MICROCONTROLLERS AND PROGRAMMABLE DIGITAL SIGNAL PROCESSORS LABORATORY

V Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
BESB10	Core	L	Т	P	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 42			Total Classes: 42			

OBJECTIVES:

The course should enable the students to:

- I. Demonstrate Keil IDE tool for development of Embedded system.
- II. Program the interfacing of various devices with ARM using Embedded C.
- III. Develop program for implementation of interrupts and serial communications.
- IV. Implementation of digital signal processing algorithms in MATLAB and C.
- V. Understand the real-time operation of digital filters

COURSE LEARNING OUTCOMES (CLOs):

CLO1	Study the LED toggling.
CLO2	Design the clock real time alteration using the PLL modules.
CLO3	Understand the controlling intensity of an LED using PWM.
CLO4	Design the control an LED using switch by polling method
CLO5	Performing the UART Echo Test.
CLO6	Understand the concept of take analog readings on rotation of rotary potentiometer connected to an ADC channel.
CLO7	Implement the temperature indication on an RGB LED.
CLO8	Study the working principle of light sensor.
CLO9	Analyze the various sleep modes by putting core in sleep and deep sleep modes
CLO10	Study the concepts of System reset using watchdog timer
CLO11	Analysis of Sample sound using a microphone and display sound levels on LEDs.
CLO12	Determine and developing an assembly code and C code to compute Euclidian distance between any two points
CLO13	Developing the assembly code and study the impact of parallel, serial and mixed execution
CLO14	Understand the assembly and C code for implementation of convolution operation.
CLO15	Design and implement filters in C to enhance the features of given input sequence/signal

	LIST OF EXPERIMENTS				
Week-1	Blink an LED with software delay, delay generated using the SysTick timer				
Write an Embedded C program to blinky led with software delay, delay generated using SysTick timer					
Week-2	System clock real time alteration using the PLL modules				
Generation of System clock real time alteration using the PLL modules					
Week-3	ntrol intensity of an LED using PWM implemented in software and hardware				
Write an embedded C program to control intensity of a led using pwm implemented in software.					
Week-4	Control an LED using switch by polling method, by interrupt method and flash the LED once				
Design an LED using switch by polling method, by interrupt method and flash the LED once					
Week-5	Take analog readings on rotation of rotary potentiometer connected to an ADC channel				
Write an e	Write an embedded C program to take analog readings on rotation of rotary potentiometer				
Week-6	Temperature indication on an RGB LED				
To write an embedded C program for Temperature indication on an RGB LED and to Verify the output in the Cortex-M3 kit					
Week-7	Evaluate the various sleep modes by putting core in sleep and deep sleep modes				
Design an embedded C program for evaluate the various sleep modes by putting core in sleep and deep sleep modes					
Week-8	System reset using watchdog timer in case something goes wrong				
Generation of system reset function by using watchdog timer and verifies it.					
WeeK-9	Sample sound using a microphone and display sound levels on LEDs				
To generat	e a real time Sample sound using a microphone and display sound levels on LEDs				
Week-10	To develop an assembly code and C code to compute Euclidian distance between any two points				
Calculate the Euclidian distance between any two points Using DSK Code composer studio					
Week 11	To develop assembly and C code for implementation of convolution operation.				
Verify the	Verify the convolution operation Using DSK Code composer studio				
Week 12	Week 12 To design and implement filters in C to enhance the features of given input sequence/signal.				
To performance of the fitters and implement filters in C to enhance the features of given input sequence/signal					