ENVIRONMENTAL ENGINEERING LABORATORY

VII Semester: CE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACE112	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: 0	Tutorial Classes: 0	Practical Classes: 36			Total Classes: 36			

COURSE OBJECTIVES:

The course should enable the students to:

- I. Investigate the different characteristics of water & wastewater Understand the shift from 2D representation to 3D simulation.
- II. Outline the procedure for preparations of stock and standard solutions, their handling, storage, etc. Explore new project delivery systems and technologies for integrated practice.
- III. Assess the suitability of water for drinking, irrigation purpose and concreting works.
- IV. Determine the BOD, COD and bacterial density of portable water.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Extrapolate the knowledge of preparation of PH in water.
- 2. Use innovative methods to improve the quality of soft water for industrial purpose at cheaper cost.
- 3. Evaluate conductometry and conductometric titrations .Estimate potentiometric and potentiometric titrations
- 4. Compare the results of experiments with potentiometer.
- 5. Describe PH in water and their properties with different samples.
- 6. Identify the formula for dissolved oxygen.
- 7. Explain certain properties of water using the concepts of alkalinity and acidity
- 8. Develop theoretical aquatic chemistry basis and use the principles for the evaluation of water quality.
- 9. Describe the rate constant for a reaction and elementary steps in the reaction mechanism.
- 10. Explore the basic knowledge of adsorption.
- 11. Understand principles and their practical application chromatographic separation

Week-1	INTRODUCTION TO ENVIRONMENTAL ENGINEERING LABORATORY. DETERMINATION OF PH AND TURBIDITY				
Introduction to environmental engineering. Do's and Don'ts in the lab.					
Batch I: To determine the pH of given samples using universal indicator, pH paper and digital pH meter					
Batch II: Determination of turbidity of the given sample using nephelometer in NTU.					
Week-2	DETERMINATION OF PH AND TURBIDITY				
Batch I: Determination of turbidity of the given sample using nephelometer in NTU.					
Batch II: To determine the pH of given samples using universal indicator, pH paper and digital pH meter.					
Week-3	DTERMINATION OF TURBIDITY AND TOTAL DISSOLVED SOLIDS				
Batch I: Determining the electrical conductivity of the given water sample.					
Batch II: Determination of total dissolved solids of the sample.					
Week-4	DETERMINATION OF CONDUCTIVITY AND TOTAL DISSOLVED SOLIDS				
Batch I: Determination of total dissolved solids of the sample.					
Batch II: Determining the electrical conductivity of the given water sample.					

Week-5	DETERMINATION OF ALKALINITY, ACIDITY OF WATER AND CHLORIDE IRON IN WATER.				
Batch I: Determining the amount of alkalinity present in the given samples & determine the acidity of the given sample of water.					
Batch II: Determine the quantity of iron present in the given sample of water & determining the amount of chloride present in the given water sample by Mohr's method.					
Week-6	DETERMINATION OF ACIDITY AND CHLORIDE IRON IN WATER				
Batch I: Determine the quantity of iron present in the given sample of water & determining the amount of chloride present in the given water sample by Mohr's method. Batch II: Determining the amount of alkalinity present in the given samples & determine the acidity of the given sample of water					
Week-7	DETERMINATION OF DISSOLVED OXYGEN AND NITRATES IN WATER				
Batch I: Determine the nitrate nitrogen of the given sample of water. Batch II: Determine the quantity of dissolved oxygen present in the given sample(s) by using modified Winkler's (Azide modification) method.					
Week-8	DETERMINATION OF NITRATES AND DISSOLVED OXYGEN IN WATER				
Batch I: Determine the quantity of dissolved oxygen present in the given sample(s) by using modified Winkler's (azide modification) method Batch II: Determine the nitrate nitrogen of the given sample of water.					
Week-9	DETERMINATION OF OPTIMUM DOSE OF COAGULANT IN WATER DEMAND AND COAGULANT OF CHLORINE DEMAND				
Batch I: Determining the optimum coagulant dosage for clarifying the given sample of water by using alum as the coagulant and performing the jar test experiment. Batch II : Determining the chlorine demand					
Week-10	DETERMINATION OF COD IN WATER AND DETERMINATION OF CHLORINE DEMAND				
Batch I : Determining the chlorine demand Batch II: Determining the optimum coagulant dosage for clarifying the given sample of water by using alum as the coagulant and performing the jar test experiment.					
Week-11	DETERMINATION OF TOTAL PHOSPHOROUS AND BOD				
Batch I: Determining the amount of B.O.D. exerted by the given sample Batch II: Determining the total phosphorus					
Week-12	REVISION				
Batch I: Revision Batch II: Revision					
Reference Books:					
 Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston —BIM HANDBOOKI, Wiley, 2nd Edition, 2011 					
E-Text Books:					
 http://auvsp.edu.in/datastore/auwebsite/documents/libraryebookspdf/building-information- modeling.pdf 					