COMPUTER AIDED NUMERICAL CONTROL LABORATORY

VII Semester: ME								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AME115	Core	L	T	P	C	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 36		

OBJECTIVES:

The course should enable the students to:

- 1. Understand the features and specifications of CNC and 3D printing machines.
- 2. Develop the process planning sheets and tool layouts.
- 3. Use the CAM software and prepare CNC part programs.
- 4. Execute the part program and machine the component as per the production drawing

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the concept of numerical control and advantages of CNC machine tools.
- 2. Know the various types of CNC machine tools and CNC machining centers.
- 3. Understand Basic fundamentals of CNC milling and familiarization of machine control panel.
- 4. Understand Fundamentals of CNC programming, Part programming and interpolation techniques
- 5. Performance of Machining practice on CNC milling
- 6. Generation of part programming through CAM software.
- 7. Generation of CAM-CNC programming and execution.
- 8. Understand various Work piece setting methods and tool setting methods
- 9. Practice on CNC turning and exercises on machine.
- 10. Understand CNC programming and execution on milling and turning machines.
- 11. Prepare simple prototype models using 3D Printing.
- 12. Perform Practice session at industry

Week - 1 INTRODUCTION TO COMPUTER NUMERICAL CONTROL

Numerical control, functions of a machine tool, concept of numerical control, historical development, definition, advantages of CNC machine tools.

Week - 2 INTRODUCTION TO COMPUTER NUMERICAL CONTROL

Evolution of CNC, advantages of CNC, limitations of CNC, features of CNC, machine control unit (MCU) for CNC, classification of CNC machine tools; CNC machining centers: classification, features of CNC machining centers

Week - 3 CNC MILLING

Basic fundamentals of CNC milling, familiarization of machine control panel.

Week - 4 CNC MILLING

Fundamentals of CNC programming, Part programming and interpolation techniques.

Week - 5	CNC MILLING
WCCK - 3	CITE MILLERING

Machining practice on CNC milling.

Week - 6 CAM SOFTWARE

Generation of part programming through CAM software package.

Week - 7 CAM SOFTWARE

CAM-CNC programming and execution.

Week - 8 CNC TURNING

Work piece setting methods, tool setting methods.

Week - 9 CNC TURNING

Practice on CNC turning and exercises on machine.

Week - 10 CAM SOFTWARE

Generation of part programming through the CAM software package, CAM-CNC programming and execution on milling and turning machines.

Week - 11 3D PRINTING

Prepare simple prototype models.

Week - 12 INDUSTRY-INSTITUTE INTERACTION

Practice session at industry

Text Books:

- 1. Kundra T. K., Rao P. N. and Tewari M. K., —Numerical Control and Computer Aided Manufacturingl, Tata McGraw-Hill, 1st Edition, 1999
- 2. Groover M.P., —Automation, Production Systems & Computer Integrated Manufacturing. I, Prentice Hall, 1st Edition, 1989
- 3. Elanchezhian C, Selwyn Sunder T, Shanmuga Sundar G., —Computer Aided Manufacturing \parallel , Laxmi Publications, New Delhi, 1^{st} Edition, 2006
- 4. Rao P N., —CAD/CAM Principles and Applicationsl, Tata McGraw-Hill, 1st Edition, 2006.

Reference Books:

- 1. FANUC and SIEMENS part programming manuals.
- 2. 3D printing manual ULTIMAKE