NETWORK ANALYSIS LABORATORY

III Semester: EEE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AEEB12	Core	L	Т	Р	С	CIA	SEE	Total	
		-	-	2	1	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 42				Total Classes: 42			

COURSE OBJECTIVES:

The course should enable the students to:

- I. Apply network theorems to obtain the equivalent circuit of electrical networks.
- II. Calculate two port network parameters of different electrical circuits.
- III. Examine the circuit modeling in frequency domain.
- IV. Understand the virtual instrumentation using Lab VIEW.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Apply the network reduction techniques directly and indirectly to calculate quantities associated with electrical circuit
- 2. Prove the law of conservation of energy, superposition principle, reciprocity and maximum power transfer condition for the electrical network with DC excitation.
- 3. Summarize the procedure of Thevenin's, Norton's and Milliman's theorems to reduce complex network into simple equivalent network
- 4. Calculate Z, Y of two port network.
- 5. Determine ABCD, h parameters of the two port network.
- 6. Editing and building a VI, creating a sub VI.
- 7. Generate signals of triangular wave, saw tooth, square wave and display of wave form, minimum, maximum values of wave form and modulation.
- 8. Measure of Frequency using Lissajous patterns in Lab VIEW.
- 9. Analyze VIs using FOR loop, WHILE loop, charts and arrays, graph.
- 10. Relate various two port parameters and inter relationships between them.
- 11. Apply source transformation technique to determine equivalent resistance and source current.
- 12. Design of electrical network in frequency domain using digital simulation.
- 13. Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.

LIST OF EXPERIMENTS

Expt. 1 MESH AND NODAL ANALYSIS

Verification of mesh and nodal analysis using hardware.

Expt. 2 SUPERPOSITION AND RECIPROCITY THEOREMS

Verification of super position and reciprocity theorems using hardware.

Expt. 3	MAXIMUM POWER TRANSFER THEOREM				
Verification of maximum power transfer theorem using hardware.					
Expt. 4	THEVENIN'S AND NORTON'S THEOREMS				
Verification of Thevenin's and Norton's theorems using hardware.					
Expt. 5	COMPENSATION AND MILLIMAN'S THEOREM				
Verification of compensation and Milliman's theorems using hardware.					
Expt. 6	IMPEDANCE (Z) AND ADMITTANCE (Y) PARAMETERS				
To calculate and verify 'Z' parameters and 'Y' parameters of two-port network					
Expt. 7	TRANSMISSION (ABCD) AND HYBRID (H) PARAMETERS				
To calculate and verify 'ABCD' parameters and 'H' parameters of two-port network.					
Expt. 8	VIRTUAL INSTRUMENTS (VI) USING LABVIEW				
Editing and building a VI, creating a sub VI.					
Expt. 9	GENERATION OF COMMON WAVE FORMS USING LABVIEW				
Signal generation of triangular wave; saw tooth, square wave and display of wave form, minimum and maximum values of wave form and modulation.					
Expt.10	FREQUENCY MEASUREMENT USING LABVIEW				
Frequency measurement using Lissajous figures in Lab View.					
Expt. 11	STRUCTURES USING LABVIEW				
Using FOR loop, WHILE loop, charts and arrays, graph and analysis VIs.					
Expt. 12	SERIES, PARALLEL AND CASCADE CONNECTION OF TWO PORT NETWORK				
To determine the equivalent parameters of series, parallel, cascade connection of two port network.					
Expt. 13	SOURCE TRANSFORMATION				
Analysis of given circuit using source transformation technique					
Expt. 14	MODELLING ELECTRICAL NETWORK IN FREQUENCY DOMAIN				
To learn modelling of electrical network in frequency domain using digital simulation.					

Reference Books:

- 1. Department Lab Manual.
- A Chakrabarti, "Circuit Theory", Dhanpat Rai Publications, 6th Edition, 2006.
 V K Mehta, Rohit Mehta, "Principles of Electrical Machines", 1st Edition, 2013.
 I J Nagarath & D P Kothari, "Electrical Machines", 1st Edition, 2011.

Web References:

- 1. https://www.ee.iitkgp.ac.in
- 2. https://www.citchennai.edu.in
- 3. https://www.iare.ac.in