DATA STRUCTURES LABORATORY

III Semester: ME / CSE / IT / ECE / CE IV Semester AE / EEE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACSB05	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	1.5	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36 Total Classes: 36						

OBJECTIVES:

The course should enable the students to:

- I. Understand various data representation techniques in the realworld.
- II. Implement linear and non-linear datastructures.
- III. Analyze various algorithms based on their time and spacecomplexity.
- IV. Develop real-time applications using suitable datastructure.
- V. Identify suitable data structure to solve variouscomputingproblems.

COURSE OUTCOMES (COs):

The student will have the ability to:

- CO 1: Understand the concept of data structures, python and apply algorithm for solving problems like Sorting, searching, insertion and deletion of data.
- CO 2: Understand linear data structures for processing of ordered or unordered data.
- CO 3: Explore various operations on dynamic data structures like single linked list, circular linked list and doubly linked list.
- CO 4: Explore the concept of non linear data structures such as trees and graphs.
- CO 5: Understand the binary search trees, hash function, and concepts of collision and its resolution methods.

COURSE LEARNING OUTCOMES:

- 1. Understand the basic concepts of python.
- 2. Explore an algorithm to find the location of an element in a givenlist.
- 3. Choose a suitable algorithm to organize the data in ascending or descendingorder.
- 4. Implementation of stack and queues usinglists.
- 5. Understand application of stacks in arithmetic expression conversion and evaluation.
- 6. Understand working and implementation of single linkedlist.
- 7. Understand the basic operations like insertion and deletion operations associated with double linked list.
- 8. Understand working and implementation of stack and queue using linkedlist
- 9. Understand working and implementation of stack and queue using linkedlist
- 10. Understand the concept of non-linear data structures viz. trees and graphs.
- 11. Understand graphs and graph traversal techniques like Depth first search and Breadth firstsearch.
- 12. Understand the operations of binary search tree like tree traversals and counting the number of nodes in the binary searchtree.

LIST OF EXPERIMENTS				
Week -1	BASICS OF PYTHON			
Write Python programs for the following: To find the biggest of given n numbers using control statements and lists To print the Fibonacci series using functions To find GCD of two numbers				
Week -2	SEARCHING TECHNIQUES			
Write Python programs for implementing the following searching techniques to arrange a list of integers in ascending order.a. Linearsearchb. Binarysearch				
Week -3	SORTING TECHNIQUES			
 Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Bubblesort b. Insertionsort c. Selectionsort 				
Week -4	IMPLEMENTATION OF STACK AND QUEUE			
Write Python programs to for the following:a. Design and implement Stack and its operations usingList.b. Design and implement Queue and its operations usingList.				
Week -5	APPLICATIONS OF STACK			
Write Python programs for the following: a. Uses Stack operations to convert infix expression into postfix expression.				
Week-6	IMPLEMENTATION OF SINGLE LINKED LIST			
Write Python programs for the following operations on Single Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal				
Week -7	IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST			
Write Python programs for the following operations on Circular Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal				
Week -8	IMPLEMENTATION OF DOUBLE LINKED LIST			
Write Python programs for the following operations on Double Linked List.(i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.				
Week -9	IMPLEMENTATION OF STACK USING LINKED LIST			
Write a Pyt	hon program to implement Stack using linked list.			

Week -10 IMPLEMENTATION OF QUEUE USING LINKED LIST

Write a Python program to implement Linear Queue using linked list.

Week -11 GRAPH TRAVERSAL TECHNIQUES

Write Python programs to implement the following graph traversal algorithms:

- a. Depth firstsearch.
- b. Breadth firstsearch.

Week -12 IMPLEMENTATION OF BINARY SEARCH TREE

Write a Python program to perform the following:

- a. Create a binary searchtree.
- b. Traverse the above binary search tree recursively in pre-order, post-orderandin-order.
- c. Count the number of nodes in the binary searchtree.

LIST OF REFERENCE BOOKS:

- 1. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley, John Wiley& Sons, INC., 2011.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt PublishingLtd., 2017.

WEB REFERENCES:

- 1. https://docs.python.org/3/tutorial/datastructures.html
- 2. http://interactivepython.org/runestone/static/pythonds/index.html
- 3. http://www.tutorialspoint.com/data_structures_algorithms
- 4. http://www.geeksforgeeks.org/data-structures/
- 5. http://www.studytonight.com/data-structures/
- 6. http://www.coursera.org/specializations/data-structures-algorithms
- 7. http://cse01-iiith.vlabs.ac.in/