-2 STATIC ANALYSIS: TRUSS AND FRAME STRUCTURES

- a. 2-D truss structures
- b. 3-D truss structures

Week-3 STATIC ANALYSIS: BEAMS

- a. Straight beams
- b. Tapered beams

Week-4 STATIC ANALYSIS: TWO DIMENSIONAL PROBLEMS

 a. 2-D structure with various loadings b. 2-D structures with different materials 				
c. Plate with hole				
Veek-5 DYNAMIC ANALYSIS: MODAL AND TRANSIENT ANALYSES				
a. Modal analysisb. Transient Response (spring-mass system)				
Veek-6 THERMAL ANALYSIS				
a. Bars and beamsb. 2D structures				
Week-7 NON LINEAR ANALYSIS				
a. Nonlinear behavior (Large deflections)b. Nonlinear behavior (Materials)				
Week-8 HARMONIC RESPONSE ANALYSIS				
a. Random Vibration Analysis of a Deep Simply-Supported Beamb. Harmonic Response of a Spring-Mass System				
Week-9 ANALYSIS OF AIRCARFT STRUCTURE: WING				
a. Static analysis of Aircraft wing structureb. Modal analysis of aircraft wing structure				
Week-10 ANALYSIS OF AIRCARFT STRUCTURE:FUSELAGE				
a. Static analysis of Aircraft Semi monoque fuselage structureb. Modal analysis of aircraft Semi monoque fuselage structure				
Week-11 ANALYSIS OF AIRCARFT STRUCTURE:LANDING GEAR				
a. Static analysis of main landing gearb. Modal analysis of main landing gear				
Week-12 ANALYSIS OF COMPOSITE STRUCTURES				
a. Static analysis of composite bar and beamb. Static analysis of composite plate				
Text Books:				
 Huei-Huang Lee, "Finite Element Simulations with ANSYS Workbench 16", SDC publications, 2nd Edition, 2016. 				
2. Anderson, William J "MSC/Nastran: Interactive Training Program" Wiley 1 st Edition 2015.				
3. "ANS YS Mechanical APDL Basic Analysis Guide", ANSYS, Inc Kelease 16.0.				
Web References:				
 https://www.ansys.com/services/learning-hub https://caeai.com/ansys-software-support/ansys-software/mechanical-simulation-software 				