FLIGHT VEHICLE DESIGN LABORATORY

VII Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AAE112	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36 Total Classes: 36				es: 36		

COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand the basic skills involved in weight estimation for aircraft conceptual design process.
- II. Illustrate relevant theoretical knowledge, applicable for initial sizing and configuration layout of aircraft.
- III. Evaluate basic techniques in literature retrieval and query, also creative and have systematic scientific research methods and working abilities
- IV. Observe different designing processes and how an aircraft production company works on it
- V. Explore the new concepts of aerodynamics propulsion and fuel system integration

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understanding the different designing concepts like preliminary design conceptual design and detail deign.
- 2. Interpret the weight estimation of propulsion system structural weight empty weight.
- 3. Calculating the dimensioning of engine inlet location and capture area.
- 4. Estimation of wing geometry and wing vertical location, wing tip shapes, tail geometry and arrangements, thrust to weight ratio-statistical estimation.
- 5. Apply a theories and to predict the maximum lift coefficient, and complete drag build up, installed performance of an engine.
- 6. Development of configuration lay out from conceptual sketch.
- 7. Calculating the velocity, angle of Attack, angle of attack rate, pitch rate, elevator angle.
- 8. Constructing v-n diagram, air load distribution on lifting surfaces.
- 9. Developing the concept of Propulsion selection fuel selection.
- 10. Plotting the mission segment with different weight fractions.
- 11. Understanding the concepts of different landing gear system.
- 12. Estimation of design-stability and control.
- 13. Analysis of performance under constrained conditions constraint.
- 14. Acquire Basic knowledge to solve real time problems in Aircraft propulsion and structure with different loading conditions.
- 15. Apply the fundamental concepts in competitive examinations.

LIST OF EXPERIMENTS				
Week-1	OBJECTIVES AND REQUIREMENTS OF THE VEHICLE			
Data collection for conceptual sketch from existing aircraft includes: a. Type, Role, Mission. b. Payload c. Aerodynamic & performance requirements.				
Week-2	CONCEPTUAL SKETCH AND WEIGHT ESTIMATION			

-	l sketch of candidate aircraft (3-view). b. First estimation of gross take-off weight off studies
Week-3	AIRFOIL DESIGN AND CONSTRAINT ANALYSIS
a. Airfoil and	wing geometry selection.
Week-4	CONSTRAINT ANALYSIS
a. Determinat	ion of Thrust-to-Weight ratio and Wing Loading
Week-5	INITIAL SIZING-I
a. Rubber eng	ine & fixed engine sizing.
Week-6	INITIAL SIZING-II
a. Configurati	ion layout, crew station, passengers and payload.
Week-7	PERFORMANCE ESTIMATIONS
a. Performanc	e constraint analysis
Week-8	LOAD ESTIMATIONS-I
a. Landing ge	ar loads
Week-9	LOAD ESTIMATIONS-II
a. Propulsion	system load.
Week-10	COST ESTIMATION
	ation and parametric analysis on and trade studies
Week-11	DESIGN CASE STUDY-I
a. Design stu b. Design stu	
Week-12	DESIGN CASE STUDY-II
a. Dynamics of b. Dynamics of	
Reference Boo	
	ymer —Aircraft design a conceptual approach∥, 5 th Edition 1999
	E AND HARDWARE REQUIREMENTS FOR A BATCH OF 36
	SOFTWARE : Microsoft office excel spread sheet, MATLAB, AutoCAD Tool. E: Desktop Computers with 4 GB RAM