DATA PREPARATION AND ANALYSIS LABORATORY

II Semester: CSE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
BCSB20	Core	L	T	P	С	CIA	SEE	Total
		0	0	4	2	30	70	100
Contact Classes: Nil	Total Tutorials: Nil		Total Practical Classes: 36			Total Classes: 36		

COURSE OBJECTIVES:

The course should enable the students to:

- I. Learn pre-processing method for multi-dimensional data
- II. Practice on data cleaning mechanisms
- III. Learn various data exploratory analysis
- IV. Develop the visualizations for clusters or partitions

COURSE OUTCOMES(CO_S):

- CO 1: Evaluate the data pre-processing methods by implementing data cube for data warehouse on 3- dimensional data.
- CO 2: Impart the architectural concepts of data warehousing for handling consistent data.
- CO 3: Construct various methods for data pre-processing techniques.
- CO 4: Visualize the data interpretations for real time data sets.
- CO 5: Implement best practices and techniques for data preparation efficiently.

COURSE LEARNING OUTCOMES(CLO_S):

- 1. Analyze various data preprocessing methods on different data sets. Analyze the role of Information Systems in an organization.
- 2. Describe the fundamentals of data cleaning and implement various missing and noisy handling mechanisms. Apply the basic concepts of MS Excel –worksheet management, cell referencing and range formulas.
- 3. Gain knowledge to identify appropriate clustering techniques, and develop clusters for given dataset.
- 4. Identify the association rule mining techniques, based on the requirements of the problem.
- 5. Derive the hypothesis for association rules to discovery of strong association rules.
- 6. Understand the concept of transformation techniques for numerical datasets.
- 7. Learn various data visualization techniques and use them to solve statistical problems.
- 8. Visualize the cluster datasets and convert the clusters into histograms.
- 9. Understand hierarchical clustering and solve the problem for the given related datasets.
- 10. Understand how scalability clustering done for apriori algorithm.

LIST OF EXPERIMENTS

Week-1 DATA PRE-PROCESSING AND DATA CUBE

Data preprocessing methods on student and labor datasets Implement data cube for data warehouse on 3-dimensional data

Week-2 DATA CLEANING

Implement various missing handling mechanisms, Implement various noisy handling mechanisms

Week-3 EXPLORATORY ANALYSIS

Develop k-means and MST based clustering techniques, Develop the methodology for assessment of clusters for given dataset

Week-4 ASSOCIATION ANALYSIS

Design algorithms for association rule mining algorithms

Week-5 HYPTOTHYSIS GENERATION

Derive the hypothesis for association rules to discovery of strong association rules; Use confidence and support thresholds.

Week-6 TRANSFORMATION TECHNIQUES

Construct Haar wavelet transformation for numerical data, Construct principal component analysis (PCA) for 5-dimensional data.

Week-7 DATA VISUALIZATION

Implement binning visualizations for any real time dataset, Implement linear regression techniques

Week-8 CLUSTERS ASSESSMENT

Visualize the clusters for any synthetic dataset, Implement the program for converting the clusters into histograms

Week-9 HIERARCHICAL CLUSTERING

Write a program to implement agglomerative clustering technique ,Write a program to implement divisive hierarchical clustering technique

Week-10 SCALABILITY ALGORITHMS

Develop scalable clustering algorithms, Develop scalable a priori algorithm

Reference Books:

1. Sinan Ozdemir, "Principles of Data Science", Packt Publishers, 2016.

Web References:

- 1. https://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf
- 2. https://socialresearchmethods.net/kb/statprep.php
- 3. https://www.quest.com/solutions/data-preparation-and-analysis/

SOFTWARE AND HARDWARE REQUIREMENTS FOR 18 STUDENTS:

SOFTWARE: Open source Weka 3.8, Python

HARDWARE: 18 numbers of Intel Desktop Computers with 4 GB RAM