DIGITAL SYSTEM DESIGN LABORATORY

III Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AECB10	Core	L	Т	Р	C	CIA	SEE	Total
		0	0	2	1	30	70	100
Contact Classes: Nil	Tutorial Classes: 24	Practical Classes: 45			es: 45	Total Classes: 69		
ORIECTIVES .								

The course should enable the students to:

- I. Design of combinational circuits using Verilog Hardware Description Language.
- II. Implementation of Sequential circuits using Verilog Hardware Description Language.
- III. Demonstration of different case studies for Verilog HDL implementation.

COURSE LEARNING OUTCOMES:

- 1. Understand number systems, binary addition and subtraction, 2's complement Representation and operations with this representation and understand the different binary codes.
- 2. Identify the importance of SOP and POS canonical forms in the minimization or other optimization of Boolean formulas in general and digital circuits.
- 3. Evaluate functions using various types of minimizing algorithms like Karnaugh map or tabulation method.
- 4. Analyze the design procedures of Combinational logic circuits like adder, binary adder, carry look ahead adder
- 5. Understand Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder.
- 6. Analyze Barrel shifter and ALU
- 7. Understand bi-stable elements like latches, flip-flop and illustrate the excitation tables of different flip flops.
- 8. Analyze and apply the design procedures of small sequential circuits to build the gated latches.
- 9. Understand the concept of Shift Registers and implement the bidirectional and universal shift registers.
- 10. Implement the synchronous counters using design procedure of sequential circuit and excitation tables of flip flops.
- 11. Implement the Asynchronous counters using design procedure of sequential circuit and excitation tables of flip flops.
- 12. Analyze TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out.
- 13. Implement Tristate TTL, ECL, CMOS families and their interfacing, Memory elements.
- 14. Understand Concept of Programmable logic devices like FPGA. Logic implementation using Programmable Devices.
- 15. Design entry: Schematic, FSM & HDL, different modeling styles in VHDL,

16. Understand Data types and objects, Dataflow, Behavioral and Structural Modeling,					
17. Analyze Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.					
	LIST OF EXPERIMENTS				
WEEK - I	REALIZATION OF A BOOLEAN FUNCTION				
Design and simulate the HDL code to realize three and three variable Boolean functions					
WEEK-2	2 DESIGN OF DECODER AND ENCODER				
Design and simulate the HDL code for the following combinational circuits a. 3 to 8 Decoder b. 8 to 3 Encoder (With priority and without priority)					
WEEK-3	DESIGN OF MULTIPLEXER AND DEMULTIPLEXER				
Design and simulate the HDL code for the following combinational circuits					
a. Mu b. De-	ltiplexer multiplexer				
WEEK -4	DESIGN OF CODE CONVERTERS				
Design and simulate the HDL code for the following combinational circuits					
a. 4 - 1	Bit binary to gray code converter				
b. 4 - Bit gray to binary code converter c. Comparator					
WEEK -5	FULL ADDER AND FULL SUBTRACTOR DESIGN MODELING				
Write a HDL code to describe the functions of a full Adder and full subtractor using three modeling styles					
WEEK -6	DESIGN OF 8-BIT ALU				
Design a model to implement 8-bit ALU functionality					
WEEK -7	HDL MODEL FOR FLIP FLOPS				
Write HDL codes for the flip-flops - SR, D, JK, T					
WEEK -8	DESIGN OF COUNTERS				
Write a HDL	code for the following counters				
a. Binary counter b. BCD counter (Synchronous reset and asynchronous reset)					
WEEK-9	HDL CODE FOR UNIVERSAL SHIFT REGISTER				
Design and simulate the HDL code for universal shift register					

Design and simulate the HDL code for carry look ahead adder

WEEK-I1 HDL CODE TO DETECT A SEQUENCE

Write a HDL code to detect the sequence 1010101 and simulate the code

WEEK-12 CHESS CLOCK CONTROLLER FSM USING HDL

Design a chess clock controller FSM using HDL and simulate the code

WEEK-13 TRAFFIC LIGHT CONTROLLER USING HDL

Design a traffic light controller using HDL and simulate the code

WEEK-14 ELEVATOR DESIGN USING HDL CODE

Write HDL code to simulate Elevator operations and simulate the code

Text Books:

1. J Bhaskar, "VHDL Primer", 3rd edition.

Reference Books:

- 1. Samir Palnitkar, "Verilog HDL: "A Guide to Digital Design and Synthesis", Sun Microsystems Press, 2nd Edition, 2003.
- 2. T.R. Padmanabhan, B. Bala Tripura Sundari, "Design Through Verilog HDL", New Jersey, Wiley- IEEE Press, 2009. ISBN: 978-0-471-44148-9
- 3. Zainalabedin Navabi, "Verilog Digital System Design", TMH, 2nd Edition, 2008.
- 4. Peter Minns, Ian Elliott, "FSM-based Digital Design using Verilog HDL", John Wiley & Sons Ltd, 2008.

Web References:

- 1. https://inst.eecs.berkeley.edu/~cs150/fa06/Labs/verilog-ieee.pdf
- 2. http://www.asic-world.com/ www.sxecw.edu.in

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS:

HARDWARE: Desktop Computer Systems 36 nos

SOFTWARE: Xilinx

HOD, ECE