INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ADVANCED SOLID MECHANICS					
Course Code	BSTB()2				
Programme	M.Tec	h				
Semester	Ι	STE	E			
Course Type	Core					
Regulation	IARE - R18					
			Theory		Practic	cal
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits
	3		-	3	-	-
Chief Coordinator	Dr. J S R Prasad, Professor, Civil Engineering					
Course Faculty	Dr. J S	R P	rasad, Professo	r, Civil Engir	neering	

I. COURSE OVERVIEW:

This course introduces the principles of elasticity, components of stresses and strains, differential equations of equilibrium, boundary conditions, compatibility conditions and stress function. This course also covers the two dimensional problems in rectangular coordinates and polar coordinates, Fourier series for two dimensional problems stress distribution symmetrical about an axis, pure bending of curved bars, strain components in polar coordinates, displacements for symmetrical stress distributions, simple symmetric and asymmetric problems, analysis of stress strain in three dimensions, torsion of prismatical bars and plasticity. This course in reached to student by power point presentations, lecture notes, and assignment questions, seminars, previous model question papers, and question bank of long and short answers.

II. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Solve advanced solid mechanics problems using classical methods
II	Apply commercial software on select, applied solid mechanics problems.

III. COURSE OUTCOMES (COs):

CO 1	Understand the theory of elasticity including strain/displacement and Hooke's law relationships
CO 2	Analyse solid mechanics problems using classical methods and energy methods
CO 3	Solve for stresses and deflections of beams under unsymmetrical loading
CO 4	Obtain stresses and deflections of beams on elastic foundations
CO 5	Apply various failure criteria for general stress states at points

IV. COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

CLO Code	CLO's	At the end of the course, the student will have the ability to:			
BSTB02.01	CLO 1	Understand the Displacement, Strain and Stress Fields			
BSTB02.02	CLO 2	Understand the Constitutive Relations, Cartesian Tensors			
BSTB02.03	CLO 3	Solve the problems on Equations of Elasticity			
BSTB02.04	CLO 4	Know the Elementary Concept of Strain			
BSTB02.05	CLO 5	Understand the Strain at a Point			
BSTB02.06	CLO 6	Know concept of Principal Strains and Principal Axes			
BSTB02.07	CLO 7	Jnderstand the concept of Compatibility Conditions			
BSTB02.08	CLO 8	Understand the concept of Stress at a Point			
BSTB02.09	CLO 9	Develop the Stress Components on an Arbitrary Plane			
BSTB02.10	CLO 10	Understand the concepts on differential Equations of Equilibrium			
BSTB02.11	CLO 11	Know the Hydrostatic and Deviatoric Components.			
BSTB02.12	CLO 12	Understand the Equations of Equilibrium, Strain Displacement and Compatibility Relations			
BSTB02.13	CLO 13	Understand the formulation of Stress- Strain relations			
BSTB02.14	CLO 14	Concept of Strain Displacement			
BSTB02.15	CLO 15	Understand the solutions for boundary value problems			
BSTB02.16	CLO 16	Know the co-axiality of the Principal Directions			
BSTB02.17	CLO 17	Understand the Plane Stress and Plane Strain Problems			
BSTB02.18	CLO 18	Know the Two-Dimensional Problems in Polar Coordinates			
BSTB02.19	CLO 19	Understand the Saint Venant's Method, Prandtl's Membrane Analogy			
BSTB02.20	CLO 20	Formulation of Torsion of Rectangular Bar and thin plates			
BSTB02.21	CLO 21	Understand the concept of Plastic Stress-Strain Relations			
BSTB02.22	CLO 22	Solution of Principle of Normality and Plastic Potential, Isotropic Hardening			

TUTORIAL QUESTION BANK

					U	NIT – I			
			Ι	NTROI	DUCTIO	ON TO ELASTIC	CITY:		
				Part -	A (Shor	t Answer Questio	ons)		
1	Give the tensor n stress and strain a figures.	otations at a poin	of gener t in an el	alized th astic ma	nree dim iterial, w	ensional state of ith appropriate	Remember	CO 1	BSTB02.01
2	Define Hooke's Hooke's law for	law and an elasti	give the c materia	three dir 11.	nension	al equations for	Understand	CO 1	BSTB02.01
3	Give the relation Young's modulu elastic material.	ship bet s, rigidit	ween the y modulu	three ela 1s and b	astic mo ulk mod	dulli, namely ulus for an	Remember	CO 1	BSTB02.01
4	What are Lame's and strain in term	s constar ns of Lai	nts? Give me's cons	e the rela stant and	ationship 1 rigidity	between stress modulus.	Understand	CO 1	BSTB02.01
5	Define principal	planes a	nd princi	pal stres	sses		Remember	CO 1	BSTB02.02
6	What are stress-i stress-invariants	nvariant ?	s? Give	the expr	ressions	for the three	Remember	CO 1	BSTB02.02
7	What are strain-i strain-invariants	nvariant ?	s? Give	the expr	ressions	for the three	Understand	CO 1	BSTB02.02
8	Write the basic equations of equilibrium for a generalized three dimensional stress element?			Remember	CO 1	BSTB02.02			
9	Write the strain of	lisplacer	nent equ	ations?			Remember	CO 1	BSTB02.02
10	Express the bihar	rmonic e	equation f	for plane	e stress?		Remember	CO 1	BSTB02.02
	•		·	Part - B	(Long A	Answer Ouestions	5)		
1	The state of stream Determine the co ordinate system i	$\begin{array}{c} \text{ss at a po} \\ 400 \\ 100 \\ -100 \\ \text{omplete s} \\ \text{f} \end{array}$	oint relati 100 0 200 state of st	$\begin{bmatrix} -100\\ 200\\ 0 \end{bmatrix}$	$xyzcool N/mm^2$.	rdinate system is an $x'y'z'$ co-	Apply	CO 1	BSTB02.01
		~'	<i>x</i> 20°	у 60°	<i>Z</i>				
		$\frac{x}{y'}$	30 120°	30°	90 90°				
			90°	90°	90°				
2	The state of stres 200 50 - 50 0 -100 150 Determine the co ordinate system i	$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$	$\frac{1}{\sqrt{mm^2}}$	ve to an. ress rela $\frac{y}{30^{\circ}}$ $\frac{45^{\circ}}{90^{\circ}}$	$\frac{z}{90^{\circ}}$	dinate system is an $x'y'z'$ co-	Apply	CO 1	BSTB02.01

3	The state of stress at a point relative to an xyz coordinate system	n Apply	CO 1	BSTB02.01
	is $\begin{bmatrix} 500 & 150 & -200 \\ 150 & 0 & 200 \\ \end{bmatrix}$ N/mm ² .			
	L=200 200 0 J Determine the complete state of stress relative to an $x'y'z'$ co- ordinate system if			
	x' 60° 45° 90°			
	y' 150° 60° 90°			
	z' 90° 90° 90°			
4	At point Q in a body the state of stress relative to a <i>xyz</i> co- ordinate system is	Apply	CO 1	BSTB02.02
	$\begin{bmatrix} 500 & 200 & -200 \\ 200 & 0 & 400 \end{bmatrix}$ MPa			
	Using the cube shown in Fig., determine the normal and shear stress at point Q for surface parallel to the plane $BCGF$			
	B			
	A J J Jmm			
	4mm			
	z G 4mm F			
5	At point Q in a body the state of stress relative to a <i>xyz</i> co- ordinate system is	Apply	CO 1	BSTB02.02
	$\begin{bmatrix} 400 & 250 & -200 \end{bmatrix}$			
	250 0 300 MPa			
	Using the cube shown in Fig., determine the normal and shear			
	stress at point Q for surface parallel to the plane ABEF.			
	B			
	4mm			
	z G 4mm F			
6	At point Q in a body the state of stress relative to a xyz co-	Apply	CO 1	BSTB02.02
	[600 300 -250]			
	300 0 500 MPa			
	L-250 500 400 J Using the cube shown in Fig., determine the normal and shear			
1	stress at point Q for surface parallel to the plane <i>BGE</i> .			

	A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q			
7	If $\sigma_x = 4$ MPa, $\sigma_y = 2$ MPa, $\sigma_z = -2$ MPa,	Apply	CO 1	BSTB02.02
	$\tau_{xy} = 3$ MPa, $\tau_{yz} = 8$ MPa, $\tau_{zx} = -2$ MPa, then			
	compute the stress vectors on planes with unit normal $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ and			
	$\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$. Compute the normal and shearing stresses on these planes.			
8	Determine the magnitude and the direction of the principal stresses	Apply	CO 1	BSTB02.02
	and the maximum shearing stress when, T = 1500 MPa, $T = 1000 MPa$, $T = 10$			
	$\sigma_x = 1500 \text{ MPa}, \sigma_y = -1000 \text{ MPa}, \sigma_z$ = 1000 MPa			
	$\tau_{rv} = -300 \text{ MPa}, \tau_{vz} = 0 \text{ MPa}, \tau_{rz} = 100 \text{ MPa}.$			
9	For a given displacement field	Apply	CO 1	BSTB02.02
	$\bar{u} = (x^2y + 5z^2)\hat{\imath} + (xy^2z + y^2)\hat{\jmath} + x^2y^2z^2\hat{k}$,			
	determine the strain tensor, rotation tensor and the angle of $(2 - 1, 2)$			
10	rotation at the point (2, -1,2).	Apply	CO 1	BSTB02.02
10	$\varepsilon_x = c_1(x^2 + y^2), \varepsilon_y = c_1(y^2 + z^2),$	rippiy	001	D51D02.02
	$\gamma_{xy} = c_2 xyz, \qquad \varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$			
	where c_1 and c_2 are constants, is not a possible state of strain.			
11	The state of strain at a point is given by	Apply	CO 1	BSTB02.02
	$\varepsilon_x = 0.001, \varepsilon_y = -0.003, \varepsilon_z = 0.002,$			
	$\gamma_{xy} = 0.001, \gamma_{yz} = 0.0005, \gamma_{yz} = -0.002$			
12	The state of stress at a point is given by	Apply	CO 1	BSTB02.02
12	$\sigma_x = 200, \sigma_y = -100, \sigma_z = 50,$	1 pp y	001	DB1202.02
	$\tau_{xy} = 40, \tau_{yz} = 50, \tau_{zx} = 60$ MPa.			
	If $E = 2.05 \times 10^5$ N/mm ² and $G = 0.8 \times 10^5$ N/mm ² , then			
10	find the strain components.		00.1	
13	The state of strain at a point is defined by the given strain tensor holes. For a fibre with discrimination $(0, -1)/\overline{5} = 2/\sqrt{5}$	Apply	CO 1	BSTB02.02
	below. For a fibre with direction $(0, -1/\sqrt{5}, -2/\sqrt{5})$, calculate (a) the normal strain for the fibre (b) the magnitude of the strain			
	vector.			
	$[\varepsilon_{ij}] = \begin{bmatrix} 183 & 100 & -125 \\ 25 & 125 & 150 \end{bmatrix} \times 10^{-5}$			
14	L=25 = 125 = 150 J At a point, the stress components are:	Apply	CO 1	BSTB02.02
	$\sigma_x = 600, \sigma_y = 300, \sigma_z = 900$			
	$\tau_{xy} = 500$, $\tau_{yz} = 400$, $\tau_{zx} = -200$ kPa.			
	Show that the principal directions of stress and derivative stress			
15	COINCIDE. The state of stress at a point is given by	Apply	CO 1	BSTB02 02
15	$\sigma_x = 100, \sigma_v = 200, \sigma_z = -100$	трру	01	001002.02

	$\tau_{xy} = -200$, $\tau_{yz} = 100$, $\tau_{zx} = -300$ kPa.			
	Determine the stress invariants.			
	Part - C (Problem Solving and Critical Thinki	ng Questions)		
1	The given displacement components are: $u_x = cx(y+z)^2, u_y = cy(x+z)^2, u_z = cz(x+y)^2$, where c is a constant. Find (a) the components of linear strain. (b) the components of rotation.	Analyze & Evaluate	CO 1	BSTB02.01
2	A plate whose thickness is 3 mm is stretched as shown in Fig. Find the principal strains and the maximum shearing strain in the plate.	Analyze & Evaluate	CO 1	BSTB02.02
3	The stress field on a body is given by $\sigma_x = 20x^2 + y^2, \sigma_y = 30x^3 + 200, \sigma_z$ $= 30(y^2 + z^2)$ $\tau_{xy} = zx, \tau_{xz} = y^2z, \tau_{yz} = x^3y.$ What are the components of the body force required to ensure equilibrium?	Analyze & Evaluate	COI	BSTB02.02
4	The state of stress at a point is given by $\begin{bmatrix} 10 & 5 & -10 \\ 5 & 20 & -15 \\ -10 & -15 & -10 \end{bmatrix}$ MPa. Find the magnitude and direction of the stress vector acting on a plane whose normal has direction cosines (1/2, 1/2, 1/ $\sqrt{2}$). What are the normal and tangential stresses acting on this plane?	Analyze & Evaluate	CO 1	BSTB02.02
5	The state of strain at a point within a material is given by: $ \begin{bmatrix} 200 & 100 & 0 \\ 100 & 300 & 400 \\ 0 & 400 & 0 \end{bmatrix} \times 10^{-6} $ For $E = 200$ GPa and $G = 80$ GPa, ascertain the components of stress tensor.	Analyze & Evaluate	CO 1	BSTB02.02
6	The state of stress at a point is given by $\sigma_x = 100, \sigma_y = 200, \sigma_z = -100$ $\tau_{xy} = -200, \tau_{yz} = 100, \tau_{zx} = -300$ kPa. Determine the principal stresses and the direction cosines of the principal planes.	Analyze & Evaluate	CO 1	BSTB02.02
7	The displacement field in a body is specified as: $u_x = (x^2 + 3) \times 10^{-3}$ $u_y = 3y^2z \times 10^{-3}$ $u_z = (x + 3z) \times 10^{-3}$ Determine the strain components at a point whose co-ordinates are (1, 2, 3)	Analyze & Evaluate	CO 1	BSTB02.02
8	The state of stress at a point is given by: $ \begin{bmatrix} 20 & -6 & 10 \\ -6 & 10 & 8 \\ 10 & 8 & 7 \end{bmatrix} $ MPa. Determine the principal stresses and principal directions.	Analyze & Evaluate	CO 1	BSTB02.02

9	The stress field in a continuous body is given by: $\begin{bmatrix} 1 & 0 & 2y \\ 0 & 1 & 4x \\ 2y & 4x & 1 \end{bmatrix} \text{ kPa.}$ Find the stress vector at point <i>P</i> (1, 2, 3) acting on a plane	Analyze & Evaluate	CO 1	BSTB02.02
	x + y + z = 6.			
	The given displacement components are: $u_x = cx(y+z)^2$, $u_y =$	Analyze &	CO 1	BSTB02.02
10	$cy(x+z)^2$, $u_z = cz(x+y)^2$, where c is a constant. Find the	Evaluate		
	principal strains at a point whose co-ordinates are (1,1,1).			
	UNIT – II			
	STRAIN AND STRESS FIEL	D:		
	Part - A (Short Answer Questions	s)		
1	Express the stress function in the form of a doubly infinite power series.	Remember	CO 2	BSTB02.03
2	Express the stress compatibility equation for plane stress case.	Remember	CO 2	BSTB02.03
3	Express the stress compatibility equation for plane strain case.	Remember	CO 2	BSTB02.03
4	Give the equations relating to bending of a beam by uniform load.	Understand	CO 2	BSTB02.04
5	What are conjugate harmonic functions and analytic functions? Give the property of the analytic functions.	Remember	CO 2	BSTB02.04
6	Give the Cauchy-Riemann equations for a stress field. What is the significance of the Cauchy-Riemann equations?	Remember	CO 2	BSTB02.05
7	Express the displacement and stress configurations in terms of complex potentials	Remember	CO 2	BSTB02.06
8	How does the stress function satisfies the biharmonic equation?	Remember	CO 2	BSTB02.06
9	Express the stresses acting in a Tapering beam	Understand	CO 2	BSTB02.06
10	Express the stresses acting in an infinite wedge.	Remember	CO 2	BSTB02.07
11	Express the stress components in terms of an Airy stress function	Remember	CO 2	BSTB02.07
12	Express the equilibrium equations in polar co-ordinates.	Remember	CO 2	BSTB02.07
	Part - B (Long Answer Questions	s)		
1	A cantilever beam of rectangular cross-section 40 mm wide and 60	Apply	CO 2	BSTB02.03
1	mm thick is 800 mm in length. It carries a load of 500 N at the free	rippiy	002	D 51 D 02.05
	end. Determine the stresses in the cantilever at mid-length.			
2	A rectangular beam 80 mm wide and 100 mm thick is of 600 mm	Apply	CO 2	BSTB02.03
	in length. It carries a uniformly distributed load of intensity 10			
	N/mm throughout its length. Plot the variation of stresses in the			
2	A capillever of length <i>l</i> in x dimension and denth 2C along the y	Apply	CO 2	BSTB02.04
5	dimension is loaded with a load P at the free end. The support	Арргу	02	D51D02.04
	conditions at $x = l$ are given as:			
	At $x = l, y = 0$: $u_x = u_y = 0$			
	At $x = l, y = \pm C$: $u_x = 0$			
	Show that the deflection is now			
	$(u_y)_{x=y=0} = \frac{Pl^3}{3El} \left[1 + \frac{1}{2}(4+5v)\frac{C^2}{l^2} \right]$			
4	Show that $(A e^{\alpha y} + B e^{-\alpha y} + Cy e^{\alpha y} + Dy e^{-\alpha y}) \sin \alpha x$ is a	Apply	CO 2	BSTB02.04
	stress function in two dimensional stress field.			
5	Derive series expressions for the stresses in a semi-infinite plate,	Apply	CO 2	BSTB02.04
	y > 0, with normal pressure on the straight edge ($y = 0$) having			
	the distribution			

	00			
	$\sum b_m \sin \frac{m\pi x}{l}$			
6	Show that if V is a plane harmonic function, <i>i.e.</i> it satisfies the	Apply	CO 2	BSTB02.05
0	Laplace equation $\nabla^2 V = 0$, then the functions $xV, vV, (x^2 + v^2)V$	i ippij	002	D51202.00
	satisfy the bilharmonic equation and so can be used as stress			
	functions.			
7	Determine the stress fields that arise from the following stress	Apply	CO 2	BSTB02.06
	functions:			
	i. $\phi = Cy^2$			
	ii. $\phi = Ax^2 + Bxy + Cy^2$			
8	Determine the stress fields that arise from the following stress	Apply	CO 2	BSTB02.06
	function:			
	$\phi = Ax^3 + Bx^2y + Cxy^2 + Dy^3$		~~~	
9	A cantilever of length l in x-dimension and depth 2C along the y-	Apply	CO 2	BSTB02.07
	dimension is loaded with a load P at the free end. The stress field			
	for this cantilever considering bending and transverse shear			
	P_{XV} P			
	$\sigma_x = -\frac{1}{2} \frac{xy}{L}, \sigma_y = 0, \qquad \tau_{xy} = -\frac{1}{2L} (C^2 - y^2).$			
	Verify that this stress field satisfies the equilibrium equations.			
10	Find the stress and displacement fields corresponding to the	Apply	CO 2	BSTB02.07
	complex potentials $\varphi(z) = \alpha + iAz$, $\psi(z) = \beta$ where α and β are	11.2		
	complex constants and A is real. Interpret this displacement field.			
	Part - C (Problem Solving and Critical Thinki	ng Questions)		
	Tart - C (Troblem Softing and Critical Timiki	ng Questions)		
1	Show that the complex potentials	Analyze &	CO 2	BSTB02.03
	$\varphi(z) = \alpha z, \psi(z) = \beta$	Evaluate		
	Correspond to a uniform stress field. Find α and β so that			
	$b_x = A$, $t_{xy} = S$, $b_y = I$			
2	Determine the stress and displacement fields in an infinite medium	Analyze &	CO 2	BSTB02.03
2	due to equal and opposite point forces acting at different points	Evaluate	002	D51D02.05
	along their common line of action.	L'valuate		
3	Consider the effect of a point force $X + iY$ acting at an internal	Analyze &	CO 2	BSTB02.04
-	point Z_0 of the half plane S^+ when the boundary $\gamma = 0$ is	Evaluate		
	unstressed. Determine the normal displacement on $y = 0$.			
4	Using Fourier integral method, determine the solution of	Analyza &	CO 2	BSTB02.04
7	biharmonic equation in Cartesian co-ordinates	Evaluate		D51D02.04
5	A semi-infinite elastic medium is subjected to a normal pressure of	Analyze &	CO 2	BSTB02.04
	intensity p distributed over a circular area of radius α at $x = 0$.	Evaluate		
	Determine the stress distribution by using Fourier integral method.			
6	Show that the stress function	Analyze &	CO 2	BSTB02.04
	$\phi = C \left[(x^2 + y^2) \tan^{-1} \frac{y}{2} - xy \right]$	Evaluate		
	$\begin{array}{c} \varphi \nabla \left[\left(x + y \right) \right) \\ \chi \chi \end{array}$			
	provides the solution to the problem of the semi-infinite elastic			
	neurum acted upon by a uniform pressure q on one side of the origin			
	$\theta = \tan^{-1} \frac{y}{y}$			
	×			
	y V			
7	Investigate the plane stress problem represented by the Airv's	Analyze &	CO 2	BSTB02.06
	stress function	Evaluate		

	$\phi = \frac{3F}{2}\left(xy - \frac{xy^3}{2}\right) + \frac{P}{2}y^2$			
	$\varphi = \frac{1}{4h} \begin{pmatrix} xy & 3h^2 \end{pmatrix} + \frac{2}{2} y$			
	where h is half depth of the beam and F is the concentrated load			
8	A cantilever beam loaded at its free end has a stress function	Analyze &	CO 2	BSTB02.06
	rv^3	Evaluate		
	$\phi = Axy + B\frac{xy}{6}$			
	Determine an expression for the vertical deflection curve			
0	Using Aim/s stage function	A noturo e	CO 2	DSTD02.07
9	Using Airy's stress function, $(3) v^2$	Evaluate α	02	BS1B02.07
	$\phi = B\left(y^3 + \frac{3}{4}yh^2\right) + F\frac{y}{8},$	2.1.1.1.1.1.1		
	determine the stress distribution at $0 < x < l$ for $y = \pm h$, where			
	'l' is the span of the beam, '2h' the depth of the beam and F the			
10	load.	Apolyzo &	CO 2	BSTR02.07
10		Evaluate	02	DS1D02.07
	$\phi = \frac{3P}{4} \left(xy - \frac{xy^3}{2x^2} \right),$			
	$4C \setminus 3C^2$			
	with the conditions $0 < x < l$ and $y = \pm c$.			
	LINIT – III	<u> </u>		
	UNIT – III			
	EQUATIONS OF ELASTICITY AND TWO-DIMENSIONAL	PROBLEMS	S OF ELAST	TCITY:
	Part - A (Short Answer Questio	ons)		-
1	Write the equations of equilibrium of the elemental tetrahedron, with three edges along the x-y and z axes	Remember	CO 3	BSTB02.08
2	Write the expression for normal stress on the inclined plane of an	Remember	CO 3	BSTB02.08
	elemental tetrahedron the direction cosines of whose normal are <i>l</i> ,			
	<i>m</i> and <i>n</i> , and whose other faces lie in three coordinate planes.			
3	Give the equation of the stress ellipsoid and describe what their	Understand	CO 3	BSTB02.08
4	axes represent.	Remember	CO 3	BSTB02.09
4	Give the cubic equation whose three roots are the principal stresses	Remember	CO 3	BSTB02.09
5	and whose coefficients are the stress-invariants?	Remember	005	D 51D02.07
6	What do we mean by stress invariants? Explain why are they so	Remember	CO 3	BSTB02.09
	called?		GO 0	D.0770.00
7	Give the expressions for octahedral shear stress?	Remember	CO 3	BSTB02.09
8	Explain what is meant by homogeneous deformation and represent its conditions?	Understand	CO 3	BSTB02.10
8	Give the strain-displacement relations depicting both normal and shear strains.	Remember	CO 3	BSTB02.10
9	Write the three strain invariants, give their expressions.	Remember	CO 3	BSTB02.10
10	Write the equations of equilibrium of the elemental tetrahedron,	Remember	CO 3	BSTB02.10
10	with three edges along the x, y and z-axes.	TT. 4 4	<u> </u>	
11	write the differential equations of equilibrium at a point in an elastic body.	Understand	03	BS1B02.11
12	Give the boundary conditions associated with the differential equations of equilibrium.	Remember	CO 3	BSTB02.11
13	Give the differential relations of the conditions of compatibility.	Remember	CO 3	BSTB02.11
	Write the stress-compatibility equations in three dimensions, also	Remember	CO 3	BSTB02.12
14	called Beltrami-Michell equations, when the body forces are			
	constant.			

15	Give the equations of equilibrium in terms of displacements, also called as Navier equations for elasticity in solids.	Remember	CO 3	BSTB02.12
16	State the uniqueness theorem associated with the solution of the differential equations of equilibrium.	Remember	CO 3	BSTB02.12
17	Explain the Betti's Reciprocal theorem of displacements used in the theory of elasticity.	Understand	CO 3	BSTB02.12
	Part - B (Long Answe	er Questions)		
1	A rectangular har of length a breadth h and height h is standing	Apply	CO 3	BSTB02.08
1	under its own weight. Determine the stress distribution in the bar.	rippiy	005	D 51 D 02.00
2	A prismatic bar of 2a x 2b cross-section is bent by two equal and	Apply	CO 3	BSTB02.08
	opposite couples. Determine the equations for the bent shape of			
	the prismatic bar.	A 1	<u> </u>	DOTE: DO
3	Derive the vector form of the equilibrium equations	Apply	CO 3	BSTB02.08
4	Show that for an irrotational deformation of a body, the	Apply	CO 3	BSTB02.09
	displacement vector is the gradient of a scalar potential function.			
5	Derive the expression for the Octahedral shear stress.	Apply	CO 3	BSTB02.09
6	Derive the differential equations of equilibrium in three	Understand	CO 3	BSTB02.10
	dimensional cartesian coordinates using a rectangular			
	parallelepiped element.			
7	Derive the conditions of compatibility in terms of strains in three	Understand	CO 3	BSTB02.10
	dimensional cartesian coordinate system.	XX 1 . 1	<u> </u>	
8	Derive the conditions of compatibility in terms of stresses in three	Understand	CO 3	BSTB02.11
	dimensional cartesian coordinate system from the strain			
0	Compatibility equations.	I Indoneton d	CO 2	DCTD02 11
9	of equilibrium in terms of displacements	Understand	03	BS1B02.11
10	Explain the principle of superposition applicable for the body and	Understand	CO 3	BSTB02 12
10	surface forces in the differential equations of equilibrium	Chaerstand	005	D 51D02.12
	Part - C (Problem Solving and Critical T	hinking Quest	ions)	
1	Derive the expression for normal stress on the inclined plane on an	Analyze &	CO 3	BSTB02.08
	elemental tetrahedron, which has three faces along the coordinate	Evaluate		
	planes.			
2	Derive the equation for obtaining the principal stresses for a three	Analyze &	CO 3	BSTB02.08
	dimensional stress system.	Evaluate	<u> </u>	DOTEDOO
3	Derive the expressions for the displacements of a prismatic bar by	Analyze &	CO 3	BS1B02.09
4	The own self-weight considering a three dimensional stress system	Evaluate	CO 2	DCTD02.00
4	cylindrical coordinates.	Evaluate	005	DS1D02.09
5		Analyze &	CO 3	BSTB02.10
	Derive the expressions for the components of the rotation vector.	Evaluate		
6	The state of strain at a point within a material is given by:	Apply	CO 3	BSTB02.10
	$\begin{bmatrix} 200 & 100 & 0 \\ 100 & 0 & 0 \end{bmatrix}$ 10-6			
	$\begin{bmatrix} 100 & 300 & 400 \end{bmatrix} \times 10^{-5}$			
	$\begin{bmatrix} 0 & 400 & 0 \end{bmatrix}$ For $F = 200$ GPa and $G = 80$ GPa association the components of			
	For $E = 200$ Gra and $G = 60$ Gra, ascertain the components of stress tensor			
	50055 1011501.			
7	The state of stress at a point is given by	Apply	CO 3	BSTB02.11
	$\sigma_x = 100, \sigma_y = 200, \sigma_z = -100$			
	$\tau_{xy} = -200$, $\tau_{yz} = 100$, $\tau_{zx} = -300$ kPa.			
	Determine the principal stresses and the direction cosines of the			
	principal planes.			
8	The state of strain at a point is given by	Apply	CO 3	BSTB02.11
	$\varepsilon_x = 0.001, \varepsilon_y = -0.003, \varepsilon_z = 0.002,$			

		1					
	$\gamma_{xy} = 0.001, \gamma_{yz} = 0.0005, \gamma_{yz} = -0.002$ Determine the strain invariants and the prinicipal strains.						
9	The given displacement components are: $u_x = cx(y+z)^2$. $u_y = cx(y+z)^2$	Apply	CO 3	BSTB02.12			
	$cy(x + z)^2$, $u_z = cz(x + y)^2$, where c is a constant. Find (a) the components of linear strain. (b) the components of rotation.						
10	The displacement field in a body is specified as: $u_x = (x^2 + 3) \times 10^{-3}$ $u_y = 3y^2 z \times 10^{-3}$	Apply	CO 3	BSTB02.12			
	$u_z = (x + 3z) \times 10^{-3}$ Determine the strain components at a point whose co-ordinates are (1, 2, 3)						
	UNIT – IV						
	TORSION OF PRISMATIC BA	RS:					
	Part - A (Short Answer Questions	s)					
1	Give the torsion equation for circular cross-section and explain its terms.	Remember	CO 4	BSTB02.13			
2	Write the Poisson's equation for torsion of prismatic bars of non- circular cross-sections, explaining the various terms.	Remember	CO 4	BSTB02.13			
3	Write the expressions for the angle of twist and the torsional rigidity for a bar of elliptical cross-section, with major and minor axes of 2a and 2b, respectively.	Understand	CO 4	BSTB02.14			
4	For a bar of cross-section of an equilateral triangle of side 'a', what is the relationship between torque, T, and angle of twist per unit length? G is the modulus of rigidity.	Remember	CO 4	BSTB02.14			
5	State and explain the Bredt's formula for torsion of thin walled tubes.	Remember	CO 4	BSTB02.15			
6	Write the simple bending equation for symmetrical cross-sections of a beam.	Remember	CO 4	BSTB02.16			
7	Give the governing differential equation of bending of a cantilever by load P at its free end, when the cantilever has a non-uniform cross-section.	Understand	CO 4	BSTB02.17			
8	Give the governing differential equation of bending of a bar of circular cross-section in terms of stress functions	Remember	CO 4	BSTB02.18			
9	Give the governing differential equation of bending of a bar of an elliptical cross-section in terms of stress functions	Remember	CO 4	BSTB02.19			
10	Give the governing differential equation of bending of a bar of a rectangular cross-section in terms of stress functions	Understand	CO 4	BSTB02.20			
	Part - B (Long Answer Questions)						
1	Using St. Venant's theory derive the Poisson's equation for torsion of prismatic bars of non-circular cross-sections.	Understand	CO 4	BSTB02.13			
2	Derive the expressions for the angle of twist and the torsional rigidity for a bar of elliptical cross-section, with major and minor axes of 2a and 2b, respectively.	Understand	CO 4	BSTB02.13			
3	Derive the relationship between torque, T, and angle of twist per unit length for a bar of cross-section of an equilateral triangle of side 'a'.	Remember	CO 4	BSTB02.14			
4	Derive the torsion equation of a thin rectangular section	Understand	CO 4	BSTB02.14			
5	Derive the torsion equation of a hollow cylinder.	Understand	CO 4	BSTB02.15			
6	Derive the simple bending equation for symmetrical cross-sections	Understand	CO 4	BSTB02.16			

	of a beam			
	Derive the governing equation of hending of a cantilever, with a	Understand	CO 4	BSTB02 17
7	non-uniform cross-section subjected to load P at its free end	Understand	04	DS1D02.17
	Derive the governing differential equation of bending of a bar of	Understand	CO 4	BSTB02.18
8	circular cross-section in terms of stress functions	Chaerstand	001	D 51D02.10
	Derive the governing differential equation of bending of a bar of	Remember	CO 4	BSTB02.19
9	an elliptical cross-section in terms of stress functions	1101110111011		20120200
	Derive the governing differential equation of bending of a bar of a	Understand	CO 4	BSTB02.20
10	rectangular cross-section in terms of stress functions			
	Part - C (Problem Solving and Critical Thinki	ing Questions)		
1	A square shaft rotating at 250 rpm transmits torque to a crane	Apply	CO 4	BSTB02 14
1	which is designed to lift maximum load of 150 kN at a speed of	rippiy	001	001002.11
	10m/min. If the efficiency of crane gearing is 65% estimate the			
	size of the shaft for the maximum permissible shear stress of			
	35MPa. Also calculate the angle of twist of the shaft for a length			
	of 3m. Take G=100 GPa.			
2	A 300 mm steel beam with flanges and web 12.5mm thick, flange	Apply	CO 4	BSTB02.14
	width 300mm is subjected to a torque of 4 kN m. Find the			
	maximum shear and angle of twist per unit length. G =100 GPa.			
3	An elliptical shaft of semi axes $a = 0.05 \text{ m}$, $b = 0.025 \text{ m}$ and $G = 80$	Apply	CO 4	BSTB02.15
	GPa is subjected to a twisting moment of 1200 π Nm. Determine			
	the maximum shearing stress and the angle of twist per unit length.			
4	A hollow aluminium section of external dimensions 100 mm x 50	Apply	CO 4	BSTB02.15
	mm and thickness 5 mm is designed for a maximum shear stress of			
	35 Mpa. Find the maximum permissible twisting moment for this			
	section and the angle of twist under this moment per metre length.			
~	G = 28 GPa.		<u> </u>	D.CTD.00.15
С	A hollow circular torsion member has an outside diameter of	Apply	CO 4	BS1B02.15
	22mm and inside diameter of 18mm, with mean diameter $D = 20$ mm and t/D=0.10. Calculate the torque and engle of twist per			
	2011111 and $t/D=0.10$. Calculate the torque and angle of twist per unit length if shearing stress at mean diameter is 70MPa. Calculate			
	these values if a cut is made through the wall thickness along the			
	entire length $G = 77.5$ GPa.			
6	A prismatic bar of length 5m and a rectangular cross-section of	Apply	CO 4	BSTB02.16
	80mm x100mm is fixed at one end as a cantilever. At the free end,			
	1 kN load acting in the plane of the cross-section but inclined at			
	30° to the vertical is applied. Determine the maximum stress in			
	the cantilever beam.			
7	A prismatic bar of circular cross-section of radius 25 mm is	Apply	CO 4	BSTB02.17
	subjected to a terminal load of 5 kN. Determine the stresses in the			
	bar at the end of the horizontal diameter. Compare the result with			
	the elementary solution. Assume poisson's ratio $= 0.3$.		a .c. :	
8	A prismatic bar of elliptical cross-section has its semi-minor axes	Apply	CO 4	BSTB02.18
	as40 mm and 20 mm respectively. This bar is subjected to an end			
	10adoi 2500 N. Determine the stresses in the bar at the end of			
	major and minor axes. Assume poisson's ratio = 0.28 .	A1	CO 4	
9	A prismatic dar of rectangular cross-section 50 mm x 30 mm	Арріу	04	B21B02.19
	issubjected to all end to a of 4500 N. Determine the stresses at the corner. Assume $y = 0.2$			
10	uncertaine of the bal and the corner. Assume $v = 0.5$	Apply	<u>CO 4</u>	BSTD02 20
10	A rectangular beam 120 mm x 100 mm is 3 min length and is	Арріу	004	DS1D02.20
	simply supported at the ends. It carries a load of 5 kN at mid-span			
	inclined at 45° with the vertical axis and passing through the			
	centroid.Determine the maximum bending stress in the beam.			

UNIT – V							
PLASTIC DEFORMATION:							
Part - A (Short Answer Questions)							
1	What is meant by yield criteria in the theory of plasticity?	Remember	CO 5	BSTB02.22			
2	Give the yield conditions in the theory of plasticity?	Remember	CO 5	BSTB02.22			
3	Give the assumptions in plastic analysis.	Understand	CO 5	BSTB02.21			
4	What are residual stresses in plastic bending?	Remember	CO 5	BSTB02.21			
5	Define shape factor and load factor?	Remember	CO 5	BSTB02.21			
6	What is a plastic hinge?	Understand	CO 5	BSTB02.21			
7	Give the Tresca's yield criteria in the theory of plasticity	Remember	CO 5	BSTB02.21			
8	Give the Von-Mises yield criteria.	Understand	CO 5	BSTB02.22			
9	What are the tangent and plastic moduli?	Remember	CO 5	BSTB02.22			
10	Define the Plastic hinge and Plastic Moment Capacity in plastic analysis of beams	Remember	CO 5	BSTB02.21			
	Part - B (Long Answer Qu	estions)					
1	Explain the Tresca's yield criteria giving the diagram of the yield	Understand	CO 5	BSTB02.22			
2	Explain the Mises's yield criteria giving the diagram of the yield	Understand	CO 5	BSTB02.22			
3	Explain the various flow models of plasticity: perfectly plastic, elastoplastic and strain hardening.	Remember	CO 5	BSTB02.21			
4	State and explain the Bauschinger effect.	Understand	CO 5	BSTB02.21			
5	Derive the expression for shape factor for a rectangular beam cross-section.	Understand	CO 5	BSTB02.21			
6	Derive the expression for shape factor for a circular beam cross- section.	Remember	CO 5	BSTB02.21			
7	Derive the expression for shape factor for a triangular beam cross- section.	Understand	CO 5	BSTB02.21			
8	Derive the expression for shape factor for a symmetric I -section.	Understand	CO 5	BSTB02.22			
9	Draw and comparatively explain the conventional or engineering stress-strain diagram and true stress – true strain diagram.	Remember	CO 5	BSTB02.22			
10	Derive the relationship between true strain and the conventional linear strain.	Understand	CO 5	BSTB02.22			
	Part - C (Problem Solving and Critical	Thinking Que	estions)	•			
1	A tensile specimen with a 12 mm initial diameter and 50 mm	Apply	CO 5	BSTB02 21			
1	gauge length reaches maximum load at 90 kN and fractures at 70 kN. The maximum diameter at fracture is 10 mm. Determine engineering stress at maximum load (the ultimate tensile strength), true fracture stress, true strain at fracture and engineering strain at fracture.	rippiy		D51D02.21			
2	Stress analysis of a structural member gives the state of stress shown below. If the part is made from aluminium alloy whose yield stress, $\sigma = 500$ MPa, will it exhibit yielding as per Von Mises criteria? If not, what is the safety factor?	Apply	CO 5	BSTB02.21			

Prepared By: Dr. J S R Prasad, Professor

Civil Engineering

HOD, CE