INTEGRATED CIRCUITS APPLICATIONS LABORATORY

V Semester: ECE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AEC106	Core	L	Т	Р	С	CIA	SEE	Total	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes:Nil	Practical Classes: 45 Total Classes: 45							

OBJECTIVES:

The course should enable the students to:

- I. Implement different circuits and verify circuit concepts.
- II. Study the concepts of multivibrators and filters.
- III. Verify the operations of the 555 timers and PLLs and their applications.
- IV. Design and verify combinational and sequential circuits.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Illustrate the block diagram, classifications, package types, temperature range, specifications and characteristics of Op-Amp.
- 2. Discuss various types of configurations in differential amplifier with balanced and unbalanced outputs.
- 3. Evaluate DC and AC analysis of dual input balanced output configuration and discuss the properties of differential amplifier and discuss the operation of cascaded differential amplifier.
- 4. Analyze and design linear applications like inverting amplifier, non-inverting amplifier, instrumentation amplifier and etc. using Op-Amp.
- 5. Analyze and design non linear applications like multiplier, comparator, log and anti log amplifiers, waveform generators and etc, using Op-Amp.
- 6. Discuss various active filter configurations based on frequency response and construct using 741 Op-Amp.
- 7. Design bistable, monostable and astable multivibrators operation by using IC 555 timer and study their applications.
- 8. Determine the lock range and capture range of PLL and use in various applications of communications.
- 9. Understand the classifications, characteristics and need of data converters such as ADC and DAC.
- 10. Analyze the digital to analog converter technique such as weighted resistor DAC, R-2R ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.
- 11. Analyze the analog to digital converter technique such as integrating, successive approximation and flash converters.
- 12. Design adders, multiplexers, demultiplexers, decoders, encoders by using TTL/CMOS integrated circuits and study the TTL and CMOS logic families.
- 13. Design input/output interfacing with transistor transistor logic or complementary metal oxide semiconductor integrated circuits.
- 14. Understand the operation of SR, JK, T and D flip-flops with their truth tables and characteristic equations. Design TTL/CMOS sequential circuits
- 15. Design synchronous, asynchronous and decade counter circuits and also design registers like shift registers and universal shift registers.
- 16. Apply the concept of Integrated circuits to understand and analyze the real time applications.
- 17. Acquire the knowledge and develop capability to succeed national and international level competitive examinations.

LIST OF EXPERIMENTS				
WEEK - I	INVERTING, NON-INVERTING AND DIFFERENTIAL AMPLIFIERS			
To construct and test the performance of an Inverting, Non-inverting amplifier and Differential amplifier using IC 741.				
WEEK-2	INTEGRATOR AND DIFFERENTIATOR			
To construct and test the performance of an Integrator and Differentiator using IC 741.				
WEEK-3	SECOND ORDER ACTIVE LOWPASS, HIGHPASS AND BANDPASS FILTERS			
To design and verify the operation of the Active low pass, High pass and Band pass filters using IC 741.				
WEEK -4	ASTABLE MULTIVIBRATORS AND SCHMITT TRIGGER USING 555			
To design and construct an astable multivibrators and Schmitt trigger using IC 555.				
WEEK -5	MONOSTABLE MULTIVIBRATORS 555			
To design and construct Monostable multivibrators using IC 555.				
WEEK -6	SCHMITT TRIGGER USING 555			
To design an	d construct schmitt trigger using NE555 Timer.			
WEEK -7	PLL USING IC 565			
Verifying characteristics of PLL.				
WEEK -8	INSTRUMENTATION AMPLIFIER			
To design and verify the operation of instrumentation amplifier using IC 741.				
WEEK-9	MULTIPLEXER AND DEMULTIPLEXER			
Verify Functionality of multiplexer and demultiplexer.				
WEEK-10	ENCODER AND DECODER			
Verify Functionality of encoder and decoder.				
WEEK-I1	REALISATION OF DIFFERENT FLIP-FLOPS USING LOGIC GATES			
Verify Functionality of flip-flops.				
WEEK-12	4 BIT COUNTERS			
Verify Funct	ionality of counters.			

WEEK-13	SHIFT REGISTERS

Verify Functionality of shift registers

Text Books:

- D. Roy Chowdhury, "Linear Integrated Circuits", New age international (p) Ltd, 2nd Edition, 2003
 Ramakanth A. Gayakwad, "Op-Amps & linear ICs", PHI, 3rd Edition,2003.
 John F. Wakerly, "Digital Design Principles and Practices", Prentice Hall, 3rd Edition, 2005.

Reference Books:

1. Salivahanan, "Linear Integrated Circuits and Applications", TMH, 1st Edition, 2008.

Web References:

- 1. http://www.ee.iitkgp.ac.in
- 2. http://www.citchennai.edu.in

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 24 STUDENTS:

HARDWARE: Trainer kits, Analog and Digital ICs(IC741,555,74XX), ZYBO Boards, PC

SOFTWARE: VIVADO Software