INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	ELEC'	ELECTRICAL ENGINEERING SIMULATION LABORATORY							
Course Code	AEE10	AEE105							
Programme	B.Tech	B.Tech							
semester	III	III EEE							
Course Type	Core	Core							
Regulation	IARE -	IARE - R16							
			Theory		Practic	al			
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits			
	-		-	-	3	2			
Chief Coordinator	Ms. S S	Swat	hi, Assistant Pro	ofessor, EEE		·			
Course Faculty		Dr. D Shobha Rani, Professor, EEE Ms. S Swathi, Assistant Professor, EEE							

I. COURSE OVERVIEW:

2000

This course introduces the basic concepts of net work theory which is the foundation for all subjects of the electrical engineering discipline. The emphasis of this course is laid on the basic analysis of circuits which includes three phase circuits, transient analysis of DC and AC circuits, network functions, and two port net work parameters, Fourier analysis of AC circuits, design and analysis of filters.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS002	Ι	Linear Algebra and Ordinary Differential Equations	4
UG	AHS011	II	Mathematical Transform Techniques	4
UG	AEE002	II	Electrical Circuits	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Electrical Engineering Simulation Lab	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs			
~	LCD / PPT			×	Mini Project	~	Videos			
~	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	TatalManlar		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Calculations of the observations
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Exercise, Discussion
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Term observations
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Exercise, Discussion

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Problem Solving Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power	2	Exercise, Discussion
	systems in innovative, dynamic and challenging environment, for the research based team work.		
PSO2	Professional Skills: To explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.		
PSO3	Modern Tools in Electrical Engineering: To be able to utilize of technologies like PLC, PMC, process controllers, transducers and HMI and design, install, test, and maintain power systems and industrial applications.	2	videos

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:							
Ι	Measure the active and reactive power in a three phase system							
II	Draw the locus diagram of electric circuits							
III	Calculate the two port network parameters of electric circuit							
IV	Understand the transient response of series and parallel circuits							
V	Design the low pass and high pass filters and Analyse the basic circuits, waveforms using Fourier transform, Lab View, Visio Software							

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEE105.01	CLO 1	Measurement of three phase active power and reactive power	PO1, PO2	3
AEE105.02	CLO 2	Plot the locus diagram of series RL and RC circuits.	PO1,PO2	2
AEE105.03	CLO 3	Calculate Z, Y of two port network	PO1, PO2, PO3	3
AEE105.04	CLO 4	Determine ABCD, h parameters of the two port network	PO1, PO2,PO3	3
AEE105.05	CLO 5	Analysis of square wave, half wave rectified and full wave rectified sine wave using Fourier transforms.	PO1, PO2,PO5	2
AEE105.06	CLO 6	Draw the electrical symbols using VISIO software.	PO1,PO5	2
AEE105.07	CLO 7	Study and plot the transient response of series and parallel RL and RC circuits.	PO1, PO2, PO5	2
AEE105.08	CLO 8	Analyze transient response of series and parallel RLC circuit	PO1, PO2, PO5	2
AEE105.09	CLO 9	Design Of Low Pass And High Pass Filters	PO1, PO2,PO3, PO5	2
AEE105.10	CLO 10	Editing and building a VI, creating a sub VI.	PO5	2
AEE105.11		Analyze VIs using FOR loop, WHILE loop, charts and arrays, graph and.	PO1, PO2,PO5	2
AEE105.12		Generate signals of triangular wave, saw tooth, square wave and display of wave form, minimum and maximum values of wave form and modulation.	PO1, PO2,PO5	2
AEE105.13	CLO 13	Display the Three phase sine wave generation	PO1, PO2,PO5	2
AEE105.14	CLO 14	Measure of Frequency using Lissajous figures in LabView.	PO1, PO2,PO5	2
AEE105.15	CLO 15	Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.	P01,PO2,PO3, PO5	2

IX. COURSE LEARNING OUTCOMES (CLOs):

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	3											3		
CLO 2	3	2											2		
CLO 3	2	3											3		
CLO 4	2	3											3		
CLO 5	2	3			2								2		2

(CLOs)	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 6	2				2										2
CLO 7	2	3			2								2		2
CLO 8	2	3			2								2		2
CLO 9	2	2	3		2								2		2
CLO 10					2										2
CLO 11	2	2			2								2		2
CLO 12	2	2			2								2		2
CLO 13	2	2			2								2		2
CLO 14	2	2			2								2		2
CLO 15	2	3	3	1.	2	T							3		2

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO1, PO2, PO3, PO5	SEE Exams	PO1, PO2, PO3, PO5		PO1, PO2, PO3, PO5	Seminars	PO1, PO2, PO3, PO5
Laboratory Practices	PO1, PO2, PO3, PO5	Student Viva		Mini Project		Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS :

LIST OF EXERCISES							
Week -1	Week -1 MEASUREMENT OF THREE PHASE ACTIVE POWER AND REACTIVE POWER						
Measureme	Measurement of three phase active and reactive power for balanced and unbalanced loads.						
Week - 2 LOCUS DIAGRAMS							
Plot the locus diagram of series RL and RC circuits.							

Week - 3	IMPEDANCE(Z) AND ADMITTANCE(Y) PARAMETERS
To calculate	and verify 'Z' parameters and 'Y' parameters of two-port network.
Week - 4	TRANSMISSION (ABCD) AND HYBRID(H) PARAMETERS
To calculate	and verify 'ABCD' parameters and 'H' parameters of two-port network.
Week - 5	FOURIER ANALYSIS
Fourier analy	vsis of square wave, half wave rectified and full wave rectified sine wave using MATLAB.
Week - 6	ELECTRICAL SYMBOLS USING VISIO SOFTWARE
Draw the ele	ctrical symbols using VISIO software.
Week - 7	FRANSIENT RESPONSE OF RL AND RC CIRCUITS USING DIGITAL SIMULATION
To study and	plot the transient response of series and parallel RL and RC circuits using MATLAB.
Week - 8	FRANSIENT RESPONSE OF RLC CIRCUITS USING DIGITAL SIMULATION
To study and	plot the transient response of series and parallel RLC circuit using MATLAB.
Week - 9	DESIGN OF LOW PASS AND HIGH PASS FILTERS USING DIGITAL SIMULATION
Simulation of	flow pass and high pass filters using digital simulation.
Week - 10	VIRTUAL INSTRUMENTS (VI) USING LABVIEW
Editing and b	building a VI, creating a sub VI.
Week - 11 8	STRUCTURES USING LABVIEW
Using FOR	loop, WHILE loop, charts and arrays, graph and analysis VIs.
Week - 12	GENERATION OF COMMON WAVE FORMS USING LABVIEW
	ation of triangular wave, saw tooth, square wave and display of wave form, minimum and lues of wave form and modulation.
Week - 13	SINE WAVE GENERATION USING LABVIEW
Three phase	sine wave generation and display.
Week - 14	FREQUENCY MEASUREMENT USING LABVIEW
Frequency m	easurement using Lissajous figures in LabView.
I. A Chakraba	arthy, "Electric Circuits", Dhanpat Rai& Sons, 6th Edition, 2010.
2.A Sudhakar.	, Shyammohan S Palli, "Circuits & Networks", Tata McGraw- Hill, 4th Edition, 2010.
	p, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford ess, 1 st Edition, 1999.
4. Nesimiertug Edition, 2002.	grul, "Labview for electric circuits, machines, drives, and laboratories", prentice hall, 1 st
REFERENC	ES:
I. John Bird, '	'Electrical Circuit Theory and technology", Newnes, 2 nd Edition, 2003.
	ta & John, "Virtual Instrumentation Using LabVIEW", Tata McGraw-Hill, 1 st Edition, 2005.

XIV. COURSE PLAN:

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference T2: 9.11 R2:19.8	
1	Measurement of three phase active and reactive power for balanced and unbalanced loads.	CL01		
2	Plot the locus diagram of series RL and RC circuits.	CLO2	T2 : 8.13 R2:15.12	
3	To calculate and verify 'Z' parameters and 'Y' parameters of two-port network.	CLO3	T1 :13.6 R2:16.4	
4	To calculate and verify 'ABCD' parameters and 'H' parameters of two-port network.	CLO4	T1 :13.9 R2:16.5	
5	Fourier analysis of square wave, half wave rectified and full wave rectified sine wave using MATLAB.	CLO5	T2 :12.1 R2:14.5	
6	Draw the electrical symbols using VISIO software	CLO6	T2 :12.4 R2:14.6	
7	To study and plot the transient response of series and parallel RL and RC circuits using MATLAB	CLO7	T2 :11.2 R2 :17.3	
8	To study and plot the transient response of series and parallel RLC circuit using MATLAB.	CLO8	T2 : 11.7 R2:17.6	
9	Simulation of low pass and high pass filters using digital simulation.	CLO9	T1: 18.6 R2:19.12	
10	Editing and building a VI, creating a sub VI.	CLO10	T1: 18.9 R2:19.15	
11	Using FOR loop, WHILE loop, charts and arrays, graph and analysis VIs.	CLO11	T2:12.4 R2:14.8	
12	Signal generation of triangular wave, saw tooth, square wave and display of wave form, minimum and maximum values of wave form and modulation.	CLO12	T2:12.4 R2:14.7	
13	Three phase sine wave generation and display	CLO13	T2:12.6 R2:14.8	
14	Frequency measurement using Lissajous figures in LabView.	CLO14	T2:12.8 R2:14.9	

The course plan is meant as a guideline. Probably there may be changes.

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	Designing of prototype Filters	Guest Lectures	PO1,PO2, PO5	PSO 1
2	Digital Simulation of Electric Circuits.	Videos	PO1, PO3, PO5	PSO 1
3	Significance of Poles and Zeros.	Term Paper	PO1, PO2	PSO 1

Prepared by:

Dr. D Shobha Rani, Professor, EEE Ms. S Swathi, Assistant Professor, EEE

HOD, EEE