CONTROL SYSTEMS LABORATORY

IV Semester: EEE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AEEB18	Core	L	Т	Р	С	CIE	SEE	Total	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil		Practical Classes: 42			Total Classes: 42			

OBJECTIVES:

The course should enable the students to:

- I. Understand mathematical models of electrical and mechanical systems
- II. Analysis of control system stability using digital simulation.
- III. Demonstrate the time domain and frequency domain analysis for linear time invariant systems.
- IV. Apply programmable logic controllers to demonstrate industrial controls in the laboratory

COURSE OUTCOMES (COs):

- CO 1: Understand the transfer functions and state space modle using simulation .
- CO 2: Draw the Frequency response plots like Bode, Nyquist and Polar plots (magnitude and phase) for a given transfer function
- CO 3: Develop a PLC program for an automatic control system of a medium degree of complexity and select the right hardware for a given application
- CO 4: Analyse a compensator in the frequency domain to meet specific design requirements using a lead compensator, lag compensator, or lead-lag compensator
- CO 5: Develop a PLC program for an automatic control system of a medium degree of complexity and select the right hardware for a given application

COURSE LEARNING OUTCOMES (CLOs)

At the end of the course, the student will have the ability to:

- 1. Demonstrate the response of first order and second order systems with various standard test signals
- 2. Understand the concept of time domain analysis of series RLC Circuit.
- 3. Identify the transfer function and analyze the time response of DC motor.
- 4. Examine the speed torque characteristics of AC Servomotor.
- 5. Estimate the error obtained in control system with the effect of P, PI, PID controllers
- 6. Design of lead, lag, lag-lead compensator to improve characteristics of control system
- 7. Record the dynamic behavior of temperature control system with P, PI, PID controllers.
- 8. Construct the PID controller using Op-Amps and verify using MATLAB
- 9. Analyze the stability of time invariant control system using root locus, bode plot, polar plot, nyquist criterions.
- 10. Calculate the transfer function from state space model and state space model from transfer function using MATLAB
- 11. Implementation of Ladder diagram, Truth Tables, Counter, Blinking of lights, Control of Water level using PLC

12. Implement	12. Implement ladder diagrams for blinking of lights ,control of water level using PLC					
LIST OF EXPERIMENTS						
Week-1 T	TIME RESPONSE OF SECOND ORDER SYSTEM					
To obtain the time response of a given second order system with time domain specifications.						
Week-2 TRANSFER FUNCTION OF DC MOTOR						
Determine the transfer function, time response of DC motor and verification with digital simulation.						
Week-3 A	AC SERVO MOTOR					
Study of AC servomotor and plot its torque speed characteristics.						
Week-4 E	FFECT OF VARIOUS CONTROLLERS ON SECOND ORDER SYSTEM					
Study the effect of P, PD, PI and PID controller on closed loop second order systems.						
Week-5 C	OMPENSATOR					
Study lead-lag compensator and obtain its magnitude, phase plots.						
Week-6 T	EMPERATURE CONTROLLER					
Study the performance of PID controller used to control the temperature of an oven.						
Week-7 D	ESIGN AND VERIFICATION OF OP-AMP BASED PID CONTROLLER					
Implementation of op-amp based PID Controller and verification using MATLAB						
Week-8 STABILITY ANALYSIS USING DIGITAL SIMULATION						
Stability analysis using root locus, Bode plot, Polar, Nyquist criterions of linear time invariant system by digital simulation.						
Week-9 S'	TATE SPACE MODEL USING DIGITAL SIMULATION					
Verification of state space model from transfer function and transfer function from state space model using digital simulation.						
Week-10 L	ADDER DIAGRAMS USING PLC					
Input output connection, simple programming, ladder diagrams, uploading, running the program and debugging in programmable logic controller.						
Week-11 T	RUTH TABLES USING PLC					
Study and verification of truth tables of logic gates, simple boolean expressions and application to speed control of DC motor using programmable logic controller.						
Week-12	MPLEMENTATION OF COUNTER					
Implementation of counting number of objects and taking action using PLC.						
Week-13 B	LINKING LIGHTS USING PLC					
Implementation of blinking lights with programmable logic controller.						
Week-14 W	VATER LEVEL CONTROL					
Control of maximum and minimum level of water in a tank using PLC.						
Text Books:						
1. Norman S. 1 2. J Nagrath	Nise, "Control Systems Engineering", John Wiley & Sons, Inc., 6 th Edition, 2004. M Gopal, "Control Systems Engineering", New Age International 3 rd Edition 2007					

J Nagrath, M Gopal, "Control Systems Engineering", New Age International, 3rd Edition, 2007.
 John W. webb, Ronald A.Reis, "Programmable Logic Controllers, Principles and Applications",5th Edition,

2002

4. A Nagoor Kani, "Control Systems", RBA Publications, 1st Edition, 2009

Reference Books:

- 1. Benjamin Kuo, "Automatic Control Systems", PHI, 7th Edition, 1987
- 2. K Ogata, "Modern Control Engineering", Prentice Hall, 4th Edition, 2003.

Web References:

- 1. https://www.ee.iitkgp.ac.in
- https://www.citchennai.edu.in
 <u>https://www.iare.ac.in</u>