DIGITAL SIGNAL PROCESSING LABORATORY

VI Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEC107	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		
OBJECTIVES:								

The course should enable the students to:

- I. Implementation of convolution inMATLAB.
- II. Implementation of digital signal processing algorithms in MATLAB andC.
- III. Understand the real-time operation of digital filters.
- IV. Analyze the Multirate signal processing algorithms.
- V. Identify suitable programs and Implementation of filters using DSP Kits.

COURSE OUTCOMES:

- CO 1: Analyze and implement digital signal processing systems in time domain.
- CO 2: Developand implement digital systems using the DFT and the Fast Fourier Transform (FFT).
- CO 3: Compute circular convolution, linear convolution and the discrete Fourier transform (DFT) of discrete time signals.
- CO 4: Construct the digital filters using windows.

CO 5: Design frequency-selective digital filters and Sample and reconstruct analog signals.

COURSE LEARNING OUTCOMES:

- 1. To generate elementary signals/ waveforms and perform arithmetic operations on signals.
- 2. Calculate and Plot DFT / IDFT of given DT signal and to generate Sinusoidal signal through filtering.
- 3. Able to plot frequency response of a given system and verify the properties of LTI system.
- 4. Implement FFT of given sequence and identify the reduction of computations using FFT.
- 5. Implementation of Linear convolution using DFT.
- 6. Implementation of Decimation-in-time radix-2 FFT algorithm.
- 7. Generation of linear convolution without using built in function and the function conv.
- 8. Generation of circular convolution without using built in function
- 9. Compute the Discrete Fourier Transform and IDFT with and without FFT and IFFT
- 10. To Implement LP FIR filter for a given sequence and calculate the filter coefficients.
- 11. Able to Implement IIR filter for a given sequence and plot the response of the same.
- 12. Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods.
- 13. Understand the operation to generate DTMF signals
- 14. Able to Implement I/D sampling rate converters and identify the importance of multi rate sampling
- 15. Construct IIR and FIR Filter Implementation using DSP Kits

LIST OF EXPERIMENTS						
WEEK - 1 CONVOLUTION						
a) Generation of linear convolution without using built in function and the function conv in MATLABb) Generation of circular convolution without using built in function inMATLAB						
WEEK-2 DISCRETE FOURIER TRANSFORM						
Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB						
WEEK-3 APPLICATION OF DFT						
Implementation of Linear convolution using DFT (Overlap-add and Overlap-Save methods)						
WEEK -4 DIT - FAST FOURIER TRANSFROM						
Implementation of Decimation-in-time radix-2 FFT algorithm						
WEEK -5 DIF - FAST FOURIER TRANSFROM						
Implementation of Decimation-in-frequency radix-2 FFT algorithm						
WEEK -6 IIR - BUTTERWORTH FILTER						
Implementation of IIR digital filter using Butterworth method and bilinear transformation						
WEEK -7 IIR - CHEBYSHEV FILTER						
Implementation of IIR digital filter using Chebyshev (Type I and II) method						
WEEK -8 FIR FILTER - WINDOW TECHNIQUES						
Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods						
WEEK-9 FIR FILTER – SAMPLING TECHNIQUE						
Implementation of FIR digital filter using frequency sampling method						
WEEK-10 FIR FILTER – OPTIMUM EQUIRIPPLE						
Implementation of optimum equiripple FIR digital filter using window methods						
WEEK-II DUAL TONE MULTI FREQUENCY						
DTMF Tone Generation and Detection Using Goertzel Algorithm						
WEEK-12 SAMPLING RATE CONVERTERS						
Implementation of sampling rate conversion by decimation, interpolation and a rational factor using MATLA						
WEEK-I3 DFT AND SINEWAVE USING TMS320C6713 KIT						
a) Implementation of DFTb) Sine wave generation using lookup table with values generated from MATLAB						
WEEK-14 FILTERS USING TMS320C6713 KIT						
IIR and FIR Filter Implementation using DSP Kits						
TEXT BOOKS:						
1. John G.Proakis, DimitrisG. Manolakis, -Digital signal processing, Principles, Algorithms and						
Applications ^{II} , Prentice Hall, 4 th Edition, 2007.						

REFERENCE BOOKS:

- 1. P Ramesh babu, Digitalsignal processing, Principles, Algorithms, SCITECH, 6th Edition, 2014.
- B.PreethamKumar,-DigitalSignalProcessingLaboratoryll,CRCPress,2nd Edition,2010.
 B.Venkata Ramani, M.Bhaskar, Digital Signal Processors- Architecture, Programming and applicationsl, TMH, 2nd Edition,2002.

WEB REFERENCES:

1. http://eceweb1.rutgers.edu/~orfanidi/ece348/

- 2. http://www.eecs.umich.edu/courses/eecs452/refs.html
- 3. http://www.dsp.sun.ac.za/lab-reference-guide/ http://www.iare.ac.in