ELECTRICAL AND ELCETRONICS ENGINEERING LABORATORY

II Semester: CSE / IT								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEE001	Foundation	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		

OBJECTIVES:

The course should enable the students to:

- I. Analyze basic electrical circuits by implementing different circuits.
- II. Apply circuit theorems to evaluate the behavior of electrical circuits.
- III. Gain knowledge on semiconductor devices like diode and transistor
- IV. Interpret different transistor configurations

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Apply Kirchhoff's current and voltage laws to linear electrical circuits using hardware
- 2. Verification of superposition theorem using hardware
- 3. Verification of Thevenin's theorem using hardware
- 4. Verification of Norton's theorem using hardware
- 5. Verification of maximum power transfer theorem using hardware
- 6. Apply Kirchhoff's current and voltage laws to linear electrical circuits using digital simulation
- 7. Verification of superposition and Thevenin's theorem using digital simulation.
- 8. Verification of Norton's theorem and maximum power transfer theorem using digital simulation.
- 9. Understand the PN junction diode characteristics
- 10. Understand the zener diode characteristics
- 11. Build half wave and full wave rectifier circuits
- 12. Understand transistor common base characteristics
- 13. Understand transistor common emitter characteristics
- 14. Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.

LIST OF EXPERIMENTS

Week-1	KIRCHOFF'S LAWS	
Practical verification of Kirchhoff's current law and voltage law.		
Week-2	SUPERPOSITION THEOREM	
Illustration of superposition theorem.		
Week-3	THEVENIN'S THEOREM	
Obtain the equivalent circuit of the given electrical network using Thevenin's theorem.		
Week-4	NORTON'S THEOREM	
Practical verification of Norton's theorem and obtain the equivalent circuit.		
Week-5	MAXIMUM POWER TRANSFER THEOREM	

Verification of maximum power transfer theorem. Week-6 **KVL AND KCL** Verification of KVL and KCL using digital simulation Week-7 **DIGITAL SIMULATION OF THEOREMS** Superposition theorem and Thevenins theorem using digital simulation Week-8 NORTON'S THEOREM AND MAXIMUM POWER TRANSFER THEOREM Norton's theorem and maximum power transfer theorem using digital simulation. Week-9 **P-N JUNCTION DIODE** Volt Ampere characteristics of p-n junction diode. Week-10 **ZENER DIODE** Understand the zener diode characteristics WeeK-11 **RECTIFIERS** Build half wave and full wave rectifier circuits Week-12 COMMON BASE TRANSISTOR Build half wave and full wave rectifier circuits Week-13 **COMMON EMITTER TRANSISTOR** Understand transistor common emitter characteristics **Text Books:** 1. A Chakrabarthy, "Electric Circuits", DhanipatRai & Sons, 6th Edition, 2010. C L Wadhwa "Electrical Circuit Analysis including Passive Network Synthesis", New Age International, 2nd 2. Edition, 2009.

3. J P J Millman, C C Halkias, Satyabrata Jit, Millman's, "Electronic Devices and Circuits", Tata McGraw Hill, 2nd Edition, 1998.

Reference Books:

- 1. A Sudhakar, Shyammohan S Palli, "Circuits and Networks", Tata McGraw-Hill, 4th Edition, 2009.
- 2. R. L. Boylestad , Louis Nashelsky,"Electronic Devices and Circuits", PEI/PHI, 9th Edition, 2006.
- 3. A. K. Theraja, "Textbook of Electrical Technology", S. Chand, 1st Edition, 2014..
- 4. David A Bell, "Electric circuits", Oxford University Press, 7th Edition, 2009.

Web References:

- 1. https://www.nptel.ac.in/Courses/117106108
- 2. https://www.gnindia.dronacharya.info/EEEDept/labmanuals.html
- 3. https://www.textofvideo.nptel.iitm.ac.in
- 4. https://www.textofvideo.nptel.iitm.ac.in/