OPERATING SYSTEMS LABORATORY

IV Semester: CSE / IT									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
ACS106	Core	L	Т	Р	C	CIA	SEE	Tota l	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45			

OBJECTIVES:

The course should enable the students to:

- I. Understand the basic principles of Scheduling algorithms.
- II. Apply the page replacement algorithms.
- III. Understand the file allocation strategies.
- IV. Evaluate the bankers algorithm.
- V. Understand the memory management techniques.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Understand the concepts of different scheduling algorithms
- 2. Demonstrate the concept of scheduling the process with the shortest burst time to be process first.
- 3. Understand the Priority Scheduling algorithm used for both pre-emptive and non-pre-emptive scheduling of tasks in operating systems.
- 4. Demonstrate the replacing the page with page replacement algorithms in memory management in operating systems
- 5. Determine the importance of different file allocation strategies.
- 6. Understand the concepts of Bankers algorithm for the purpose of deadlock avoidance.
- 7. Determine the procedure for deadlock prevention using Bankers algorithm.
- 8. Understand the basic concepts of MVT memory management techniques.
- 9. Understand the basic concepts of MFT memory management techniques.
- 10. Determine the concepts of file organization techniques.
- 11. Understand the importance of two level directories.
- 12. Determine the concepts of paging techniques of memory management.

LIST OF EXPERIMENTS

Week-1	CPU SCHEDULING ALGORITHMS		
Write a program to simulate the FCFS and SJF non-preemptive CPU Scheduling algorithms to find turnaround time and waiting time.			
Week-2	CPU SCHEDULING ALGORITHMS		
Write a program to simulate the Round Robin and Priority CPU Scheduling algorithms to find turnaround time and waiting time.			
Week-3	PAGE REPLACEMENT ALGORITHMS		
Write a program to simulate FIFO page replacement algorithm.			
Week-4	PAGE REPLACEMENT ALGORITHMS		

Write a progr	Write a program to simulate LRU and LFU page replacement algorithms.		
Week-5	FILE ALLOCATION STRATEGIES		
Write a progr	Write a program to simulate the Sequential file allocation strategies.		
Week-6	BANKER ALGORITHMS		
Write a progr	am to simulate Bankers algorithm for the purpose of deadlock avoidance.		
Week-7	BANKER ALGORITHMS		
Write a program to simulate Bankers algorithm for the purpose of deadlock Prevention.			
Week-8	MEMORY MANAGEMENT TECHNIQUES		
Write a program to simulate the MVT memory management techniques.			
Week-9	MEMORY MANAGEMENT TECHNIQUES		
Write a program to simulate the MFT memory management techniques.			
Week-10	FILE ORGANIZATION TECHNIQUES		
Write a program to simulate the Single level directory file organization techniques.			
WeeK-11	FILE ORGANIZATION TECHNIQUES		
Write a program to simulate the Two level directory file organization techniques.			
Week-12	PAGING TECHNIQUES		
Write a program to Simulate paging technique of memory management.			
TEXT BOOK:			
 Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles", Wiley Student Edition, 8th Edition, 2010. 			
REFERENCE BOOK:			
1. Andrew	S Tanenbaum, "Modern Operating Systems", PHI, 3rd Edition, 2007.		