AEROSPACE PROPULSION LABORATORY

VI Semester: AE								
Course Code	Category	Hours / Expt			Credits	Maximum Marks		
AAE108	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes:Nil	Tutorial Classes: Nil	Practical Classes: 36				Total Classes: 36		

COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand the basics of propulsion, working principles of reciprocating engines, flash and fire point, and kinematic and dynamic viscosity of fuels.
- II. Knowledge about the mechanical efficiency of axial compressor, work, power, thrust requirements of a gas turbine and efficiency and performance diagrams.
- III. Calculation of thermal, propulsive efficiency of gas turbine, work output of axial turbine and nozzle performance.
- IV. Understand the calorific values of different fuels, coefficient of convection heat transfer, and calculation of propeller efficiency.

COURSE OUTCOMES (COs):

- CO 1: Understand the working mechanism and identifying various components to build an IC engin flash point, fire point and kinematic viscosity and dynamic viscosity of given oils.
- CO 2: Able to calculate the mechanical efficiency of axial compressor, efficiency and performance parameters of a gas turbine.
- CO 3: Understand the concepts in estimating the gas turbine efficiency, work output of axial turbin and nozzle performance.
- CO 4: Analyse the calorific value of different fuels, estimation of convection heat coefficient of a pla and propeller efficiency using propeller test rig

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Understand the working mechanism and identifying various components to build an IC engine.
- 2. Understand the importance of flash point and fire point for a given oil.
- 3. Explain the estimation of kinematic viscosity and dynamic viscosity of given sample.
- 4. Understand the calculation of mechanical efficiency of axial compressor
- 5. Understand the work, power and thrust requirement in gas turbine
- 6. Observe the gas turbine efficiency and performance diagrams
- 7. Determine the thermal, propulsive and overall efficiency of turbo jet cycle
- 8. Understand the calculation of total work output of axial turbine- out put work necessary, available output.
- 9. Analyze various nozzle performance with airflow.
- 10. Observe the calculation of calorific value of different fuels and materials.
- 11. Analyze the convection heat coefficient of a plate using forced jet.
- 12. Analyze the propeller efficiency and thrust availability using propeller test rig at various blade pitch angles.

LIST OF EXPERIMENTS				
Week-1	ENGINE DISASSEMBLY AND ASSEMBLY			
a) To understand the working mechanism and identifying various components to build an IC engine.b) Brief description about Components of engine and their functions.				
Week-2	FLASH POINT AND FIRE POINT TEST			
Determination of flash point and fire point for a sample using pen sky martin's test.				
Week-3	DETERMINATION OF DYNAMIC VISCOSITY OF A GIVEN SAMPLE USING REDWOOD VISCOMETER			
a) Determine kinematic viscosity and dynamic viscosity of given sample using a viscometer.				
Week-4	MECHANICAL EFFICIENCY OF AXIAL COMPRESSOR			
Calculation of the Mechanical efficiency of axial compressor- power required, power Available, Compression Ratio.				
Week-5	GAS TURBINE PARAMETERS CALCULATION			
Calculation of work, power and Thrust requirement in gas turbine- combustion power input, work heat relationship.				
Week-6	GAS TURBINE EFFICIENCY AND PERFORMANCE DIAGRAMS			
Elucidate T-S, H-S diagrams for the gas turbine and compare efficiencies of non-ideal engine components.				
Week-7	GAS TURBINE EFFICIENCY CALCULATIONS			
Calculation of thermal, propulsive and overall efficiency of turbo jet cycle.				
Week-8	WORK OUTPUT OF AXIAL TURBINE			
Calculation of total work output of axial turbine- out put work necessary, Available output.				
Week-9	NOZZLE PERFORMANCE			
Calculation of various nozzle performance with airflow.				
Week-10	CALORIFIC VALUE OF DIFFERENT FUELS			
Calculation of calorific value of different fuels and materials using digital bomb calorimeter and optimizing astute fuels				
WeeK-11	FREE AND FORCED CONVECTION			
Estimation of convection coefficient of air using forced jet or free convection apparatus.				
Week-12	PROPELLER TEST RIG			
Calculation of propeller efficiency and thrust availability using propeller test rig at various blade pitch angles.				
Reference Books:				
1. Anderson, J.D., Jr., Computational Fluid Dynamics the Basics with Applications, McGraw-Hill Inc, 1 st Edition 1998				
 Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics for Engineers", Engineering Education Systems, 4th Edition, 2000. 				
 Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Butterworth-Heinemann, Vol. I, 2nd Edition, 2007. 				