ENGINEERING PHYSICS LABORATORY

I Semester: AE / ECE / ME II Semester: CSE / IT / CE / EEE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AHSB10	Foundation	L	Т	Р	С	CIA	SEE	Total	
		-	-	3	1.5	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Tota	Total Classes: 45		

OBJECTIVES:

The course should enable the students to:

- I. Upgrade practical knowledge in optics.
- II. Enlighten the real time application of electromagnetic theory.
- III. Enrich the knowledge of electric and magnetic properties.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Evaluate the carrier density of a semiconductor using the principle of Hall Effect
- 2. Perform Melde's experiment to understand propagation of longitudinal and transverse waves.
- 3. Examine the magnetic field produced in a coil to verify the Tangent's law.
- 4. Analyze the hysteresis property of a ferromagnetic material.
- 5. Evaluate the energy gap of a semiconductor diode.
- 6. Determine the numerical aperture of an optical fiber.
- 7. Understand the phenomena of diffraction to determine wavelength of laser.
- 8. Estimate the value of Planck's constant using light emitting diode.
- 9. Examine the behavior of LED by studying its V-I characteristics.
- 10. Apply the concept of Newton's rings to determine the radius of curvature of convex lens.
- 11. Determine the slit width using the phenomena of diffraction.
- 12. Understand the sensitivity of photo diode to light intensity.
- 13. Evaluate time constant of a RC circuit.
- 14. Verify L-I characteristics of a solar cell.
- 15. Correlate the basic principles of physics with laboratory experiments.

LIST OF EXPERIMENTS

Week-l	INTRODUCTION TO PHYSICS LABORATORY			
Do's and Don'ts in physics laboratory. Precautions to be taken in laboratory.				
Week-2	HALL EFFECT (LORENTZ FORCE)			
Determination of charge carrier density.				
Week-3	MELDE'E EXPERIMENT			
Determination of frequency of a given tuning fork.				
Week-4	STEWART GEE'S APPARATUS			

Magnetic field along the axis of current carrying coil-Stewart and Gee's method.			
Week-5	B-H CURVE WITH CRO		
To determine the value of retentivity and coercivity of a given magnetic material.			
Week-6	ENERGY GAP OF A SEMICONDUCTOR DIODE		
Determination of energy gap of a semiconductor diode.			
Week-7	PIN AND AVALANCHE DIODE		
Studying V-I characteristics of PIN and Avalanche diode.			
Week-8	OPTICAL FIBER		
Evaluation of numerical aperture of a given optical fiber.			
Week-9	WAVE LENGTH OF LASER LIGHT		
Determinatio	n of wavelength of a given laser light using diffraction grating.		
Week-10	PLANK'S CONSTANT		
Determination of Plank's constant using LED.			
Week-11	LIGHT EMITTING DIODE		
Studying V-I	characteristics of LED		
Week-12	NEWTONS RINGS		
Determination of radius of curvature of a given plano-convex lens.			
Week-13	SINGLE SLIT DIFFRACTION		
Determination of width of a given single slit.			
Text Books:			
 C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012. Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014. 			
Reference Books:			
 C.F. Coombs, "Basic Electronic Instrument Handbook", McGraw-Hill Book Co., 1972. C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995. 			