

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MECHANISM AND MACHINE DESIGN					
Course Code	AAE52	3				
Programme	B. Tech	B. Tech				
Semester	V	V AE				
Course Type	Professional Elective					
Regulation	IARE -	R16				
		Theory		Pra	ctical	
Course Structure	Lecture	es Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Chief Coordinator	Mr. M Vijay Kumar, Assistant Professor					
Course Faculty	Mr. M	Vijay Kumar, As	sistant Profe	ssor		

COURSE OBJECTIVES:

The co	ourse should enable the students to:
Ι	Understand the basic principles of kinematics and the related terminology of machines.
II	Identify mobility; enumerate links and joints in the mechanisms.
III	Explain the concept of analysis of different mechanisms.
IV	Understand the working of various straight line mechanisms, gears, gear trains, steering gear
	mechanisms, cams and a Hooke's joint.
V	Determine the mechanisms for displacement, velocity and acceleration of links in a
	machine.

COURSE OUTCOMES (COs):

CO 1	Describe the concept of mechanisms and machines in which all the links and their mechanism
	studied.
CO 2	Determine the velocity and acceleration diagrams for different mechanisms using graphical
	methods.
CO 3	Understand the concept of plane motion of body and gyroscopic motion precession in which
	gyroscopic mechanism is studied.
CO 4	Explore the concept of cams and followers, steering gear mechanism to understand real time
	applications of mechanisms.
CO 5	Introduction to gears and gear mechanism where different tooth profiles of gear is designed.

COURSE LEARNING OUTCOMES (CLOS):

S. No.	Description
AAE523.01	Classifications of the kinematic links, kinematic pairs and formation of the kinematic chain.
AAE523.02	Distinguish between mechanism and machine
AAE523.03	Design and develop inversions of quadratic cycle chain, slider crank mechanism, and double slider crank mechanism and cross slider mechanism.
AAE523.04	Demonstrate type synthesis, number synthesis and dimensional synthesis.
AAE523.05	Construct Graphical methods of velocity polygon and acceleration polygons for a given configuration diagram.
AAE523.06	Understand other methods of acceleration diagrams like Klien's construction.
AAE523.07	Develop secondary acceleration component i.e Correli's component involving quick return mechanisms
AAE523.08	Alternative approach for determining velocity by using I centres and centriods methods.
AAE523.09	Significance of exact and approximate straight line mechanisms.
AAE523.10	Application of straight line mechanism in steam engine indicators.
AAE523.11	Applications of Ackerman's and Davi's steering mechanisms in automobiles.
AAE523.12	Develop the condition for exact steering.
AAE523.13	Develop the polar velocity diagram for a single hook joint and double hook joint and develop condition for unity for higher and lower speeds.
AAE523.14	Study different displacement profiles applicable in I.C engines cam shafts.
AAE523.15	Plot the displacement, velocity and acceleration profiles with respect to time.
AAE523.16	Understand the geometry of gears and deduce the expression for arc of contact.
AAE523.17	Derive the expression for minimum number of teeth to avoid interference in case of pinion and gear as well as rack and pinion.
AAE523.18	Application of different gear trains including epicyclic and deduce the train value using tabular and relative velocity method.
AAE523.19	Significance of differential gear box in an automobile while taking turn on the road.
AAE523.20	Enable the students to understand the importance of theory of machines for lifelong learning, Higher Education and competitive exams.

TUTORIAL QUESTION BANK

	UNIT – I				
	MECHANISMS				
	Part - A (Short Answer Que	stions)		-	
S. No	QUESTIONS	Blooms	Course	Course	
		Taxonomy	Outcomes	Learning	
		Level	(COs)	Outcomes	
				(CLOs)	
1	Define link.	Remember	CO 1	AAE523.01	
2	Define mechanism.	Remember	CO 1	AAE523.02	
3	Explain the quick return motion mechanism of crank	Remember	CO 1	AAE523.02	
	and slotted lever.				
4	Explain the whit-worth quick return motion	Remember	CO 1	AAE523.03	
	mechanism.				
5	Define machine and structure.	Remember	CO 1	AAE523.03	
6	Define inversion of a mechanism.	Remember	CO 1	AAE523.03	
7	Explain Grubler's criterion.	Remember	CO 1	AAE523.03	
8	Explain the degrees of freedom of a mechanism.	Understand	CO 1	AAE523.03	
9	List the types of kinematic pairs.	Understand	CO 1	AAE523.03	
10	Define the types of links with examples.	Remember	CO 1	AAE523.01	
11	What is Grashof's linkage?	Remember	CO 1	AAE523.03	
12	Double crank mechanism in a parallelogram linkage.	Understand	CO 1	AAE523.02	
	Justify your answer with neat diagram				
13	Give the classification of kinematic links	Understand	CO 1	AAE523.03	
14	Differentiate between Mechanism and machine	Understand	CO 1	AAE523.03	

15	Derive Grublers criterion for the constrained motion	Understand		AAE523.02
15	of a planar mechanism with lower pairs.	onderstand		11111525.02
16	Determine the degrees of freedom of linkage shown in	Understand	CO 1	AAE523.02
	figure 1 and figure 2.			
	\sim \rightarrow \rightarrow			
	(fig1)			
17	(fig 1) (fig 2) (fig 2) Determine the degrees of freedom of linkage shown in	Understand	CO 1	AAE523.03
17	figure 3 and figure 4.	Understand	01	AAE525.05
	4 4 4			
	3/ ¥			
	2 2			
	(fig3) / (fig4)			
10			GO 1	4 4 5 5 2 2
18	Determine the degrees of freedom of linkage shown in	Understand	CO 1	AAE523.03
19	figure 4. Justify your answer for 1 spring pair =2 binary pairs	Remember	CO 1	AAE523.03
20	"Slider crank mechanism is an extension of four bar	Remember	CO 1	AAE523.02
	mechanism". Justify			
	Part - B (Long Answer Que			
1	a) Define link and kinematic pair.	Understand	CO 1	AAE523.01
	b) Enumerate the inversions of double slider crank chain			
2	a) Define machine and mechanism.	Understand	CO 1	AAE523.02
Z	b) Enumerate the inversions of single slider crank chain	Understand	01	AAE525.02
	mechanism			
3	a) Explain the quick return motion mechanism of crank	Understand	CO 1	AAE523.02
	and slotted lever.			
	b) The length of the fixed link in a crank and slotted			
	lever quick return mechanism is 300 mm and crank is			
	110 mm. Determine the inclination of the slotted lever with the vertical in the extreme position.			
4	a) Identify the difference between a machine and a	Remember	CO 1	AAE523.02
	structure.	Remember	001	11111525.02
	b) Classify kinematic pairs.			
5	a) Explain the Whitworth quick return motion	Remember	CO 1	AAE523.03
	mechanism.			
	b) In a Whitworth quick return motion mechanism, the			
	distance between the fixed centers is 50 mm and the length of the driving crank is 75 mm. The length of the			
	slotted lever is 150 mm and the length of the connecting			
	rod is 135 mm. Find the ratio of time of cutting and			
	return strokes and also the effective stroke.			
6	a) Define machine and structure.	Remember	CO 1	AAE523.03
	b) Explain different types of constrained motions.	The device 1	CO 1	A A E 500.00
7	a) Explain the function of Oldham's coupling.b) Prove that the elliptical trammel describes an ellipse.	Understand	CO 1	AAE523.03
8	a) Define inversion of a mechanism?	Understand	CO 1	AAE523.03
5	b) Explain the inversions of a quadric cycle chain?	Jinderbuild	201	11112020.00
9	a) Explain Grubler's criterion.	Understand	CO 1	AAE523.04
	b) Identify the degrees of freedom for four bar			
	mechanism, slider crank mechanism and five bar			
10	mechanism.		CO 1	
10	a) What is meant by degrees of freedom of a mechanism?	Understand	CO 1	AAE523.04
	b) Explain the applications of Kutzback criterion to			
	plane mechanisms.			
11	A crank and slotted lever mechanism used in a shaper	Remember	CO 1	AAE523.03

	centers is 100mm. The line of stroke of the ram passes			
-	driving crank 150mm long. The distance between fixed			
1	The Whitworth quick return motion mechanism has the	Understand	CO 1	AAE523.03
	Part - C (Problem Solving and Critical T			
20	Explain the whit-worth quick return motion mechanism.	Understand	CO 1	AAE523.03
19	Explain the quick return motion mechanism of crank and slotted lever.	Understand	CO 1	AAE523.03
	number li lz ls la 1 5 4 3.6 2.2 2 3 8.1 5.4 9 3 1 4.9 3 3.9 4 2.2 17 4.6 4			
	Mechanism AD (cm) DC CB AB			
	mechanism.			
18	A Four bar mechanism shown in fig foe each set of link proportions in the table below. Determine the mechanism described and draw the inversions of each	Understand	CO 1	AAE523.03
	following particulars: Length of stroke = 150 mm; Driving crank length = 40 mm; Time of cutting stroke= 2Time of return stroke. Find the lengths of connecting rod and slotted lever.			
17	mm and the length of the slotted lever is 500mm. Find the ratio of the times taken on the cutting and idle strokes. Determine the effective stroke also. A Whitworth quick return motion mechanism has the	Remember	CO 1	AAE523.03
16	In a crank and slotted lever quick return mechanism, the driving crank length is 30 mm and inclines at 30^0 to the vertical. The distance between the fixed centre's is 200	Remember	CO 1	AAE523.03
	the ram. The line of stroke of R is perpendicular to OC and intersects OC produced at a point 150 mm from C. Determine the ratio of times taken on the cutting and return strokes.			
	and C is 200 mm. The driving crank CP is 75 mm long. The pin Q on the slotted lever, 360 mm from the fulcrum O, is connected by a link QR 100 mm long, to a pin R on			
15	driving crank is 75 mm long. Determine the ratio of the time taken on the cutting and return Strokes In a crank and slotted lever quick return motion mechanism, the distance between the fixed centre's O	Remember	CO 1	AAE523.03
14	time taken on the cutting and return Strokes In a crank and slotted lever quick return mechanism, the distance between the fixed centers is 150 mm and the	Understand	CO 1	AAE523.03
13	In a crank and slotted lever quick return mechanism, the distance between the fixed centers is 150 mm and the driving crank is 75 mm long. Determine the ratio of the	Understand	CO 1	AAE523.03
	driving crank 150 mm long. The distance between fixed centre's is 100 mm. The line of stroke of the ram passes through the centre of rotation of the slotted lever whose free end is connected to the ram by a connecting link. Find the ratio of time of cutting to time of return.			
12	has a centre distance of 300 mm between the centre of oscillation of the slotted lever and the centre of rotation of the crank. The radius of the crank is 120mm. Find the ratio of the time of cutting to the time of return stroke. The Whitworth quick return motion mechanism has the	Remember	CO 1	AAE523.03

				-
	through the center of rotation of the slotted lever whose			
	free end is connected to the ram. Find the ratio of the			
	time of cutting to the time of return.			
2	In the crank and slotted lever quick return mechanism,	Understand	CO 1	AAE523.02
	the distance between the fixed centers is 150 mm and			
	the driving crank is 75mm long. Find the ratio of the			
	time of cutting to the time of return.			
3	Sketch and explain any two inversions of a double slider	Remember	CO 1	AAE523.03
	crank chain.			
4	What is the difference between Whitworth quick return	Remember	CO 1	AAE523.01
	motion mechanism and Crank and Slotted lever			
	mechanism?			
5	Sketch and explain the various inversions of a four bar	Remember	CO 1	AAE523.02
	chain.			
6	a) Explain Grubler's criterion.	Understand	CO 1	AAE523.03
	b) Identify the degrees of freedom for four bar			
	mechanism, slider crank mechanism and five bar			
	mechanism.			
7	A crank and slotted lever mechanism used in a shaper	Understand	CO 1	AAE523.02
	has a centre distance of 300 mm between the centre of			
	oscillation of the slotted lever and the centre of rotation			
	of the crank. The radius of the crank is 120mm. Find the			
	ratio of the time of cutting to the time of return stroke.			
8	A Whitworth quick return motion mechanism, has the	Remember	CO 1	AAE523.03
	following particulars: Length of stroke = 150 mm ;			
	Driving crank length = 40 mm; Time of cutting stroke=			
	2Time of return stroke. Find the lengths of connecting			
	rod and slotted lever.			
9	In a crank and slotted lever quick return mechanism, the	Remember	CO 1	AAE523.01
	distance between the fixed centers is 150 mm and the			
	driving crank is 75 mm long. Determine the ratio of the			
10	time taken on the cutting and return Strokes		<u> </u>	4 4 15 5 2 2 . 0 2
10	a) Explain the function of Oldham's coupling.	Remember	CO 1	AAE523.02
	b) Prove that the elliptical trammel describes an ellipse.			
	UNIT-II KINEMATICS, PLANE MOTION OF BODY, AN	NAT VEIS OF M		IS
	Part – A (Short Answer Qu		IECHANISI.	15
1	Define Instantaneous centre.	Remember	CO 2	AAE523.05
2	State and explain the Kennedy's theorem.	Remember	CO 2 CO 2	AAE523.08
3	Explain Klien's construction for determining	Remember	CO 2	AAE523.06
3	acceleration of slider.	Keinennbei	02	AAE323.00
4	Define axode.	Understand	CO 2	AAE523.08
5	What is acceleration image?	Understand	CO 2 CO 2	AAE523.06
6	Define relative velocity.	Understand	CO 2 CO 2	AAE523.06
7		Understand	CO 2 CO 2	
	Define instantaneous axis. Define body centrode.		CO 2 CO 2	AAE523.07
8	· · · · · ·	Understand		AAE523.08
9	Define space centrode.	Understand	CO 2	AAE523.07
10		Domomhor	CO^{2}	A A L'5/1/2 ()4
10	Define Coriolis component of acceleration.	Remember	CO 2	AAE523.06
11	Define Coriolis component of acceleration. Define rubbing velocity.	Remember	CO 2	AAE523.07
11 12	Define Coriolis component of acceleration. Define rubbing velocity. Define sliding velocity.	Remember Remember	CO 2 CO 2	AAE523.07 AAE523.07
11 12 13	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.	Remember Remember Remember	CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.08
11 12 13 14	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.	Remember Remember Remember Understand	CO 2 CO 2 CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.08 AAE523.07
11 12 13	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.What is the formulation to calculate the no of	Remember Remember Remember	CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.08
11 12 13 14 15	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.What is the formulation to calculate the no of instantaneous centers are in a mechanism?	Remember Remember Understand Understand	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.08 AAE523.07 AAE523.07 AAE523.07
11 12 13 14	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.What is the formulation to calculate the no of instantaneous centers are in a mechanism?What is the expression for radial and tangential	Remember Remember Remember Understand	CO 2 CO 2 CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.08 AAE523.07
11 12 13 14 15 16	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.What is the formulation to calculate the no of instantaneous centers are in a mechanism?What is the expression for radial and tangential component of acceleration?	Remember Remember Understand Understand Understand	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.07 AAE523.08 AAE523.07 AAE523.07 AAE523.07 AAE523.07
11 12 13 14 15	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.What is the formulation to calculate the no of instantaneous centers are in a mechanism?What is the expression for radial and tangential component of acceleration?How will you determine the magnitude of Coriolis	Remember Remember Understand Understand	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.07 AAE523.08 AAE523.07 AAE523.07 AAE523.07
11 12 13 14 15 16	Define Coriolis component of acceleration.Define rubbing velocity.Define sliding velocity.Illustrate the space centrode and body centrode.List the various types of instantaneous centers.What is the formulation to calculate the no of instantaneous centers are in a mechanism?What is the expression for radial and tangential component of acceleration?	Remember Remember Understand Understand Understand	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AAE523.07 AAE523.07 AAE523.07 AAE523.08 AAE523.07 AAE523.07 AAE523.07 AAE523.07

	component of acceleration			
19	State the properties of instantaneous centre method	Remember	CO 2	AAE523.07
20	What is velocity Image?	Understand	CO 2	AAE523.06
	Part - B (Long Answer Qu			-
1	a) Mention different types of instantaneous centers.	Remember	CO 2	AAE523.07
	b) Locate the instantaneous centers for crank and			
2	slotted lever quick return mechanism? a)Define Instantaneous center.	Remember	CO 2	AAE523.07
2	b) Locate all the Instantaneous centers of slider crank	Remember	002	AAL525.07
	mechanism with crank length of 25mm rotating			
	clockwise at a uniform speed of 100rpm. The crank			
	makes 45 [°] with IDC and the connecting rod is 400mm			
	long. Determine the velocity of the slider and the			
3	angular velocity of connecting rod? a) State and explain the Kennedy's theorem.	Understand	CO 2	AAE523.08
5	b) In a slider crank mechanism, the crank OA makes	Understand	02	AAE525.08
	400 rpm in the counter clockwise direction which is			
	60° from IDC. The lengths of the links are OA= 60			
	mm, OB= 220 mm and BA= 280 mm. Determine the			
	velocity and acceleration of the slider B?		~~ •	
4	a) Explain Klien's construction for determining	Remember	CO 2	AAE523.08
	velocity and acceleration of slider crank mechanism. b) Explain the method of determining the Coriolis			
	component of acceleration in crank and slotted lever			
	quick return mechanism?			
5	Determine the velocity and acceleration of the link QR	Remember	CO 2	AAE523.06
	and RS in a four bar mechanism in which PQRS is a			
	four bar mechanism with fixed link PS. Crank PQ			
	rotates uniformly and makes an angle of 60° with PS in anti-clockwise direction. The length of the links are			
	PQ=62.5mm, $QR=175mm$, $RS=112.5mm$ and $PS=$			
	200mm. Crank PQ rotates at 10 radians/ second?			
6	a) Define centrode and axode.	Understand	CO 2	AAE523.06
	b) Derive the analytical method of determination of			
	velocity and acceleration for a slider crank mechanism?			
7	a) Explain how the acceleration of a point in a link is	Remember	CO 2	AAE523.06
,	determined when the acceleration of some other point	Remember	002	11111525.00
	on the same link is given in magnitude and direction.			
	b) Draw the acceleration diagram of a slider crank			
	mechanism.		~~ •	
8	a) What is acceleration image?	Remember	CO 2	AAE523.06
	b) Draw and explain the velocity diagram of Whitworth quick return mechanism by assuming			
	suitable proportions.			
9	Derive an expression for the magnitude of Coriolis	Understand	CO 2	AAE523.07
	component of acceleration.			
10	a) What is the practical significance of evaluating	Understand	CO 2	AAE523.06
	velocity and acceleration of members of a mechanism?			
	b) Assuming suitable proportions determine the			
	velocity and acceleration of a slider in Toggle mechanism.			
11	The Crank of a slider crank mechanisms rotates	Understand	CO 2	AAE523.06
	clockwise at a Constant speed of 600 r.p.m. The crank			
	is 125 mm and connecting rod is 500 mm long.			
	Determine 1. Linear velocity and acceleration of the			
	mid Point of the connecting rod, and 2. Angular			
	velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead			
	centre position.			
	I A			1

			~~ •	
12	In a four link mechanism, the dimensions of the links are AB=200 mm, BC=400mm, CD=450 mm and AD=600mm. At the instant when DAB=90°, the link AB has angular velocity of 36 rad/s in the clockwise direction. Determine (i) The velocity of point C, (ii) The velocity of point E on the link BC When BE =200 mm (iii) the angular velocities of links BC and CD, iv) acceleration of link of link BC.	Remember	CO 2	AAE523.06
13	The dimensions of the various links of a mechanism, are as follows: OA=300 mm; AB=1200; BC=450 mm and CO=450 mm. if the crank OA rotates at 20 r.p.m. in the anticlockwise direction and gives motion to the mechanism, find, for given configuration: (1) Velocity of A and B (2) Angular velocity of AB (3) Linear acceleration of B.	Remember	CO 2	AAE523.06
14	a) Derive the expressions for Velocity and acceleration of piston in reciprocating steam engine mechanism with neat sketchb) Derive the expression for Coriolis component of acceleration with neat sketch.	Understand	CO 2	AAE523.06
15	In a slider crank mechanism, the length of the crank and the connecting rod are 100 mm and 400 mm respectively. The crank position is 45° from IDC; the crank shaft speed is 600 r.p.m. clockwise. Using analytical method Determine (1) Velocity and acceleration of the slider, and (2) Angular velocity and angular acceleration of the connecting rod.	Remember	CO 2	AAE523.06
16	Locate all instantaneous centers of the slider crank mechanism; the length of crank OB and Connecting rod AB are 125 mm and 500 mm respectively. The crank speed is 600 rpm clockwise. When the crank has turned 45° from the IDC. Determine (i) velocity of. Slider' A' (ii) Angular Velocity of connecting rod 'AB'.	Remember	CO 2	AAE523.06
17	In the mechanism shown in figure, the crank OA rotates at 20rpm anticlockwise and gives motion of sliding blocks B and D. The dimensions of various links are OA = 300mm, AB = 1200mm, BC = 450mm and CD = 450 mm. For the given configuration determine i) velocities of sliding at B and D, ii) angular velocity of CD iii) Linear acceleration of D and iv) angular acceleration of CD.	Understand	CO 2	AAE523.06
18	The crank and connecting rod of a theoretical steam engine are 0.5 m and2m long respectively. The crank makes 180 rpm in the clockwise direction. When it has turned 450 from the inner dead centre position, determine: a) Velocity of piston b) Angular velocity of connecting rod. C) Velocity of point E on the connecting rod 1.5m from the gudgeon pin. D) Velocity of rubbing at the pins of the crank shaft, crank and crank cross head when the diameters of their pins are 50mm and 60mm and 30mm respectively.	Remember	CO 2	AAE523.07

19	A four-bar mechanism has the following link length in mm. Input, A0A= 25, AB = 70, output $B_0B = 45$ and frame $A_0B_0 = 60$. Coupler point A is above and B is below the horizontal frame link A_0B_0 , respectively. When the input link is in an angular position of 105° counter clockwise from the frame link, draw the four bar mechanism and locate all the instantaneous centers. If the input link rotates with a constant angular velocity of 2.5 rad/sec clockwise, determine the linear velocity of B of the output link and the angular velocity of the output link.	Understand	CO 2	AAE523.07
20	In a steam engine mechanism shown in figure a) the crank AB rotates at200 rpm. The dimensions of various links are AB = 12cm, BC = 48cm, CD = 18cm and DE =36cm, EF = 12 cm and FP = 36cm. Find the velocities of C,D,E,F and P. 36cm F $12cm$ B $AB = 12cm$ $AB = 12c$	Remember	CO 2	AAE523.07
	Part - C (Problem Solving and Critical	I Thinking Que	estions)	
1	Locate all instantaneous centers of the slider crank mechanism; the length of crank OB and Connecting rod AB are 125 mm and 500 mm respectively. The crank speed is 600 rpm clockwise. When the crank has turned 45° from the IDC. Determine (i) velocity of. slider' A' (ii)Angular Velocity of connecting rod 'AB	Remember	CO 2	AAE523.0
2	Explain the procedure to determine the velocity and acceleration of a slider crank mechanism by Klein's construction.	Remember	CO 2	AAE523.0
3	Sketch and explain whit worth quick return motion mechanism	Remember	CO 2	AAE523.0
4	A four-bar mechanism has the following link length in mm. Input, $A_0A=25$, $AB=60$, output $B_0B=45$ and frame $A_0B_0 = 45$. Coupler point A is above and B is below the horizontal frame link A_0B_0 , respectively. When the input link is in an angular position of 105^0 counter clockwise from the frame link, draw the four bar mechanism and locate all the instantaneous centers. If the input link rotates with a constant angular velocity of 3 rad/sec clockwise, determine the linear velocity of B of the output link and the angular velocity of the output link.	Understand	CO 2	AAE523.0
5	Derive the expression for Coriolis component of acceleration with neat sketch.	Understand	CO 2	AAE523.0
6	Locate all instantaneous centers of the slider crank mechanism; the length of crank OB and Connecting rod AB are 125 mm and 500 mm respectively. The crank speed is 600 rpm clockwise. When the crank has turned 45° from the IDC. Determine (i) velocity of. slider' A' (ii)Angular Velocity of connecting rod 'AB'.	Understand	CO 2	AAE523.0
7	a) Derive the expressions for Velocity and acceleration of piston in reciprocating steam engine mechanism with neat sketchb) Derive the expression for Coriolis component of acceleration with neat sketch.	Understand	CO 2	AAE523.0

r				
8	The dimensions of the various links of a mechanism,	Remember	CO 2	AAE523.0
	are as follows: OA=300 mm; AB=1200; BC=450 mm			
	and CO=450 mm. if the crank OA rotates at 20 r.p.m. in the anticlockwise direction and gives motion to the			
	mechanism, find, for given configuration: (1) Velocity			
	of A and B (2) Angular velocity of AB (3) Linear			
	acceleration of B.			
9	In a four link mechanism, the dimensions of the links	Remember	CO 2	AAE523.0
	are AB=200 mm, BC=400mm, CD=450 mm and			
	AD=600mm. At the instant when DAB=90°, the link AB has angular velocity of 36 rad/s in the			
	clockwise direction. Determine (i) The velocity of			
	point C, (ii) The velocity of point E on the link BC			
	When BE =200 mm (iii) the angular velocities of links			
	BC and CD, iv) acceleration of link of link BC.			
10	a) Explain Klien's construction for determining	Remember	CO 2	AAE523.0
	velocity and acceleration of slider crank mechanism.			
	b) Explain the method of determining the Coriolis			
	component of acceleration in crank and slotted lever quick return mechanism?			
	UNIT – III			
	STRAIGHT LINE MOTION MECHANISMS, STEE	CRING GEARS,	HOOKE'S J	JOINT
	Part - A (Short Answer Qu	uestions)		-
1	What are straight line mechanisms?	Understand	CO 3	AAE523.10
2	What is Pantograph?	Understand	CO 3	AAE523.10
3	What is Ackerman steering gear mechanism	Remember	CO 3	AAE523.11
4	What is a Hooke's joint?	Remember	CO 3	AAE523.13
5	What is a Double Hooke's joint.	Remember	CO 3	AAE523.13
6	What is Davi's steering gear mechanism?	Remember	CO 3	AAE523.11
7	What are the applications of Hooke's joint.	Understand	CO 3	AAE523.10
8	List the exact straight line mechanisms.	Understand	CO 3	AAE523.10
9	List the approximate straight line mechanisms.	Understand	CO 3	AAE523.10
10	What is copied straight line mechanism	Understand	CO 3	AAE523.10
11	What is the use of pantograph?	Understand	CO 3	AAE523.10
12	Sketch the Harts mechanism.	Understand	CO 3	AAE523.11
13	Sketch the Peaucellier mechanism.	Understand	CO 3	AAE523.11
14	Sketch the Roberts mechanism.	Remember	CO 3	AAE523.11
15	Sketch the Scott Russell mechanism.	Remember	CO 3	AAE523.11
16	Sketch the grass hoper mechanism.	Remember	CO 3	AAE523.11
17	Sketch the Tchebecheffs mechanism.	Understand	CO 3	AAE523.11
18	Sketch the Watt mechanism.	Understand	CO 3	AAE523.11
19	Give the ratios of links for Tchebecheffs mechanism.	Understand	CO 3	AAE523.11
20	Give the ratios of links for Grasshoper mechanism.	Understand	CO 3	AAE523.11
	Part - B (Long Answer Qu			
1	a) What are straight line mechanisms?	Remember	CO 3	AAE523.10
	b) Describe any one mechanism having all turning			
~	pairs that generate an exact straight line?		<u> </u>	
2	a) Explain the Peaucellier straight line mechanism.	Remember	CO 3	AAE523.10
3	b) Explain the principle of generation of straight line.a) What is an approximate straight line mechanism?	Remember	CO 3	AAE523.10
3	b) Explain a mechanism which consists of a sliding	Kennennber	005	AAE525.10
	pair.			
4	a) What is an exact straight line mechanism?	Remember	CO 3	AAE523.10
•	b) Explain an exact straight line mechanism?			
5	a) Describe the Watt's parallel mechanism for straight	Understand	CO 3	AAE523.11
	line motion.			
	b) Derive the condition for generating a straight line in			
	Watt's mechanism?	1		

6	a) What is a Pantograph? What is its use?	Understand	CO 3	AAE523.10
	b) Explain Scot Russel mechanism with a neat sketch,			
7	Show that it generates a straight line? a) Differentiate between Davi's and Ackerman steering	Understand	CO 3	AAE523.10
,	gears.	Chiderstand	005	11111525.10
	b) In a Davi's steering gear, the distance between the			
	pivots of the front axle is 1 meter and the wheel base is			
	2.5 meters. Find the inclination of the track arm to the			
	longitudinal axis of the car when it is moving along a straight path?			
8	a) What is the condition for correct steering?	Understand	CO 3	AAE523.11
0	b) Explain the Ackerman's steering gear mechanism.			AAE525.11
9	a) What is a Hooke's joint? What are its applications?	Understand	CO 3	AAE523.11
	b) A Hooke's joint connects two shafts whose axes intersect at 1500.Thedriving shaft rotates uniformly at			
	120 rpm. The driven shaft operates against a steady			
	torque of 150NM. And carries a flywheel whose mass			
	is 45 kg and radius of gyration 150 mm. Find the			
	maximum torque which will be exerted by the driving shaft.			
10	a) What is a Double Hooke's joint?	Understand	CO 3	AAE523.13
	b) Derive an expression for the ratio of shaft velocities		-	
	in a Hooke's joint.			
11	Explain Scott Russel mechanism with a neat	Understand	CO 3	AAE523.13
	sketch, Show that it generates a straight line?			
12	Differentiate between Davi's and Ackerman steering gears	Understand	CO 3	AAE523.11
13	In a Davi's steering gear, the distance between the pivots of the front axle is 1 meter and the wheel base is	Remember	CO 3	AAE523.12
	2.5 meters. Find the inclination of the track arm to the			
	longitudinal axis of the car when it is moving along a			
14	straight path? What is the condition for correct steering?	Remember	CO 3	AAE523.12
14	What is the condition for correct steering?Explain the Ackerman's steering gear mechanism.	Remember	CO 3	AAE523.12 AAE523.12
16	What is a Hooke's joint? What are its applications?	Remember	CO 3	AAE523.12
17	A Hooke's joint connects two shafts whose axes	Understand	CO 3	AAE523.13
- /	intersect at 1500. The driving shaft rotates uniformly at	Chieffeand	000	1112020110
	120 rpm. The driven shaft operates against a steady torque of 150NM. And carries a flywheel whose mass			
	is45 kg and radius of gyration 150 mm. Find the			
	maximum torque which will be exerted by the driving			
10	shaft. What is a Double Heeke's joint?	I In danata a d	CO 2	A A E 500 10
18	What is a Double Hooke's joint?	Understand Understand	CO 3 CO 3	AAE523.13 AAE523.13
10	Derive an expression for the ratio of shaft valocities in			AAE323.13
19	Derive an expression for the ratio of shaft velocities in a Hooke's joint.	Understand	000	
19 20		Understand	CO 3	AAE523.12
	a Hooke's joint.	Understand	CO 3	-
	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance	Understand	CO 3	AAE523.12 AAE523.11
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the	Understand Thinking Quest	CO 3	-
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the	Understand Thinking Quest	CO 3	-
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2	Understand Thinking Quest	CO 3	-
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the	Understand Thinking Quest	CO 3	-
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the front and the rear wheels. Also find the inclination of	Understand Thinking Quest	CO 3	-
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the front and the rear wheels. Also find the inclination of the track arms to the longitudinal axis of the vehicle The distance between the steering pivots of a Davi's	Understand Thinking Quest	CO 3	-
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the front and the rear wheels. Also find the inclination of the track arms to the longitudinal axis of the vehicle The distance between the steering pivots of a Davi's steering gear is 1.3 m. The wheel base is 2.75 m. what	Understand Thinking Quest Remember	CO 3 ions) CO 3	AAE523.11
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the front and the rear wheels. Also find the inclination of the track arms to the longitudinal axis of the vehicle The distance between the steering pivots of a Davi's steering gear is 1.3 m. The wheel base is 2.75 m. what will be the inclination of the track arms to the	Understand Thinking Quest Remember	CO 3 ions) CO 3	AAE523.11
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the front and the rear wheels. Also find the inclination of the track arms to the longitudinal axis of the vehicle The distance between the steering pivots of a Davi's steering gear is 1.3 m. The wheel base is 2.75 m. what will be the inclination of the track arms to the longitudinal axis of the vehicle moving in a straight path.	Understand Thinking Quest Remember Understand	CO 3 ions) CO 3 CO 3	AAE523.11 AAE523.11
20	a Hooke's joint. Explain the Davis's steering gear mechanism. Part - C (Problem Solving and Critical The track arm of a Davis steering gear is at a distance of 185 mm from the front main axle whereas the difference between their lengths is 90 mm. If the distance between steering pivots of the main axle is 1.2 m, determine the length of the chassis between the front and the rear wheels. Also find the inclination of the track arms to the longitudinal axis of the vehicle The distance between the steering pivots of a Davi's steering gear is 1.3 m. The wheel base is 2.75 m. what will be the inclination of the track arms to the longitudinal axis of the vehicle moving in a straight	Understand Thinking Quest Remember	CO 3 ions) CO 3	AAE523.11

4			<i>~~</i>	
	The driving shaft of a double Hook's joint rotates at 400 rpm. The angle of driving and driven shaft with	Remember	CO 3	AAE523.12
	intermediate shaft is 20° . Determine the maximum and			
	minimum velocities of the driven shaft.			
5	A hooks joint connects two shafts whose axes intersect	Understand	CO 3	AAE523.13
	at 25° . What will be the angle turned by the driven			
	shaft when the velocity ratio is maximum, minimum			
	and unity.			
6	In a Davi's steering gear, the distance between the	Understand	CO 3	AAE523.11
	pivots of the front axle is 1 meter and the wheel base is			
	2.5 meters. Find the inclination of the track arm to the			
	longitudinal axis of the car when it is moving along a			
_	straight path?			
7	A Hooke's joint connects two shafts whose axes	Understand	CO 3	AAE523.11
	intersect at 1500.Thedriving shaft rotates uniformly at 120 rpm. The driven shaft operates against a steady			
	torque of 150NM. And carries a flywheel whose mass			
	is45 kg and radius of gyration 150 mm. Find the			
	maximum torque which will be exerted by the driving			
	shaft.			
8	a) Describe the Watt's parallel mechanism for straight	Remember	CO 3	AAE523.12
	line motion.			
	b) Derive the condition for generating a straight line in			
0	Watt's mechanism?	Damanahan	CO 2	A A E 502 10
9	a) Differentiate between Davi's and Ackerman steering	Remember	CO 3	AAE523.12
	gears. b) In a Davi's steering gear, the distance between the			
	pivots of the front axle is 1 meter and the wheel base is			
	2.5 meters. Find the inclination of the track arm to the			
	longitudinal axis of the car when it is moving along a			
	straight path?			
10	a) Describe the Watt's parallel mechanism for straight	Remember	CO 3	AAE523.13
10			000	
10	line motion.		000	
10	line motion. b) Derive the condition for generating a straight line in			
10	line motion.b) Derive the condition for generating a straight line in Watt's mechanism?			
10	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV	DF FOLLOWER		
10	line motion.b) Derive the condition for generating a straight line in Watt's mechanism?			
10	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION C			AAE523.14
	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION C Part - A (Short Answer Qu Define cam. Define angle of action.	uestions)	RS	AAE523.14 AAE523.14
1	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam.	restions) Remember	co 4	
<u> </u>	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the	Remember Remember	CO 4 CO 4	AAE523.14
1 2 3	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM.	Remember Remember Remember Remember Remember Remember	CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.14
1 2 3 4	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower	Remember Remember Remember Remember Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.14 AAE523.14
1 2 3 4 5 6 7	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams	Remember Remember Remember Remember Remember Remember Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14
1 2 3 4 5 6 7 8	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the follower types	Remember Remember Remember Remember Remember Remember Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14
1 2 3 4 5 6 7 8 9	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION C Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the follower types Define angle of dwell in cams.	Remember Remember Remember Remember Remember Remember Understand Understand Understand	S C O 4 C O 4 	AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14 AAE523.14
1 2 3 4 5 6 7 8 9 10	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams.	Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14
1 2 3 4 5 6 7 8 9 10 11	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION O Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams. What is meant by angle of ascend?	Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.15 AAE523.15
1 2 3 4 5 6 7 8 9 10 11 12	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION OF Part - A (Short Answer Que Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams. What is meant by angle of ascend? What is meant by angle of descend?	Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.15 AAE523.15 AAE523.15
1 2 3 4 5 6 7 8 9 10 11 12 13	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION OF Part - A (Short Answer Que Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams. What is meant by angle of ascend? What is the application of cam?	Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand Understand Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15
1 2 3 4 5 6 7 8 9 10 11 12 13 14	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION C Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams. What is meant by angle of ascend? What is the application of cam? What is meant by angle of action?	lestions) Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand Understand Understand Understand Understand Remember Remember Understand Understand Remember Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION OF Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams. What is meant by angle of ascend? What is meant by angle of descend? What is meant by angle of action? What is meant by angle of action? What is dwell?	lestions) Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand Understand Understand Understand Understand Remember Remember </td <td>CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4</td> <td>AAE523.14 AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15</td>	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15
1 2 3 4 5 6 7 8 9 10 11 12 13 14	line motion. b) Derive the condition for generating a straight line in Watt's mechanism? UNIT – IV CAMS, ANALYSIS OF MOTION C Part - A (Short Answer Qu Define cam. Define angle of action. Explain with the help of displacement diagrams the UARM. What are the uses of cams and followers? What is a tangent cam Define follower Classify the cams Classify the cams Classify the follower types Define angle of dwell in cams. Define pressure angle in cams. What is meant by angle of ascend? What is the application of cam? What is meant by angle of action?	lestions) Remember Remember Remember Remember Remember Remember Understand Understand Understand Understand Understand Understand Understand Understand Remember Remember Understand Understand Remember Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAE523.14 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.15 AAE523.14

18	What are the necessary elements of a cam mechanism?	Understand	CO 4	AAE523.14
10	Write the formula for maximum velocity.	Understand	CO 4	AAE523.14
20	What are the classifications of follower according to the motion of the follower?	Understand	CO 4	AAE523.15
	Part - B (Long Answer Qu			
1	a) Define a cam and mention the types?b) What are the various motions possible with cam and follower?	Remember	CO 4	AAE523.14
2	a) Define a follower and mention the types?b) Draw and explain the displacement and velocity diagrams for uniform	Remember	CO 4	AAE523.14
3	 a) Define the following terms as applied to cams with neat sketch: i) Base circle ii) pitch circle iii) pressure angle. b) Draw the profile of a cam with oscillating roller follower for the following motion: Follower to move outwards through an angular displacement of 20⁰ during 120⁰ of cam rotation, follower to dwell for50⁰, follower to return to its initial position during 90⁰ of cam rotation with UARM, follower to dwell for the remaining period. 	Remember	CO 4	AAE523.14
4	 a) Write short notes on cams and followers. b) Draw a cam to raise a valve through a distance of 50 mm in 1/3 of revolution with SHM, keep it fully raised through 1/12 of revolution and lower it with harmonic motion in 1/6 of revolution. The valve remains closed during the rest of the revolution. The diameter of the roller is 20mm and the minimum radius of the cam is 25 mm. The axis of the valve rod passes through the axis of the cam shaft 	Understand	CO 4	AAE523.15
5	 a) Draw and explain the displacement and velocity diagrams for Simple Harmonic motion. b) Lay out the profile of a cam so that the follower is to move outwards through 30 mm during 160° of cam rotation with Uniform velocity and dwell for 30° of cam rotation followed by returning to initial position with Uniform acceleration and retardation during 110° of cam rotation and dwell for the remaining period. The base circle diameter of cam is 28mm and the follower is a knife edge follower. The axis of the follower is offset by 6 mm. 	Remember	CO 4	AAE523.15
6	 a) Define angle of action, angle of dwell and pressure angle in cams. b) Lay out the profile of a cam so that the follower is to move outwards through 30 mm during 180° of cam rotation with SHM and dwell for 20° of cam rotation followed by returning to initial position with Uniform velocity during160° of cam rotation. The base circle diameter of cam is28 mm and the roller diameter is 8 mm. The axis of the follower is offset by 6 mm. 	Remember	CO 4	AAE523.15
7	 a) Explain with the help of displacement, velocity and acceleration diagrams the UARM. b) A cam operating a knife edge follower has the following data: Follower moves outward through 40 mm during 60° of cam rotation with uniform velocity, follower dwells for the next 45°, follower returns to its original position during next 90° with Uniform velocity and dwells for the remaining period. Draw the cam profile. 	Understand	CO 4	AAE523.15
8	a) What are the uses of cams and followers?b) A radial translating flat faced follower has a lift of 30 mm. The rise takes place with SHM during 180°	Remember	CO 4	AAE523.15

	of cam rotation. The return also takes place with			
	SHM during the next 180° of cam rotation. Assume			
	anti clockwise rotation of the cam. Draw the cam			
	profile and determine the maximum velocity and acceleration values when the follower rises and the			
	cam rotates at 50 rpm.			
9	a) Why a roller follower is preferred to a knife edge	Remember	CO 4	AAE523.15
	follower?			
	b)Derive expressions for displacement, velocity and acceleration for a tangent cam operating a radial			
	translating roller follower when the contact is on			
	circular nose.			
10	a) What is a tangent cam?	Understand	CO 4	AAE523.15
	b) Derive an expression for the tangent cam when the follower is contacting the convex flanks.			
11	A cam is to give the following motion to a knife edged	Understand	CO 4	AAE523.15
	follower:			
	(a) Outstroke during 60° of cam rotation			
	(b) Dwell for the next 45° of cam rotation			
	(c) Return stroke during next 90° of cam rotation and(d) Dwell for the remaining of cam rotation			
	The stroke of the follower is 40 mm and the minimum			
	radius of the cam is 50 mm. The follower moves with			
	uniform velocity during both the outstroke and return			
	strokes. Draw the profile of the cam when (i) the axis			
	of the follower passes through the axis of the camshaft, and (ii) the axis of the follower is offset by 20 mm			
	from the axis of the cam shaft.			
12	Draw the profile of a cam operating a Knife-edged	Remember	CO 4	AAE523.15
	follower from the			
	following data: (a) Follower to move outward through 40 mm during 60° of a cam rotation; (b) Follower to			
	dwell for the next 45° (c) Follower to return its original			
	position during next 90° (d)Follower to dwell for the			
	rest of cam rotation. The displacement of the follower			
	is to take place with simple harmonic motion during			
	both the outward and return strokes. The least radius of			
	the cam is 50mm. If the cam rotates at 300 r.p.m., determine the maximum velocity and acceleration of			
	the follower during the outward			
	stroke and return stroke.			
13	A cam, with a minimum radius of 50 mm,	Remember	CO 4	AAE523.15
	rotating clockwise at a uniform speed, is required to			
	given a knife-edged follower the motion as described			
	below: (a) To move outwards through 40 mm during 100° rotation of the cam; (b) to dwell for next 80° (c)			
	To return to its starting position during next 90 $^{\circ}$ and			
	(d) To dwell for the rest period of revolution. Draw the			
	profile of the cam (i) When the line of stroke of the			
	follower passes through the centre of the			
	cam shaft and (ii) When the line of stroke of the			
	follower is to take place with Uniform acceleration and uniform retardation. Determine the maximum			
	velocity and acceleration of the follower when the cam			
	shaft rotates at 900 r.p.m.			
14	Draw the profile of a cam operating a roller	Remember	CO 4	AAE523.15
	reciprocating follower and with the following data: Minimum radius of cam =25 mm; lift=30mm; Roller			
	diameter= 15mm. The cam lifts the follower for 120°			
	with SHM, followed by a dwell period of 30°. Then			
	the follower lowers down during 150° of cam rotation			
	with uniform acceleration and retardation followed by			
	a dwell period. If the cam rotates at a uniform speed of			

	150 RPM. Calculate the maximum velocity and acceleration of follower during the descent period.			
15	It is required to set out the profile of a cam to give the following motion to the reciprocating follower with a flat mushroom contact surface: (i)Follower to have a stroke of 20 mm during 120° of cam rotation, (ii)Follower to dwell for 30° of cam rotation, (iii) Follower to return to its initial position during 120° of cam rotation, (iv) Follower to dwell for remaining 90° of cam rotation. The minimum radius of the cam is 25mm. The out stroke of the follower is performed with SHM and return stroke with equal uniform acceleration and retardation.	Understand	CO 4	AAE523.15
16	A tangent cam to drive a roller follower through a total lift of 12.5 mm for a cam rotation of 75°.The cam speed is 600 rpm. The distance between cam centre and follower centre at full lift is 45 mm and the roller is 20 mm in diameter. Find the cam proportions and plot displacement, velocity and acceleration for one full cycle	Understand	CO 4	AAE523.15
17	Construct a tangent cam and mention the important terminologies on it. Also derive the expression for displacement, velocity, acceleration of a reciprocating roller follower when the roller has contact with the nose	Remember	CO 4	AAE523.15
18	Layout the profile of a cam operating a roller reciprocating follower for the following data. Lift of follower = 30mm; Angle during the follower rise period =120 ⁰ ; angle during the follower after rise = 30^{0} ; angle during the follower return period = 150^{0} . Angle during which follower dwell after return = 60^{0} ; minimum radius of cam = 25 mm; Roller diameter 10mm. The motion of follower is uniform acceleration and deceleration during the rise and return period.	Remember	CO 4	AAE523.15
19	Design a cam to raise a valve with simple harmonic motion through 15mm is 1/3rd of a revolution; keep it fully raised through 1/12th of a revolution and to lower it with SHM in 1/6th of a revolution. The valve remains closed during the rest of the revolution. The diameter of the roller is 20mm and the minimum radius of the cam is 25mm. The axis of the valve rod passes through the axis of the cam shaft. If the cam shaft rotates at uniform speed of 100 rpm; find the maximum velocity and acceleration of the valve during raising and lowering. Also draw the profile of the cam.	Understand	CO 4	AAE523.15
20	a) Classify with neat sketches the cam follower according to their shape, location and motion. State also their advantages, if any, with respect toother followersb) Sketch neatly the displacement, velocity and acceleration curves of a SHM motion of Follower. Why is it superior over other motion curves?	Understand	CO 4	AAE523.15
	Part - C (Problem Solving and Critical			
1	 Draw the profile of a cam operating a Knife-edged follower from the following data: (a) Follower to move outward through 40 mm during 60° of a cam rotation; (b) Follower to dwell for the next 45° (c) Follower to return its original position during next 90° 	Remember	CO 4	AAE523.17

r	(1) Full server (a describe of a server of a server set of a server server set of a server set of a server set of a server set of a server server set of a server set of a server serve			
	(d) Follower to dwell for the rest of cam rotation. The			
	displacement of the follower is to take place with			
	simple harmonic motion during both the outward and			
	return strokes. The least radius of the cam is 50mm. If			
	the cam rotates at 300 r.p.m., determine the maximum			
	velocity and acceleration of the follower during the			
	outward stroke and return stroke.	Damantan	CO 4	A A E 502 16
2	A cam is to give the following motion to a knife edged	Remember	CO 4	AAE523.16
	follower:			
	(a) Outstroke during 60° of cam rotation			
	(b) Dwell for the next 60° of cam rotation			
	(c) Return stroke during next 60° of cam rotation and			
	(d) Dwell for the remaining of cam rotation			
	The stroke of the follower is 80 mm and the minimum			
	radius of the cam is 50 mm. The follower moves with			
	uniform velocity during both the outstroke and return			
	strokes. Draw the profile of the cam when (a) the axis			
	of the follower passes through the axis of the cam			
	shaft, and (b) the axis of the follower is offset by 10			
	mm from the axis of the cam shaft.			
3	Draw the profile of a cam operating a Knife-edged	Understand	CO 4	AAE523.17
-	follower from the			
	following data: (a) Follower to move outward through			
	40 mm during 60° of a cam rotation; (b) Follower to			
	dwell for the next 30° (c) Follower to return its original			
	position during next 90° (d)Follower to dwell for the			
	rest of cam rotation. The displacement of the follower			
	is to take place with simple harmonic motion during			
	both the outward and return strokes. The least radius of			
	the cam is 50mm. If the cam rotates at 500 r.p.m.,			
	determine the maximum velocity and acceleration of			
	the follower during the outward			
4	stroke and return stroke.	TT 1 / 1	00.4	A A E 500 17
4	A cam, with a minimum radius of 35 mm,	Understand	CO 4	AAE523.17
	rotating clockwise at a uniform speed, is required to			
	given a knife-edged follower the motion as described			
	below: (a) To move outwards through 40 mm during			
	90° rotation of the cam; (b) to dwell for next 90° (c) To			
	return to its starting position during next 90 $^{\circ}$ and (d)			
	To dwell for the rest period of revolution. Draw the			
	profile of the cam (i) When the line of stroke of the			
	follower passes through the centre of the			
	cam shaft and (ii) When the line of stroke of the			
	follower is to take place with Uniform acceleration			
	and uniform retardation. Determine the maximum			
	velocity and acceleration of the follower when the cam			
	shaft rotates at 600 r.p.m.			
5	Draw the profile of a cam operating a roller	Remember	CO 4	AAE523.18
	reciprocating follower and with the following data:			
	Minimum radius of cam =25 mm; lift=60mm; Roller			
	diameter= 15mm. The cam lifts the follower for 180°			
	with SHM, followed by a dwell period of 30°. Then			
	the follower lowers down during 120° of cam			
	rotation with uniform acceleration and retardation			
	followed by a dwell period. If the cam rotates at a			
	uniform speed of 150 RPM. Calculate the maximum			
	velocity and acceleration of follower during the			
	descent period.			
6	Layout the profile of a cam operating a roller	Understand	CO 4	AAE523.17
0	reciprocating follower for the following data. Lift of	Chief Stalle	CO 7	1111323.17
	follower = 30mm; Angle during the follower rise			

r				-,
	period $=120^{\circ}$; angle during the follower after rise =			
	30° ; angle during the follower return period = 150° .			
	Angle during which follower dwell after return = 60° ; minimum radius of cam = 25mm; Roller diameter			
	10mm. The motion of follower is uniform acceleration			
	and deceleration during the rise and return period.			
7	A tangent cam to drive a roller follower through a total	Understand	CO 4	AAE523.16
	lift of 12.5 mm for a cam rotation of 75°. The cam			
	speed is 600 rpm. The distance between cam centre			
	and follower centre at full lift is 45 mm and the roller			
	is 20 mm in diameter. Find the cam proportions and			
	plot displacement, velocity and acceleration for one			
8	full cycle a) What is a tangent cam?	Remember	CO 4	AAE523.17
0	b) Derive an expression for the tangent cam when	Kemember	0.4	AALJ23.17
	the follower is contacting the convex flanks.			
9	a) Define a follower and mention the types?	Remember	CO 4	AAE523.17
	b) Draw and explain the displacement and velocity			
	diagrams for uniform			
10	a) Define a follower and mention the types?	Remember	CO 4	AAE523.17
	b) Draw and explain the displacement and velocity diagrams for uniform			
	UNIT – V			
	HIGHER PAIRS, GEAR	FRAINS		
	Part - A (Short Answer Qu			
1	Explain spur gears?	Remember	CO 5	AAE523.16
2	Describe cycloidal gears?	Remember	CO 5	AAE523.16
3	Explain the method of eliminating interference in gears	Remember	CO 5	AAE523.17
4	What is a gear train and list its types?	Remember	CO 5	AAE523.18
5	What is a Differential?	Remember	CO 5	AAE523.16
6	Explain helical gears.	Remember	CO 5	AAE523.16
7	Classify bevel gears?	Understand	CO 5	AAE523.16
8	What is interference?	Understand	CO 5	AAE523.16
9	Mention the involute profiles of gears?	Understand	CO 5	AAE523.17
10	Define pressure angle of gears.	Understand	CO 5	AAE523.17
11	Define addendum and dedendum.	Understand	CO 5	AAE523.17
12	Define circular pitch	Remember	CO 5	AAE523.17
13	Define path of contact.	Remember	CO 5	AAE523.16
14	Define Length of path of contact.	Remember	CO 5	AAE523.17
15	State the law of gearing.	Understand	CO 5	AAE523.17
16	Define angle of approach.	Understand	CO 5	AAE523.17
17	Define contact ratio.	Understand	CO 5	AAE523.17
18	Define helix angle.	Understand	CO 5	AAE523.17
19	Define gear ratio.	Understand	CO 5	AAE523.17
20	Define epicyclic gear train.	Understand	CO 5	AAE523.18
1	Part - B (Long Answer Qu a) Explain spur, helical and bevel gears?	Understand	CO 5	AAE523.17
1	b) Derive an expression for the length of path of	Understählu	005	AAE323.17
	contact.			
2	a) Explain the terms module, pressure angle and	Understand	CO 5	AAE523.17
	addendum in gears.			
	b) Two mating gears have 29 and 40 involute teeth of module 10 mm and 200 measure angles. If the			
	module 10 mm and 20^{0} pressure angles. If the addendum on ach wheel is such that the path of			
	contact is maximum and interference is just avoided			
	find the addendum for each gear wheel, path of			
	contact, arc of contact and contact ratio.		a	
3	a) Explain the terms module, pressure angle and	Remember	CO 5	AAE523.17
	addendum in gears.			

		I		
	b) Two mating gears have 29 and 40 involute teeth of 10^{-10}			
	module 10 mm and 20° pressure angles. If the			
	addendum on ach wheel is such that the path of			
	contact is maximum and interference is just avoided			
	, find the addendum for each gear wheel, path of			
4	contact, arc of contact and contact ratio.	D 1	00 f	A A E 500 17
4	a) Explain the method of eliminating interference in	Remember	CO 5	AAE523.17
	gears.			
	b) A pair of gears having 40 and 20 teeth respectively			
	are rotating in mesh The speed of the smaller is 2000			
	rpm. Determine the velocity of sliding at the point of			
	engagement, at the pitch point and at the point of			
	disengagement. Assume that the gear teeth are200			
	involute, addendum is 5 mm and module is 5 mm.			
5	a) Derive an expression for the length of arc of contact.	Understand	CO 5	AAE523.17
	b) The pitch circle diameter of the smaller of the two			
	gears which mesh externally and have involute teeth is			
	100 mm. The number of teeth is 16 and 32. The			
	pressure angle is 200. The addendum is 0.32 of the			
	circular pitch. Find the length of path of contact of the			
	pair of teeth.			
6	a) Derive an expression for the minimum number of	Remember	CO 5	AAE523.17
0	· · ·	Kennennber	05	AAE323.17
	teeth on pinion to avoid interference.			
	b) The pressure angle of two gears in mesh is 200 and			
	have a module of 10 mm. The number of teeth on			
	pinion are 24 and on gear 60. The addendum of			
	pinion and gear is same and equal to one module.			
	Determine the number of pairs of teeth in contact, the			
	angle of action of pinion and gear, the ratio of sliding			
	to rolling velocity at the beginning of contact, at pitch			
	point and at the end of contact.			
7	a) What is a gear train and what are its types?	Remember	CO 5	AAE523.18
	b) The speed ratio of a reverted gear train is 12. The			
	module pitch of gears A and B which are in mesh is			
	3.125 mm and of gears C and D which are in mesh is			
	2.5 mm. Calculate the suitable number of teeth for the			
	gears. No gear is to have less than 20 teeth. B-C is a			
	compound gear.			
8	a) Explain with a neat sketch the sun and planet wheel.	Understand	CO 5	AAE523.17
-	b) In an epicyclic gear train, an arm carries two gears 1			
	and 2 having 40 and 50 teeth respectively. The arm			
	rotates at 160 rpm counter clockwise about the centre			
	of gear1, which is fixed. Determine the speed of gear2.			
9	a) What is a Differential?	Remember	CO 5	AAE523.18
7	b) An internal wheel B with 80 teeth is keyed to a shaft	Kennennber	05	AAE525.10
	F. A fixed internal wheel C with 82 teeth is concentric			
	with B. A compound wheel D-E gears with two			
	internal wheels. D has 28 teeth and gears with C while			
	E gears with B. The compound wheels revolve freely			
	on a pin which projects from a disc keyed to shaft A			
	coaxial with F. If the wheels have the same pitch and			
	the shaft rotates at 800 rpm what is the speed of the			
	shaft F? Sketch the arrangement.			
10	In an epicyclic gear train, internal gear A is keyed to	Remember	CO 5	AAE523.18
	the driving shaft and has 30 teeth. Compound wheel			
	CD of 20 and 22 teeth respectively are free to rotate on			
	a pin fixed to the arm P which is rigidly connected to			
	the driven shaft. Internal gear B which has 32 teeth is			
	fixed. If the driving shaft runs at 60 rpm clock wise,			
	determine the speed of the driven shaft.			
	accomme une speca or une arriven shart.			1

11		D 1	<u> </u>	4 4 17 5 2 2 1 7
11	In a reverted epicyclic train, the arm F carries two wheels A and D and a compound wheel B-C. Wheel A meshes with wheel B and Wheel D meshes with wheel C. The number of teeth on wheel A, D and C is 80, 48, and 72. Find the speed and direction of wheel D, when	Remember	CO 5	AAE523.17
12	wheel A is fixed and arm F makes 200 rpm clockwise. Two mating spur gear with module pitch of 6.5 mm have 19 ad 47 teeth of 20° pressure angle and 6.5 mm addendum. Determine the number of pair of teeth and angle turned through by the larger wheel for one pair of teeth in contact. Determine also the sliding velocity at the instant (i) engagement commences (ii) engagement terminates. When the pitch line velocity is 1.2 m/s.	Understand	CO 5	AAE523.17
13	The number of teeth on each of the two spur gears in mesh is 40. The teeth have 20° involute profile and the module is 6mm. If the arc of contact is 1.75 times the circular pitch. Find the addendum.	Remember	CO 5	AAE523.17
14	Two 20° involute spur gears have a module of 10 mm. The addendum is one module. The larger gear has 50 teeth and pinions 13 teeth. Does the interference occur? If it occurs, to what value should the pressure angle be changed to eliminate interference?	Remember	CO 5	AAE523.17
15	Two mating involute spur gears 20° pressure angle have a gear ratio of 2. The number of teeth on the pinion is 20 and its speed is 250 rpm. The module pitch of the teeth is 12 mm. if the addendum on each wheel wheel recess on each side are half the maximum possible length each, find (1) the addendum for pinion and gear wheel (2) the length of arc of contact (3 the maximum velocity of sliding during approach and recess. Assume pinion to be driver.	Remember	CO 5	AAE523.17
16	A pair of spur gear with involute teeth is to give a gear ratio of 4:1. The arc of approach is not be less than the circular pitch and the smaller wheel is the driver. The angle of pressure is 14.5 What is the least number of teeth can be used on each wheel? What is the addendum of the wheel in terms of circular pitch	Understand	CO 5	AAE523.17
17	A pair 20° full depth involute spur gear having 30 and 50 teeth respectively module 4 mm arc in mesh, the smaller gear rotates at 1000 rpm. Determine (a) Sliding velocities at engagement and disengagement of a pair of teeth and (b) Contact ratio	Understand	CO 5	AAE523.17
18	In an epicyclic gear train the internal wheels A and B and compound wheels C and D rotate independently about axis O. The wheels E and F rotate on pins fixed to the arm G. E gears with A and C. Wheel F gear with B and D. All the wheels have the same module and the number of teeth is: TC =28 TD=26; TE = TF=18. (1) Sketch the arrangement, (2) Find the number of teeth on A and B, (3)If the arm G makes 100 rpm clockwise and A is fixed, find the speed of B, and (4) If the arm G makes 100 rpm clockwise; Find the speed of wheel B	Understand	CO 5	AAE523.17
19	Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1. The teeth are of involute form; module=6mm, addendum=one module, pressure angle= 20° . The pinion rotates at 90 rpm. Determine (1) the number of teeth on the pinion to avoid interference on it and the corresponding number of	Understand	CO 5	AAE523.17

	teeth on the wheel, (2) The length of path and arc of			
20	contact, (3) the number of pairs of teeth in contact. The arm of an epicyclic gear train rotates at 100 rpm in the anti-clock wise direction. The arm carries two wheels A and B having 36 and 45 teeth respectively.	Understand	CO 5	AAE523.17
	The wheel A is fixed and the arm rotates about the centre of wheel A. Find the speed of wheel B. What will be the speed of B, if the wheel A instead of being			
	fixed, makes 200 rpm (clockwise). Part - C (Problem Solving and Critical	Thinking Ouest	ions)	
1	Draw the profile of a cam operating a roller reciprocating follower and with the following data: Minimum radius of cam =25 mm; lift=30mm; Roller diameter= 15mm. The cam lifts the follower for 120° with SHM, followed by a dwell period of 30° . Then the follower lowers down during 150° of cam rotation with uniform acceleration and retardation followed by a dwell period. If the cam rotates at a uniform speed of 150 RPM. Calculate the maximum velocity and acceleration of follower during the descent period.	Understand	CO 5	AAE523.17
2	In a reverted epicyclic train, the arm F carries two wheels A and D and a compound wheel B-C. Wheel A meshes with wheel B and Wheel D meshes with wheel C. The number of teeth on wheel A, D and C is 80, 48, and 72. Find the speed and direction of wheel D, when wheel A is fixed and arm F makes 200 rpm clockwise	Remember	CO 5	AAE523.18
3	Two Parallel shafts are connected by spur gearing. The distance between the shafts is 600mm. If one shaft runs at 120 rpm and the other at 360 rpm. Find the number of teeth on each wheel, if module is 8 mm. Also determine the exact center distance between the shafts.	Remember	CO 5	AAE523.17
	A compound epicyclic gear is shown in figure. The gears A, D and E are free to rotate on axis P. The compound gears B and C rotate together on the axis Q at the end of arm F. All the gears have equal pitch. The number of external teeth on gears, A B and C are 18, 45 and 21 respectively. The gears D and E are annulus gears. The gear A rotates at 100 rpm in anticlockwise direction and the gear D rotates at 450 rpm clockwise. Find the speed and direction of the arm and the gear E.	Remember	CO 5	AAE523.17
5	A compound train consists of six gears. The number of teeth on the gears are as follows : Gear : A B C D E F No. of teeth: 60 40 50 25 30 24 The gears Band C are on one shaft while the gears D and E are on another shaft. The gear A drives gear B,	Understand	CO 5	AAE523.18

				1 1
	gear C drives gear D and gear E drives gear F. If the			
	gear A transmits 1.5 kW at 100 r.p.m. and the gear			
	train has an efficiency of 80 percent, find the torque on			
	gear F.			
6	Two gear wheels mesh externally and are to give a	Understand	CO 5	AAE523.17
	velocity ratio of 3 to 1. The teeth are of involute form;			
	module=6mm, addendum=one module, pressure			
	angle= 20°. The pinion rotates at 90 rpm. Determine			
	(1) the number of teeth on the pinion to avoid			
	interference on it and the corresponding number of			
	teeth on the wheel, (2) The length of path and arc of			
	contact, (3) the number of pairs of teeth in contact.			
7	A pair 20° full depth involute spur gear having 30	Understand	CO 5	AAE523.18
	and 50 teeth respectively module 4 mm arc in mesh,			
	the smaller gear rotates at 1000 rpm. Determine (a)			
	Sliding velocities at engagement and disengagement of			
	a pair of teeth and (b) Contact ratio			
8	Two 20° involute spur gears have a module of 10 mm.	Remember	CO 5	AAE523.19
	The addendum is one module. The larger gear has 50			
	teeth and pinions 13 teeth. Does the interference			
	occur? If it occurs, to what value should the pressure			
	angle be changed to eliminate interference?			
9	In an epicyclic gear train, internal gear A is keyed to	Remember	CO 5	AAE523.20
	the driving shaft and has 30 teeth. Compound wheel			
	CD of 20 and 22 teeth respectively are free to rotate on			
	a pin fixed to the arm P which is rigidly connected to			
	the driven shaft. Internal gear B which has 32 teeth is			
	fixed. If the driving shaft runs at 60 rpm clock wise,			
	determine the speed of the driven shaft.			
10	a) Explain the terms module, pressure angle and	Remember	CO 5	AAE523.20
	addendum in gears.			
	b) Two mating gears have 29 and 40 involute teeth of			
	module 10 mm and 20 ⁰ pressure angles. If the			
	addendum on ach wheel is such that the path of			
	contact is maximum and interference is just avoided			
	find the addendum for each gear wheel, path of			
	contact, arc of contact and contact ratio.			
·				

Prepared by: Mr. M. Vijay Kumar, Assistant Professor

HOD, AE