VLSI DESIGN LABORATORY

VII Semester . ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEC112	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes : Nil	Total Tutorials : Nil	Total Practical Classes : 36Total Classes : 36						

OBJECTIVES:

- I. Understand the basic concepts about MOS device and inverter characteristics
- II. Understand the fabrication steps of IC design and design flow of VLSI circuits
- III. Design the stick diagram and layout of a circuit
- IV. Design the different MOSFET amplifier circuits

COURSE LEARNING OUTCOME:

- 1. Understand fundamentals of MOS devices and its V-I characteristics.
- 2. Analyze the effect of parasitic elements on MOS device, effect of threshold voltage MOSFET.
- 3. Understand the importance and effect of scaling on MOS devices; analyze the latest trends in CMOS technology.
- 4. Understand the basic CMOS nano technology and the importance of it.
- 5. Understand the fabrications steps involved in the MOS transistor.
- 6. Study various inverter characteristics of NMOS, CMOS.
- 7. Understand the effect of delay, noise margin and power dissipation of MOS devices.
- 8. Understand implementation of logic designs using MOS transistors series & parallel circuits.
- 9. Study other logic families like pass transistor logic, Bi-CMOS logic and various pull-up networks.
- 10. Understand to implement layers using stick diagram along with the color representation.
- 11. Study the design rules of transistors, wires, contacts and layouts with respect to width, length and spacing

based on type of technology.

- 12. Understand effects on VLSI Interconnects and electron migration.
- 13. Study the latch up problems and reliability issues of CMOS.
- 14. Understand various gate level designs for the logics and study about Fan-In and Fan-out.
- 15. Analyze the effect of various capacitances of MOS devices on propagation delay and study about the reduction of RC values based on the choice of layers in the MOS devices.
- 16. Understand the implementation strategies of VLSI design.
- 17. Understand the design of programmable logic devices and analyze the speed and area tradeoffs.
- 18. Understand data path subsystem designs, array subsystem designs
- 19. Understand the operation of various static and dynamic latches and registers.
- 20. Analyze the timing issues and the ck strategies of VLSI designs.
- 21. Understand the purpose and operation of Low power memory Circuits.
- 22. Study various Synchronous and asynchronous circuit design; understand the operation of static and dynamic latches and registers.

LIST OF EXPERIMENTS				
Week-1 MOSFET To plot the (i) output characteristics (ii) Transfer characteristics of an n-channel and p-channel MOSFET.				
Week-2 To design an	Week-2 CMOS INVERTER Fo design and plot the static (VTC) and dynamic characteristics of a digital CMOS inverter.			
Week-3	RING OSCILLATOR			
To design and plot the output characteristics of a 3-inverter ring oscillator.				
Week-4	LOGIC GATES			
	d plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates technology.			
Week-5	4X1 MULTIPLEXER			
To design and plot the characteristics of a 4x1 digital multiplexer using pass transistor logic.				
Week-6	LATCHES			
To design and plot the characteristics of a positive and negative latch based on multiplexers.				
Week-7	REGISTERS			
	To design and plot the characteristics of a master-slave positive and negative edge triggered registers based on multiplexers.			
Week-8	DIFFERENTIAL AMPLIFIER			
Design and simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR, and CMRR.				
Week-9	NMOS INVERTER AND CMOS INVERTER			
To design layout of NMOS and CMOS inverter.				
Week-10	LAYOUT OF 2-INPUT NAND, NOR GATES			
To design the layout of 2-input NAND, NOR gates.				
Week-11	COMMON SOURCE AMPLIFIER			
Analysis of I	Frequency response of Common source amplifiers.			
Week-12	COMMON DRAIN AMPLIFIER			
Analysis of Frequency response of Common drain amplifiers.				
Week-13 Design and S	SINGLE STAGE CASCODE AMPLIFIER Simulation of Single Stage Cascode Amplifier.			
0				

Week-14 BASIC CURRENT MIRROR, CASCODE CURRENT MIRROR AMPLIFIER

Design and Simulation of Basic Current Mirror, Cascode Current Mirror Amplifier.

Reference Books

- 1. Razavi, Design of Analog CMOS Integrated Circuits, Tata McGraw Hill Publications, 2002.
- 2. Allen Holberg, CMOS Analog Circuit Design, Oxford Publications, 2002.
- 3. Baker, Li, Boyce, CMOS Mixed Circuit Design, Wiley Publications, 2002.

SOFTWARE AND HARDWARE REQUIREMENTS FOR 36 STUDENTS

HARDWARE . Desktop Computer Systems 36 nos

SOFTWARE . Cadence tools