SIGNALS AND SYSTEMS LABORATORY

T	7	ρm	100	ter:	F	CE
I V		еп	162	œi.	L.	L.E.

Course Code	Category	Hours / Week			Credits	Maximum Marks		
A TI CD 4 T		L	T	P	С	CIA	SEE	Total
AECB17	Core	0	0	2	1	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classe		ses: 24 Total Classes		s: 24		

OBJECTIVES:

The course should enable the students to:

- I. Understand the basics of MATLAB.
- II. Simulate the generation of signals and operations on them.
- III. Illustrate Gibbs phenomenon.
- IV. Analyze the signals using Fourier, Laplace and Z transforms.

COURSE OUTCOMES:

The student will have the ability to:

- CO 1: Understand the applications of MATLAB and to generate matrices of various dimensions.
- CO 2: Generate the various signals and sequences and perform operations on signals.
- CO 3: Obtain the frequency domain representation of signals and sequences using Fourier transform, Laplace and z-transform.
- CO 4: Understand the concept of convolution and correlation.
- CO 5: Generation of various types of noise and measuring various characteristics of noise

COURSE LEARNING OUTCOMES:

- 1. Understand Basics of MATLAB syntax, functions and programming.
- 2. Analyze the generation Various Signals and Sequences in MATLAB.
- 3. Perform various operations on the signals including Time shifting, Scaling, Reversal, Amplitude Scaling.
- 4. Compute the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
- 5. Determine the Convolution between Signals and sequences.
- 6. Determine the Correlation between Signals and sequences.
- 7. Verification of Weiner-Khinchine Relations i.e. Auto Correlation and Power Spectral Density forms Fourier transform pair.
- 8. Verification of time shifting and time reversal properties of Fourier Transform.
- 9. Remember for Locating the Zeros and Poles and plotting the Pole-Zero maps Z-Plane for the given transfer function.
- 10. Draw Distribution and density functions of standard random variables.
- 11. Verify Gibbs Phenomenon and understand the concept of fourier series of a signal.
- 12. Generation of Gaussian noise (Real and Complex), Computation of its mean, M.S. Value and its Skew.
- 13. Analyze and synthesize different signals for a wide application range

LIST OF EXPERIMENTS				
WEEK - I	BASIC OPERATIONS ON MATRICES			
Review basic	operations on matrices by using MATLAB			
WEEK-2	GENERATIN OF VARIOUS SIGNALS AND SEQUENCE			
	f various signals and sequences such as unit impulse, sinc, Gaussian, exponential, saw tooth, triangular, using MATLAB.			
WEEK-3	OPERATION ON SIGNALS AND SEQUENCES			
Operation on	signals and sequences such as addition, subtraction, multiplication, scaling, shifting, folding by using MATLAB			
WEEK -4	GIBBS PHENOMENON			
Verification of	of Gibbs phenomenon by using MATLAB			
WEEK -5	FOURIER TRANSFORMS AND INVERSE FOURIER TRANSFORM			
	ourier Transform and inverse Fourier transform of a given signal/sequence and agnitude and phase spectrum by using MATLAB.			
WEEK -6	PROPERTIES OF FOURIER TRANSFORMS			
Verifying Tir	ne shifting and scaling, time and differentiation properties of Fourier transforms by using MATLAB.			
WEEK -7	LAPLACE TRANSFORMS			
Finding the L	aplace transform of a given signal and locate its zeros and poles in s-plane.			
WEEK -8	Z-TRANSFORMS			
Finding the z	z - transform of a given sequence and locate its zeros and poles in z-plane			
WEEK-9	CONVOLUTION BETWEEN SIGNALS AND SEQUENCES			

Finding convolution between two signals /sequences by using MATLAB.

WEEK-10 AUTO CORRELATION AND CROSS CORRELATION

Finding auto correlation and cross correlation between signals and sequences by using MATLAB

WEEK-II GAUSS IAN NOISE

Generation of Gaussian noise, computation of its mean, M.S. value and its Skew, kurtosis, and PSD, probability distribution function by using MATLAB.

WEEK-12 WIENER – KHINCHINE RELATIONS

Verification of wiener – Khinchine relations using MATLAB.

WEEK-13 DISTRIBUTION AND DENSITY FUNCTIONS OF STANDARD RANDOM VARIABLES

Finding distribution and density functions of standard random variables and plot them by using MATLAB

WEEK-14 WIDE SENSE STATIONARY RANDOM PROCESS

Checking a random process for stationary in wide sense by using MATLAB

Reference Books:

- 1. S. Varadarajan, M. M. Prasada Reddy, M. Jithendra Reddy, "Signals and systems introduces MATLAB programs", I K International Publishing House Pvt. Ltd, 2016.
- 2. Scott L. Miller, Donald G. Childers, "Probability and Random Processes: With Applications to Signal Processing and communications", Elsevier, 2004.
- 3. Krister Ahlersten, "An Introduction to Matlab", BookBoon, 2012.
- 4. K. S. Suresh Kumar, "Electric Circuit Analysis", Pearson Education, 1st Edition, 2013.

Web References:

- 1. http://in.mathworks.com/help/matlab
- 2. http://web.mit.edu/acmath/matlab/course16/16.62x/16.62x_Matlab.pdf
- 3. https://www.probabilitycourse.com/chapter12/Chapter_12.pdf
- 4. http://www.iare.ac.in

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS:

HARDWARE: Desktop Computer Systems 18 nos

SOFTWARE: MATLAB

HOD, ECE