SOFT COMPUTING LABORATORY

Course Code	Category	Hours / Week			Credits	Maximum Marks		
BCSB19	Core	L	Т	Р	С	CIA	SEE	Total
		0	0	4	2	30	70	100
Contact Classes: Nil	Total Tutorials: Nil	Total Practical Classes: 36 Total Class					tal Classe	es: 36
OBJECTIVES: The course should ena I. Understand Fuzzy II. Learn neural netwo III. Learn the operator IV. Practice on crisp p	concepts orks with back propagations of genetic algorithms	on and w	rithout j	prepara	ation			
	LIST O	F EXPE	RIME	NTS				
Week-1 PERCEPT	RON							
learning algorithm until Week-2 ARTIFICL Write a program to impl	n appropriate number of i no change in weights is i AL NEAURAL NETWO lement artificial neural ne lement artificial neural ne	required. ORKS etwork w	Outpu vithout	t the fi	inal weights propagation.	5		
Week-3 FUZZY SE				1 1				
	rsection, Complement ar roduct of any two fuzzy							
Week-4 GENETIC	GENETIC ALGORITHMS							
Implement travelling sa	les person problem (TSP)) using g	enetic	algorit	hms.			
Week-5 COVARIA	NCE							
A	on dataset and visualize	0 0				.	0	•
bins data. Analysis of co	ovariance: variance (ANC	JVA), 1İ	data ha	ave cat	tegorical va	riables c	on iris dat	a.

Implement linear regression and multi-regression for a set of data points.

Week-7 CRISP MODEL

Implement crisp partitions for real-life iris dataset.

II Semester: CSE

Course Code	Category	Hours / Week			Credits	Maximum Marks		
BCSB19	Core	L	Т	Р	С	CIA	SEE	Total
		0	0	4	2	30	70	100
Contact Classes: Nil	Total Tutorials: Nil	Total Practical Classes: 3			asses: 36	Total Classes: 36		

COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand Fuzzy concepts
- II. Learn neural networks with back propagation and without preparation
- III. Learn the operators of genetic algorithms
- IV. Practice on crisp partitions

COURSE OUTCOMES(COs):

- CO 1: Explore methods that implements neural network techniques.
- CO 2: Practice the fuzzy set relations using different operations.
- CO 3: Design Regression techniques for a set of data points.
- CO 4: Capture an appropriate classification model for analytical tasks.
- CO 5: Implement best practices and techniques for computing efficiently.

COURSE LEARNING OUTCOMES(CLOs):

- 1. Demonstrate the Conceptual model of Increment learning algorithm.
- 2. Identify and understand the methods used in neural networks.
- 3. Analyze and understand the operations on fuzzy sets
- 4. Creation of Fuzzy relation by Cartesian product and their implementation on fuzzy sets
- 5. Explore the applications of Genetic algorithms.
- 6. Analyze and understand a basic statistics approach to analyze quantitative data.
- 7. Demonstrate Crisp partition and their modeling techniques
- 8. Analyze delta rule which are required for strengthening weights between neuron networks
- 9. Understand Illustrate the use of logic gates and their modeling techniques.
- 10. Identify and analyze appropriate classification techniques for analytical task.

LIST OF EXPERIMENTS

Week-1 PERCEPTRON

Create a perceptron with appropriate number of inputs and outputs. Train it using fixed increment learning algorithm until no change in weights is required. Output the final weights

Write a program to implement artificial neural network without back propagation. Write a program to implement artificial neural network with back propagation.

Week-3 FUZZY SETS

Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations.

Week-4 GENETIC ALGORITHMS

Implement travelling sales person problem (TSP) using genetic algorithms.

Week-5 COVARIANCE

Plot the correlation plot on dataset and visualize giving an overview of relationships among data on soya bins data. Analysis of covariance: variance (ANOVA), if data have categorical variables on iris data.

Week-6 DATA FITTING BY REGRESSION

Implement linear regression and multi-regression for a set of data points.

Week-7 CRISP MODEL

Implement crisp partitions for real-life iris dataset.

Week-8 PERCEPTRON RULE

Write a program to implement Hebb"s rule Write a program to implement Delta rule.

Week-9 LOGIC GATES

Write a program to implement logic gates.

Week-10 CLASSIFICATION

Implement SVM classification by Fuzzy concepts.

Reference Books:

D.K Prathikar, "Soft Computing", Narosa Publishing House, New Delhi, 2008.

Web References:

1. https://ldrp.ac.in/images/syllabus/BE-Computer/802-3%20soft%20computing.pdfhttp://itmgoi.in/download/CSE%20&%20IT/Soft%20Computing%20IT%2

0(IT-802).pdf

2. http://mirlab.org/jang/book/

SOFTWARE AND HARDWARE REQUIREMENTS FOR 18 STUDENTS: SOFTWARE: Python

HARDWARE: 18 numbers of Intel Desktop Computers with 4 GB RAM