INTERNET OF THINGS LABORATORY

I Semester: EPS									
Course Code	Category	Hours / Expt		Credits	Maximum Marks				
BPSB10	Core	L	Т	Р	С	CIA	SEE	Total	
		-	-	4	2	30	70	100	
Contact Classes: 36	Tutorial Classes: Nil	Practical Classes: 36 Total Classes: 36							

COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand the IoT using Arduino programming.
- II. Explain the interfacing of data, I/O devices with Arduino UNO.
- III. Describe the digital protection schemes in power system relays.

COURSE OUTCOMES (COs):

- CO 1: Understand the importance of internet of things in present scenario
- CO 2: Describe the interfacing of IoT with arduino.
- CO 3: Design of direct and alternating type of electrical instruments using arduino
- CO 4: Analyze the protection schemes of induction motor against over current and under voltage.
- CO 5: Develop a relay model for protection of home appliances from over and under voltages.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. List out the different IOT applications and importance of IOT in present scenario.
- 2. List the application of Arduino and Node MCU
- 3. Know the different sensors available to measure the current and voltage
- 4. Design the digital voltmeter and ammeter for both AC and DC circuits
- 5. Design a digital frequency meter to measure the frequency in an AC circuit.
- 6. Measure the power and energy consumption in a home using Arduino
- 7. Measure the power factor and phase angle in an AC circuit using Arduino/Node MCU.
- 8. Design a system to control the traffic signals through IOT
- 9. Develop a system to control the direction of three phase induction motor
- 10. Model a system to control the railway gate using stepper motors.
- 11. Know the functioning of relay module and a 3phase contactor.
- 12. Design a system to protect the three phase induction motor from abnormal fault conditions
- 13. Design a system to control the direction and speed of DC motor
- 14. Design a relay to protect the home appliances from over currents, under voltages and over voltages.

LIST OF EXPERIMENTS

Expt-1 DESIGN OF DIGITAL DC VOLTMETER AND AMMETER

Design a Digital DC Voltmeter and Ammeter to measure the voltage and current in DC electrical circuits using Arduino and display the values in LCD display

Expt-2	DESIGN OF DIGITAL AC VOLTMETER AND AMMETER						
	ital AC Voltmeter and Ammeter to measure the voltage and current in AC electrical circuits using display the values in LCD display.						
Expt-3	DIRECTION CONTROL OF THREE PHASE INDUCTION MOTOR						
Design a syst	em to control the direction of three phase induction motor through IOT						
Expt-4	DESIGN OF DIGITAL FREQUENCY METER						
Design a Dig the values in	ital frequency meter to measure the frequency in any AC electrical circuit using Arduino and display LCD display						
Expt-5	MEASUREMENT OF POWER AND ENERGY						
Measure the	power and energy in electrical circuit using Arduino and display the values in LCD display						
Expt-6	MEASUREMENT OF PHASE SHIFT AND POWER FACTOR						
Measure the p value in LCD	phase shift and power factor in an electrical circuit for different loads using Arduino and display the display.						
Expt-7	IMPLEMENTATION OF OVER CURRENT RELAY						
Design an ov through IOT	er current relay for distribution system and displaying the tripping status of the relay in substation						
Expt-8	OVER/UNDER VOLTAGE PROTECTION OF HOME APPLIANCES						
Design a syst	em to protect home appliances from over and under voltages using Arduino.						
Expt-9	PROTECTION OF THREE PHASE INDUCTION MOTOR						
	em for protecting the three phase induction motor from over voltages, over currents, temperature and e status of the motor at remote location using IOT.						
Expt-10	TRAFFIC SIGNAL CONTROL						
Design a traff	fic control system using IOT						
Expt-11	RAILWAY GATE CONTROL BY STEPPER MOTORS						
Design a raily	way gate control using stepper motor using IOT						
Expt-12	DIRECTION AND SPEED CONTROL OF DC MOTOR						
Control the sp location using	peed and direction of a DC motor using Arduino and display the status of the motor at the remote g IOT.						

Text Books:

1	Mark torvalds, "Arduino Programming: Step-by-step guide to mastering arduino hardware and
	software (Arduino, Arduino projects, Arduinouno, Arduino starter kit, Arduino ide, Arduinoyun,
	Arduino mega, Arduinonano) Kindle 2 nd Edition, 2001.
2	Michael J Pont, "Embedded C", Pearson Education, 2 nd Edition, 2008.

Web References:

1	https://www.ee.iitkgp.ac.in
2	https://www.citchennai.edu.in
3	https://www.iare.ac.in
4	https://www.deltaww.com