MICROWAVE ENGINEERING LABORATORY

VII Semester: ECE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AEC110	Core	L	Т	Р	С	CIA	SEE	Total	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Total Tutorials: Nil	Total Practical Classes: 36				Total Classes: 36			

OBJECTIVES:

The course should enable the students to:

- I. Measure the parameters using microwave components.
- II. Analyze the generation and propagation of microwaves in waveguides.
- III. Evaluate scattering parameters of different microwave junctions.
- IV. Determine characteristic parameters of waveguides.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the microwave spectrum and applications of microwaves.
- 2. Analyze the types of waveguides, rectangular waveguides and field equations in rectangular waveguide.
- 3. Determine the wave impedance for a TM and TE wave in rectangular waveguide
- 4. Understand the types of cavity resonators and determine the dominant mode.
- 5. Explore the coupling mechanisms for a cavity resonator
- 6. Understand the waveguide discontinuities: waveguide irises, tuning screws, posts and matched load
- 7. Analyze the waveguide multiport junctions
- 8. Understand the Faraday rotation principle and analyze the different ferrite devices.
- 9. Understand the limitations of conventional vacuum tubes at microwave frequencies and understand the velocity modulation process and bunching process in microwave linear beam tubes
- 10. Determine the beam current density in Multi cavity Klystron amplifiers
- 11. Understand the velocity modulation process and power output in Reflex Klystron
- 12. Determine the amplification process in helix Traveling wave tube (TWT)
- 13. Describe the 8-cavity cylindrical travelling wave Magnetron
- 14. Analyze the Hull cut-off and Hartree conditions in Magnetron
- 15. Illustrate the microwave solid-state devices: microwave tunnel diode and transferred electron devices
- 16. Determine the RWH theory and modes of operations in Gunn diodes
- 17. Understand the Avalanche transit time devices: IMPATT diode, TRAPATT diode and BARITT diode
- 18. Describe the microwave bench set-up with different blocks and their features
- 19. Determine the measurements of microwave power, attenuation, frequency, VSWR and impedance

LIST OF EXPERIMENTS

Week-1

STUDY OF MICROWAVE COMPLONENTS

To study the different wave guide components in the microwave bench setup.

To measure the frequency of a microwaya source and demonstrate relationship among gui	de				
To measure the frequency of a microwave source and demonstrate relationship among guide dimensions, free space wavelength and guide wave length.					
Week-3 MODE CHARACTERISTICS OF REFLEX KLYSTRON	MODE CHARACTERISTICS OF REFLEX KLYSTRON				
To study the characteristics of Reflex Klystron oscillator, finding the mode numbers and efficiencies of different modes.					
Week-4 GUNN DIODE CHARACTERISTICS					
To study the characteristics of Gunn diode oscillator.					
Week-5 ATTENUATION MEASUREMENT					
To measure attenuation and insertion loss of a fixed and variable attenuator.					
Week-6 DIRECTIONAL COUPLER CHARACTERISTICS					
To measure coupling factor, insertion loss, isolation and directivity of a Directional coupler.					
Week-7 MEASUREMENT OF IMPEDANCE OF GIVEN LOAD					
To measure the unknown impedance of given load using bench set up.					
Week-8 SCATTERING PARAMETERS OF H-PLANE TEE AND E-PLANE TEE					
To find the scattering parameters of a three port H-Plane Tee And E-PlaneTEE.					
Week -9 MEASUREMENT OF VSWR					
To measure the low and high VSWR's of matched terminals.					
Week-10 MEASURMENT OF SCATTERING PARAMETERS OF MAGIC TEE					
To find the scattering parameters of a four port Magic Tee.					
Week-11 CIRCULATOR CHARACTERISTICS					
To measure the isolation and insertion loss of a three port circulator.					
Week-12 GAIN AND RADIATION PATTERN OF HORN ANTENNA					
Develop a Hello World application using Google App Engine.					
Week-13 MEASUREMENT OF PHASE SHIFT					
To measure the Phase shift between two components in the microwave bench set up.					
Week-14 ISOLATOR CHARACTERISTICS					
To measure the isolation and insertion loss of an isolator.					
Reference Books					

- Samuel Y. Liao, "Microwave Devices and Circuits", Pearson, 3rd Edition, 2003.
 Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, "Microwave Principles", CBS Publishers and Distributors, New Delhi, 1st Edition, 2004.
 F.E. Terman, "Electronic and Radio Engineering", Tata McGraw-Hill Publications, 4th Edition, 1055
- 1955.

Web References:

- 1. http://www.ee.iitkgp.ac.in
- 2. http://www.citchennai.edu.in