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2    ∗ 

UNIT – I 

Panel Methods 
 

In most of these cases the geometry was approximated by flat, zero-thickness surfaces  and for additional 

simplicity the boundary conditions were transferred, too,  these simplified surfaces (e.g., at z = 0). 

The application of numerical techniques allows the treatment of more realistic geometries and the fulfillment of 

the boundary conditions on the actual surface. In this the methodology of some numerical solutions will be 

examined and applied to various problems. The methods presented here are based on the surface distribution of 

singularity elements, which is a logical extension of the analytical methods presented in the earlier chapters. Since 

the solution is now reduced to finding the strength of the singularity elements distributed on the body’s surface 

this approach seems to be more economical, from the computational point of view, than methods that solve for 

the flow field in the whole fluid volume (e.g., finite difference methods). Of course this comparison holds for 

inviscid incompressible flows only, whereas numerical methods such as finite difference methods were 

basically developed to solve the more complex flow fields where compressibility and viscous effects are not 

negligible. 

 

1.1         Basic Formulation 

Consider a body with known boundaries SB , submerged in a potential flow, as shown in Fig. 1.1. The 

flow of interest is in the outer region V where the incompressible, irrotational continuity equation, in the 

body’s frame of reference, in terms of the total potential 8∗ is 

∇ 8  = 0 (1.1) 

Following Green’s identity, as presented in Section 3.2, we can construct the general solution to Eq. 

(1.1) by a sum of source σ and doublet μ distributions placed on the boundary SB  

Here the vector n points in the direction of the potential jump μ, which is normal to SB and positive outside of 

V (Fig. 1.1), and 8∞ is the free-stream potential written as 

8∞ = U∞x + V∞ y + W∞z (1.2) 

This formulation does not uniquely describe a solution since a large number of source and doublet 

distributions will satisfy a given set of boundary conditions. Therefore, a choice has to be made in order to 

select the desirable combination. 

 

Figure 1.1   Potential flow over a closed body. 

It is clear from the previous examples that for simulating the effect of thickness, source elements can be used, 

whereas for lifting problems, antisymmetric terms such as the doublet (or vortex) can be used. To uniquely 

define the solution of this problem, first the boundary conditions of zero flow normal to the surface must be 

applied. In the general case of three-dimensional flows, specifying the boundary conditions will not 

immediately yield a unique solution because of two problems. First, a decision has to be made in regard to the 

“right” combination of source and doublet distributions. Second, some physical considerations need to be 

introduced to fix the amount of circulation around the surface SB . These considerations deal mainly with the 

modeling of the wakes and fixing the wake shedding lines and their initial orientation and geometry. (This is 

the three-dimensional equivalent of a two-dimensional Kutta condition.)   

 

 



 

1.2 The Boundary Conditions 

The boundary condition for Eq. (1.1) can directly specify a zero normal velocity component ∂δ∗/∂n = 0 on 

the surface SB , in which case this “direct” formulation is called the Neumann problem. It is possible to specify 

δ∗ on the boundary, so that indirectly the zero normal flow condition will be met, and this “indirect” 

formulation is called the Dirichlet problem. Of course, a combination of the above boundary conditions is 

possible, too, and this is called a mixed boundary condition problem. 

An additional approach would be to search for a singularity distribution that creates enclosed streamlines, 

equivalent to the geometry of the surface SB . This method is useful in two dimensions, where the stream function 

W is well defined but for complex, three-dimensional geometries the implementation of this method is difficult 

and will not be dealt with here. 

1.2.1 Physical Considerations 

The above mathematical formulation, even after selecting a desirable combination of sources and 

doublets, and after fulfilling the boundary conditions on the surface SB , is not unique. Previous examples 

showed that for describing the flow over thick bodies without lift the source distribution was sufficient, but for 

the lifting cases the amount of the circulation was not uniquely defined. 

 

Figure 1.2 Vorticity system created by a finite wing in steady forward flight. 

 

Let us examine the case of a lifting wing, as viewed from a large distance (Fig. 1.2). For simplicity, the bound 

vortex is represented by a concentrated vortex line with the strength T (=Tx = Ty ). According to the Helmholtz 

theorems a vortex line cannot start in a fluid and we can write which for the simple case of Fig. 1.2 implies that 

the problem is modeled by one constant- strength, closed vortex line. Also, the amount of the bound 

circulation is where point 1 lies under and point 2 is above the (very) thin wake. These two arguments clearly 

demonstrate that for the three dimensional lifting problem there is a need to model a wake, since the bound 

vorticity needs to be continued beyond the wing. Also, as shown in Fig. 1.2, for the wing to have circulation T 

at a spanwise location, a discontinuity in the velocity potential near the trailing edge must exist: 

δ2 − δ1 = T 

where δ1 is under and δ2 is above the wake. Now we are in a position where the additional physical 

conditions, required for a unique solution, can be established in relation to a wake model. This model has to 

specify two additional conditions: 

1. To set the wake strength at the trailing edge. 

2. To set its shape and location. 

 

a. Wake Strength 

The simplest solution to this problem is to apply the two-dimensional Kutta con- dition along the 

three-dimensional trailing edge (as shown in Fig. 1.3) such that 

γT.E. = 0 (1.4) 



 

Since, for example, in the two-dimensional case ∂μ(x )/∂x = −γ (x ) the above condition can be rewritten for 

the trailing-edge line, such that μ is constant in the 

 

 

Figure 1.3   Implementation of the Kutta condition when using surface doublet distribution. 

 

wake (μw) and equals the value at the trailing-edge (μT.E.), that is, 

μT.E. = const. ≡ μW 

or 

μU − μL − μW = 0 (1.5) 

where μU and μL are the corresponding upper and lower surface doublet strengths at the trailing edge, as 

shown in Fig. 1.3 This formulation is more useful for airfoils with very thin or even cusped trailing edges. As 

an example, the specification of the Kutta condition in terms of constant-strength doublet elements (or vortex 

rings) is shown in Fig. 1.4 (here for convenience a positive doublet points into the wing). At the wing’s 

trailing edge, the trailing segment of the upper doublet will have a strength of −TU , the leading vortex 

segment of the lower surface (which is now inverted) will be +TL , and the leading segment of the wake vortex 

is +TW .  

Thus, the strength of the wake panel in terms of the local circulation T is again 

−TU + TL + TW = 0 

or, exactly as in Eq. (1.5a), 

TW  = TU − TL (1.6) 

In certain situations the shape of the trailing edge is also important. For example, Fig. 1.5a shows a situation 

where the flow leaves the trailing edge smoothly and parallel to the cusped trailing edge. 

 

Figure 1.4   Implementation of the Kutta condition when using vortex ring elements. 

 

 



 

 

Figure 1.5   Possible conditions that can be applied at (a) cusp and (b) finite angle trailing edges. 

In such situations this point is not necessarily a stagnation point and if the velocity formulation is used then 

only the qn = 0 condition can be used. In the case that the trailing edge has a finite angle (Fig. 1.5b), then in 

order to have a continuous velocity at this point the condition qt = 0 can also be used. 

b. Wake Shape 

In two dimensions, the trailing vortex segment of the wake is ignored since it has zero vorticity (in 

steady flow) and it is sufficient to specify the location of the trailing edge where the Kutta condition is met. In 

three dimensions, the wake influence is more dominant and its geometry clearly affects the solution. To 

distinguish between the models for bound circulation (which generate the lift) and the circulation shed into 

the wake, it is logical to assume that the wake should not produce lift – since it is not a solid surface. As an 

example, let us recall the formulation for the force F generated by a vortex sheet γ. The Kutta–Joukowski 

theorem for lift (Section 3.11) states that 

F = ρq × γ (1.7) 

 

For a three-dimensional case 6F = 0 only if the local flow is parallel to γ (we assume 

γ /=0). So the condition for the wake geometry is 

q × γW = 0 (1.8) 

or 

γW "q (1.8a) 

that is, the vorticity vector is parallel to the local velocity vector. 

An equivalent representation of the wake by a thin doublet sheet is obtained by noting that γW = −∇ μW. If 

no force is produced by this lifting surface then Eq. (9.18) becomes 

q × ∇μW = 0 (1.9) 

 

 



 

i 

 

Figure 1.6   Effect of prescribed wake geometry on the aerodynamics of an = 1.5 wing. 

 

So the condition for the wake panels, in terms of doublets, is 

μW = const. (1.9a) 

and the boundaries of these elements (which are really the vortex lines) should be parallel to the local 

streamlines, as in Eq. (1.8a). This condition (Eq. (1.8a)) is difficult to satisfy exactly since the wake location is 

not known in advance. In most cases it is sufficient to assume that the wake leaves the trailing edge at a median 

angle δT.E./2, as shown in Figs. 1.3 and 1.4, whereas for portions of the wake far from the trailing edge, 

additional effort is required to satisfy the condition of Eq. (1.8). 

As an example of the dependence of the solution on the wake initial geometry, the results for a cambered 

rectangular wing of aspect ratio 1.5 are shown in Fig. 1.6. The solution was obtained by a first-order panel 

method (VSAERO9.3) with 600 panels per semi span and the corresponding lift and drag coefficients are 

tabulated in the inset to the figure (incidentally, case c is the closest to experimental results). 

1.2.2 Reduction of the Problem to a Set of Linear Algebraic Equations 

At this point it is assumed that the problem is unique and that a combination of source/doublet distributions 

has been selected along with a wake model and the Kutta condition. For the following example δ = δ∞ along 

with Eq. (1.2) for the source strength will be used and a constant-strength rectilinear panel is assumed. The 

body’s surface (see Fig. 1.7) is now divided into N surface panels and into NW additional wake panels. The 

boundary condition (either Neumann or Dirichlet) will be specified at each of these elements at a collocation point 

(which for the Dirichlet boundary condition must be specified inside the body where 8∗ = 8∞, e.g., at a point 

under the center of the panel). In most cases, though, the point may be left on the surface without moving it inside 

the body. Rewriting, for example, the Dirichlet boundary condition for each of the N collocation points. 

 

 

Figure 1.7   Approximation of the body surface by panel elements. 

 

 

 



 

 

 

That is, for each collocation point P (shown in Fig. 1.7) the summation of the influences of all k body panels 

and 4 wake panels is needed. The integration in Equation is limited now to each individual panel element 

representing the influence of this panel on point P. For a unit singularity element (σ or μ), this influence 

depends on the panel’s geometry only. The integration can be performed analytically or numerically, prior to 

this calculation, and for example for a constant-strength μ element shown in Fig. 1.8 the influence of panel 

k (defined by the four corners 1, 2, 3, and 4) at point P is and for a constant-strength σ element 

 

Figure 1.8    Influence of panel k on point P. 

Also, by using the Kutta condition, the wake doublets can be expressed in terms of the unknown surface 

doublets μk . For example, in Fig. 1.9 two of the trailing edge (T.E.) doublets μr and μs (here r, s, and t are 

some arbitrary counters) are related to the corresponding wake doublet μt. 

μt  = μr − μs 

  and hence the influence of the wake element becomes 

Ctμt = Ct (μr − μs ) 

 

Figure 1.9 Relation between trailing edge upper and lower panel doublet strength and the corresponding wake 

doublet strength. 

This algebraic relation can be substituted into the Ck coefficients of the unknown surface doublet such that 

Ak = Ck if panel is not at T.E. 

Ak = Ck ± Ct if panel is at T.E. 

where the ± sign depends on whether the panel is at the upper or the lower side of the trailing edge (Fig. 1.9).  

 



 

 

Consequently, for each collocation point P, a linear algebraic equation containing N unknown singularity 

variables μk can be derived. 

The derivation of the influence coefficient integrals depends on the shape of the panel element (e.g., planar, 

curved, etc.) and on the singularity distribution (constant or linearly varying strength, etc.). Some examples 

will be presented in the following chapters. 

1.3 Aerodynamic Loads 

Once Equation is solved the unknown singularity values are obtained (μk in this example). The velocity 

components are evaluated now in terms of the panel local coordinates (l, m, n) shown in Fig. 1.10. The two 

tangential perturbation velocity components are where the differentiation is done numerically using the values 

on the neighbor panels.   

 

Figure 1.10   Panel local coordinate system for evaluating the tangential velocity components. 

 

Strength:

qn = −σ 

The total velocity in the local (l, m, n) direction of panel k is 

Qk  = (Q∞l, Q∞m, Q∞n )k + (ql, qm, qn)k  

and of course the normal velocity component on a solid boundary is zero. The pressure coefficient can now be 

computed for each panel. 

The contribution of this element to the nondimensional fluid dynamic loads is normal to the panel surface  

In terms of the pressure coefficient the vector form for the panel contribution to the fluid dynamic load becomes 

The individual contributions of the panel elements now can be summed to compute the desired aerodynamic 

forces and moments. 

1.4 Preliminary Considerations, Prior to Establishing, Numerical Solutions Prior to establishing a 

numerical solution

a. Type of singularity that will be used: The options usually include sources, doublets, and vortices or any 

combination of the above. 

b. Type of boundary conditions: Velocity or velocity-potential formulation may be used and the corresponding 

Neumann, Dirichlet, or a combination of such boundary conditions must be selected. 

c. Wake models: How and where the Kutta condition will be specified. Also, the shape of the wake is 

controlled by Equation and can be set by Programmer-specified shape based on intuition or on flow 

visualizations. 



 

 

 

 

Figure 1.11   Nonplanar surface element and its quadrilateral approximation. 

 

1. Wake relaxation (where the wake points are moved with the local induced velocity). 

 

2. Time stepping (where the wake shape is developed by moving the wing from an initial stand-still 

position). 

 

 

d. Method of discretizing surface and singularity distributions: 

 

1. Discretization of geometry: The placing of a simple panel element on an arbitrary three-

dimensional configuration is rather difficult. Figure 1.11 describes such a curved surface element 

with a local coordinate system x, y, z. The shape of the surface can be described as z = f (x, y), but 

for simplicity it is usually approximated by a piecewise polynomial approximation. For example, if a 

first- order polynomial is used then the average surface can be described by 

z = a0 + b1x + b2 y 

and for a second-order polynomial approximation 

z = a0 + b1x + b2 y + c1x 2 + c2xy + c3 y
2 

and so on (where the coefficients a, b, c are constants). Figure 1.11 shows the result of 

approximating a curved surface element by a first-order plane, while Fig. 1.12 shows the possible 

consequence of representing a three-dimensional curved surface by such quadrilateral elements. 

This representation of the geometry may result in difficulties in specifying the boundary 

conditions, since the “leakage” between the panels can weaken the satisfaction of the zero flow 

through the boundaries requirement. One possible solution is shown in Fig. 1.13 where the surface is 

described by five flat sub elements (as in the PANAIR code9.4) 

 

2. Discretization of singularity distribution: The strength of the surface distribution of the singularity 

elements can be represented, too, in terms of a piecewise polynomial approximation. For example, if 

the doublet distribution on the element of Fig. 1.11 is constant such that 

μ = a0 = const. 



 

 

 

 

Figure 1.12 Possible  difficulty in representing a three-dimensional surface by an array of quadrilateral 

surface elements. 

 

then this is a zero-order approximation of μ. Similarly, a first-order (or linear) approximation is 

μ = a0 + b1x + b2 y 

and a second-order (or parabolic) polynomial approximation is 

μ = a0 + b1x + b2 y + c1x 2 + c2xy + c3 y
2 

(Here the coefficients a, b, c are constants, too, and of course are different from the coefficients of the 

surface approximation). 

e. Considerations of numerical efficiency: It is clear from the brief discussion on discretization that the 

computation of the influence coefficients is elaborate. Many methods divide such calculations into 

near and far field where the far field calculation treats the element as a point singularity (and not 

as a surface distribution). 

 

Figure 1.13   Description of a nonplanar panel element by a set of flat sub elements. 

 

Typically, the near field is assumed if the distance to a point P is less than 2.5–5 times the larger diagonal of 

the panel. On the other hand because of the 1/r characteristics of the singularity elements, when r → 0 the 

value of 1/r → ∞; therefore, when the point P is too close to the panel (or to a vortex line) cutoff distances 

are usually applied. (Only the aerodynamic aspects of the numerics are discussed here; other important 

aspects, e.g., the matrix solver efficiency, are not.) 

 

 

 

 



 

 

1.5 Steps toward Constructing a Numerical Solution 

When establishing a numerical solution for potential flow a sequence similar to the following is 

recommended. 

 

a. Selection of Singularity Element 

The first and one of the most important decisions is the type of singularity element or elements that will be 

used. This includes the selection of source, doublet, or vortex representation and the method of discretizing 

these distributions (zero-, first-, second-order, etc.). Also, all of the questions raised in the previous section 

need to be answered before the actual formulation of the solution can be constructed. Once these decisions 

have been made an influence routine, similar to the model needs to be established. This influence computation 

is a direct function of the element geometry and such a routine outputs the velocity components and the 

potential (6u, 6v, 6w, 68) induced by the element. In general, the implementation which represents the core 

of most numerical solutions. Therefore, in the next chapter some of the more frequently used singularity 

elements will be formulated. 

 

b. Discretization of Geometry (and Grid Generation) 

Once the basic solution element is selected, the geometry of the problem has to be subdivided (or discretized), 

such that it will consist of those basic solution elements. In this grid generating process, the elements’ corner 

points and collocation points are defined. The collocation points are points where the boundary conditions, 

such as the zero normal flow on a solid surface, will be enforced. Figure 1.14a shows how the cambered thin 

airfoil at an angle of attack can be discretized by using the lumped-vortex element. In this case the camberline 

is divided into five panels and the locations of the collocation points and of the vortex points are shown in the 

figure. Similarly, the subdivision of a three-dimensional body into planar surface elements is shown in Fig. 

1.14b. (The collocation points are not shown but they are at the center of the panel and may be slightly under 

the surface.) It is very important to realize that the grid does have an effect on the solution. Typically, a good 

grid selection will enable convergence to a certain solution when the density is increased (within reason). 

Moreover, a good grid selection usually will require some pre- liminary understanding of the problem’s fluid 

dynamics, as will be shown in some of the forthcoming examples. 

 

c. Influence Coefficients 

In this phase, for each of the elements, an algebraic equation (based on the boundary condition) is derived at the 

collocation point. To generate the coefficients in an automatic manner, a unit singularity strength is assumed 

and the element influence routine is called at each of the collocation points (by a DO loop). 

 

d. Establish RHS 

The right-hand side of the matrix equation is the known portion of the free-stream velocity or the potential and 

requires mainly the computation of geometric quantities (e.g.,−Q∞α). 

 

e. Solve Linear Set of Equations 

The coefficients and the RHS of the algebraic equations were obtained in the previous steps and now the 

equations are solved by standard matrix techniques.  

 

f. Secondary Computations: Pressures, Loads, Off-Body Velocity, Etc. 

The solution of the matrix equation results in the singularity strengths and the velocity field and any 

secondary information can be computed now. The pressures will be computed by Bernoulli’s equation, and the 

loads and aerodynamic coefficients by adding up the contributions of the elements. A typical flowchart for such a 

computer program is shown in Fig. 1.15 where the sequence of computations is close to the above described 

methodology. 



 

 

 

 

Figure 1.14 Discretization of (a) the geometry of a thin airfoil by using the lumped vortex element and of (b) 

a three-dimensional body using constant-strength surface doublets and sources. 

 

In the following example, the essence of the above steps will be clarified. 

 

 

 

Figure 1.15 Typical flowchart for the numerical solution of the surface singularity distribution problem. 

 

 



 

 

1.6 Example: Solution of Thin Airfoil with the Lumped-Vortex Element 

As a first example for demonstrating the principle of numerical solutions, let    us consider the 

solution for the symmetric, thin airfoil. Because the airfoil is thin, no sources will be used, while the doublet 

distribution will be approximated by two constant- strength doublet elements (μ1, μ2 pointing in the −z 

direction). This element is equivalent to two concentrated vortices at the panel edges (see Fig. 1.16). However,  

the geometry  of the “lumped-vortex” model was developed in Chapter 5, and by placing the vortex at the 

quarter chord and the collocation point at the three-quarter chord point of the panel the Kutta condition is 

automatically satisfied. Using this knowledge the equivalent discrete- vortex model (with only two elements) 

for the airfoil is shown in Fig. 1.17. Also, for the thin lifting surface only the Neumann (velocity) boundary 

condition can be used, because of the zero thickness of the airfoil. (Note that the doublet representation in Fig. 

1.16 clearly indicates the existence of a starting vortex, also shown in Fig. 1.17, at a large distance behind the 

airfoil.) 

 

a. Selection of Singularity Element 

For this very simple example the lumped-vortex element is selected and its influence is derived in terms of the 

geometry involved. Such an element is depicted in Fig. 1.18a; it consists of a concentrated vortex at the panel 

quarter chord and a collocation point and normal vector n at the three-quarter chord. 

 

Figure 1.16 Constant-strength doublet element representation of the flat plate at an angle of attack 

(using two doublet panels pointing in the −z direction). 

 

 

 

Figure 1.17 Equivalent discrete-vortex model for the flow over a flat plate at an angle of attack (using 

two elements). 

It is important to remember that this element is a simplification of the two-dimensional continuous solution 

and therefore accounts for the Kutta condition at the trailing edge of the airfoil. 

If the vortex element of circulation T is located at (x0, z0), then the velocity induced by this element at an 



 

arbitrary point P(x, z), according to the analysis. 

 

Figure 1.18   Nomenclature and flowchart for the influence of a panel element at a point P. 

 

This can be programmed as an influence coefficient subroutine in the manner shown in Fig. 1.18b. Let us call 

this routine VOR2D.  

(u, w) = VOR2D(T, x, z, x0, z0)  

b. Discretization of Geometry and Grid Generation 

For this example, the thin airfoil case is being solved (Fig. 1.17). For simplicity, only two elements will be 

used so that no computations are necessary. At this phase the geometrical information on the grid has to be 

derived. This can be automated by computer routines for more complex situations, but for this case the vortex 

point locations are 

(x01, z01) = (c/8, 0) 

(x02, z02) = (5c/8, 0) 

and the collocation points are 

(xc1, zc1) = (3c/8, 0) 

(xc2, zc2) = (7c/8, 0) 

The normal vectors n must be evaluated at the collocation points, and for an arbitrary element i we write 

ni = (sin βi, cos βi )  

where the angle βi is defined in Fig. 1.18a. In this particular case, when the airfoil has no camber and is placed 

on the z = 0 plane, both normals are identical: 

n1 = n2 = (0, 1) 

c. Influence Coefficients 

Here the condition requiring zero velocity normal to the airfoil will be enforced. 

This boundary condition, according to Eq. (9.4), is 

(q + Q∞) · n = 0  

The velocity q is induced by the unknown vortices, whereas the free-stream normal com- ponent can be 

calculated directly and hence is moved to the right-hand side of the equation: 

q · n = −Q∞ · n  

Because, in this case, the airfoil was divided into two elements with two unknown vortices of circulation 

T1, T2, two equations based on the zero flow normal to the airfoil boundary condition will be derived at the 

collocation points.  

 

 



 

 

We define as positive T a clockwise rotation, and calculate the velocity induced by a unit strength vortex at 

point 1 on collocation point 1. 

(u11, w11) = VOR2D(1.0, xc1, zc1, x01, z 01)  

and the velocity induced at collocation point 1, by a unit vortex at point 2, is 

 (u12, w12) = VOR2D(1.0, xc1, zc1, x02, z02)  

The velocity induced at collocation point 2, by a unit vortex at point 1, is 

(u21, w21) = VOR2D(1.0, xc2, zc2, x01, z 01) 

 

and the velocity induced at collocation point 2, by a unit vortex at point 2, is 

(u22, w22) = VOR2D(1.0, xc2, zc2, x02, z 02)  

The influence coefficients aij are really the normal component of the flow velocity induced by a unit strength 

vortex element Tj at collocation point i : 

aij = qij (Tj = 1) · ni  

For the current problem, Equation is applied to collocation point 1 and to vortex point 1. Thus 

a11 = (u11, w11) · n1 similarly, for the second vortex, we have 

a12 = (u12, w12) · (0, 1)  

and for the second collocation point, we get 

a21 = (u21, w21) · (0, 1)  

Note that the left-hand side of Eq. (9.34a) can be described now as 

q · n = 
 
aij Tj for   i = 1, 2; j =1,2 

d. Establish RHS 

The solution is based on enforcing the boundary condition of Equation at the collocation points. Since 

the product Q∞ · n is known it is transferred to the right-hand side of the equation: 

q · n = −Q∞ · n ≡ RHS  

It is useful to express the component of the free stream in vector form to allow easy vector operations; for this 

particular case the right-hand side (RHS) is 

RHSi = −(U∞, W∞) · ni  

where (U∞, W∞) = Q∞(cos α, sin α). Computing the RHS vector for the two collocation points results in 

RHS1 = −Q∞ sin α 

RHS2 = −Q∞ sin α 

e. Solve Linear Set of Equations 

The results of the previous computations can be summarized as 

aij Tj = RHSi   i = 1, 2; j =1 

and explicitly, for this particular case, which can be solved by standard matrix methods 

f. Secondary Computations: Pressures, Loads, Etc. 

The resulting pressures and loads can be computed by using the Kutta–Joukowski theorem  

6Li = ρ Q∞Ti 

and by assuming a constant pressure distribution along the element, the pressure difference becomes 

6pi = ρ Q∞Ti/a 

where a is the panel length. The lift and moment about the airfoil leading edge are then non dimensional 

aerodynamic coefficients are sin α. 

These results are similar to those for a zero-thickness symmetrical airfoil and equal to the exact flat plate 

solution. The method can easily be extended to various camber line shapes and even multi element lifting 

airfoils. 



 

∞ 

 

 

1.7 Accounting for Effects of Compressibility and Viscosity 

The potential flow model presented in this chapter results in a very simple mathematical model that 

can be transformed into a very efficient and economical numerical solution. This led to the development of 

three-dimensional “panel codes” for arbitrary geometries, and naturally, modifications were sought to improve 

these methods beyond the limits of incompressible inviscid flows. Some of these modifications are listed here. 

a. Effects of Compressibility 

The first and most straightforward modification to an incompressible potential-flow based method is to 

incorporate the effects of “low-speed compressibility” (e.g., for M∞ < 0.6). This modification can be obtained 

by using the Prandtl–Glauert rule, as developed in Section 4.8. Thus, small-disturbance flow is assumed, and a 

compressibility factor β  

If the free stream is parallel to the x coordinate then the x coordinate is being stretched with increased Mach 

number while the y and z coordinates remain unchanged. Consequently, an equivalent incompressible 

potential 8M   =0 can be defined such that 

Once the x coordinate is transformed, the equivalent incompressible potential problem is solved as described 

previously.  

b. Effects of Thin Boundary Layers 

When analyzing high Reynolds number flows in Section 1.8, it was assumed that the boundary layer is thin 

and that the boundary conditions are specified on the actual surface of the body. However, by neglecting the 

viscosity terms in the momentum equation, the information for calculating the viscous surface friction drag is 

lost too. 

 

It is possible to account for the viscosity effects such as displacement thickness and friction drag by using a 

boundary layer solution that can be matched with the potential-flow solution. Two of the most common 

methods for combining these two solutions are as follows. 

1. The first approach is to use a boundary layer solution, usually a two-dimensional model along a streamline, 

which is quite effective for simple wings and bodies. The solution begins by solving the inviscid potential 

flow, which results in the velocity field and the pressure distribution. These data are fed into two-dimensional 

boundary layer solutions that provide the local wall friction coefficient and the boundary layer thickness. 

The friction coefficient can then be integrated over the body surface for computing the friction drag. If the 

displacement thickness effect is sought, then a second iteration of the potential flow computation is needed, but 

now with modified surface geometry. This modification can be obtained by displacing the body panels 

according to the local boundary layer displacement, and the procedure can be reiterated until a satisfactory 

solution is obtained. Some of the principles of a computer program (e.g., the MCAIR panel code). 

2. The second approach to incorporate boundary layer solutions into panel codes is to follow the procedure 

described above, but to account for the displacement effects by a modification of the boundary conditions 

instead of a change of the surface geometry. In this case, at each panel the normal flow is given a certain 

blowing value that accounts for the local boundary layer displacement thickness δ∗. The formulation can be 

derived using the properties of the source distribution of Section 4.4, and the incremental “transpiration 

velocity” is simply added to the source strength obtained from the inviscid model. Here    q is the local 

streamwise velocity component of the potential flow (outside the boundary layer) and the differentiation 

takes place along a streamlines. Note that as a result of the added transpiration velocity qni = 6σi , the 

normal velocity component on the actual surface of the body is nonzero. 

 

 

 

 

 



 

 

 

c. Models for Wake Rollup, Jets, and Flow Separations 

The vortices in the thin wake behind lifting wings tend to follow the local velocity induced by the lifting 

surface and its wakes. Consequently, the condition stated by results in the wake rollup. This condition causes the 

shape of the wake to be unknown when the boundary conditions for the potential flow are established. 

Traditionally, the shape of the wake is assumed to be known (e.g., planar vortex sheet) and after the solution is 

obtained, the validity of the initial wake shape can be rechecked. Two methods used by two panel codes will be 

presented to calculate the wake shape (VSAERO-wake relaxation9.3 and PMARC-time stepping9.7,9.8). Since 

the wake is modeled by a doublet/vortex distribution, it is possible to extend this method for modeling jets and 

even shear layers of separated flows.  

  It was demonstrated in the previous chapters that the solution of potential flow problems over bodies and 

wings can be obtained by the distribution of elementary solutions. The strengths of these elementary solutions of 

Laplace’s equation are obtained by enforcing the zero normal flow condition on the solid boundaries. In general, 

as the complexity of the method is increased, the “element’s influence” calculation becomes more elaborate. 

Therefore, in this chapter, emphasis is placed on presenting some of the typical numerical elements upon which 

some numerical solutions are based (the list is not complete and an infinite number of elements can be 

developed). A generic element is shown schematically in Fig.1.19. To calculate the induced potential and 

velocity increments at an arbitrary point P(x P, yP, z P ) requires information on the element geometry and 

strength of singularity. 

However, it must be clear that the values of the velocity potential and velocity components are incremental 

values and can be added up according to the principle of superposition. 

Three-dimensional elements will be presented later and their complexity increases with the order of the 

polynomial approximation of the singularity strength. Also, the formulation is derived in the panel frame of 

reference and when these formulas are used in any other “global coordinate system,” the corresponding 

coordinate transformations must be used (for rotations and translations). 

 

1.8 Two-Dimensional Point Singularity Elements 

These elements are probably the simplest and easiest to use and also the most efficient in terms of 

computational effort. Consequently, even when higher order elements are used, if the point of interest is 

considered to be far from the element, then point ele- ments can be used to describe the “far field” effect. The 

three point elements that will be discussed are source, doublet and vortex, and their formulation is given in the 

following sections. 

 

1.8.1 Two-Dimensional Point Source 

 Consider a point source singularity at (x0, z0), with a strength σ , as shown in Fig. 1.19. The increment to the 

velocity potential at a point P is then  

 

 

Figure 1.19   Schematic description of a generic panel influence coefficient calculation. 



 

 

and after differentiation of the potential, the velocity 

components are 

 

u = 

 

 

 

−  0   + −  0 

w = 2 

 

1.8.2 Two-Dimensional Point Doublet 

Consider a doublet that is oriented in the z direction [μ = (0, μ)]. If the doublet is located at the point (x0, z0), 

then its incremental influence at point P is 

μ z − z0 

δ(x, z) = 
−     

 

2π  (x − x0)2 + (z − z0)2 

and the velocity component increments are 

∂8

 

μ 

(x − x0)(z − z0) 

u =  
∂x  

= 
π [(x − 

x0)2 

+ (z  

− z0)2]2 

In the case when the basic singularity element is given in a system (x, z) rotated by the angle β relative to 

the (x ∗, z∗) system, as shown in Fig. 1.19, then the velocity components can be found by the transformation. 

 

1.8.3 Two-Dimensional Point Vortex 

Consider a point vortex with the strength T located at (x0, z0). Again using the definitions of the points, as in 

Fig. 1.20, and the results. 

 

Figure 1.20   The influence of a point singularity element at point P. 

 

∂8  σ x − x0 
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∂8 

= 2π (x x )2     (z z )2 
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∂z = 2π (x − x0)2 + ( − z0) 
 



 

 
 

Figure 1.21  Transformation from panel to global coordinate system. 

Note that all these point elements fulfill the requirements presented in Fig. 1.21. That is, the increments of the 

velocity components and potential at P depend on the geometry (x, z, x0, z0) and the strength of the element. 

 

1.8.4 Two-Dimensional Constant-Strength Singularity Elements 

 The discretization of the source, doublet, or vortex distributions in the previous section led to discrete 

singularity elements that are clearly not a continuous surface representation. A more refined representation of 

these singularity element distributions can be obtained by dividing the solid surface boundary into elements 

(panels). One such element is shown schematically in Fig. 1.22, and both the surface shape and the shape of 

the singularity strength distribution are approximated by a polynomial. In this section, for the surface 

representation, a straight line will be used. For the singularity strength, only the constant, linearly varying, and 

quadratically varying strength cases are presented, but the methodology of this section can be applied to 

higher order elements. 

In this section, too, three examples will be presented (source, doublet, and vortex) for evaluating the 

influence of the generic panel of Fig. 1.22 at an arbitrary point P.  

 

 

Figure 1.22  A generic surface distribution element. 

 

 



 

 

Figure 1.23    Constant-strength source distribution along the x axis. 

 

For simplicity, the formulation is derived in a panel-attached coordinate system, and the results need to be 

transformed back into the global coordinate system of the problem. 

 

1.8.5 Constant-Strength Source Distribution 

Consider a source distribution along the x axis as shown in Fig. 1.23. It is assumed that the source strength per 

length is constant such that σ (x ) = σ = const. The influence of this distribution at a point P is an integral of the 

influences of the point elements (described in the previous section) along the segment x1 → x2: 

The integral for the velocity potential (note that ln r 2 = 2 ln r is used in the derivation) and in terms of the 

corner points (x1, 0), (x2, 0) of a generic panel element (Fig. 10.6), the distances r1, r2, and the angles θ1, θ2    

 

Figure 1.24   Nomenclature for the panel influence coefficient derivation. 

 

Of particular interest is the case when the point P is on the element (usually at the center). 

In this case z = 0± and the potential becomes 

For evaluating the w component of the velocity, it is important to distinguish between the conditions when the 

panel is approached from its upper or from its lower side. For the case of P being above the panel, θ1 = 0, 

while θ2 = π. These conditions are reversed   on the lower side.  

 



 

 

Figure 1.25 Constant-strength doublet distributions along the x axis. 

 

1.8.6  Constant-Strength Doublet Distribution 

Consider a doublet distribution along the x axis consisting of elements pointing in the z direction [μ = (0, μ)], 

as shown in Fig. 1.25. The influence at a point P(x, z) is an integral of the influences of the point elements 

between x1 and x2. Note that the integral for the w component of the source distribution is similar to the 

potential integral of the doublet. Therefore, the potential at P. Comparison of this expression to the potential 

of a point vortex indicates that this constant  doublet distribution is equivalent to two point vortices with 

opposite sign at the panel edge such that T = −μ (see Fig. 1.26). Consequently, the velocity components 

  

 

Figure 1.26 Equivalence between a constant-strength doublet panel and two point vortices at the edge of the panel. 

 

1.8.7 Constant-Strength Vortex Distribution 

Once the influence terms of the constant-strength source element are obtained, owing to the similarity between 

the source and the vortex distributions, the formulation for 

this element becomes simple. The constant-strength vortex distribution γ (x ) = γ = const. is placed along the x 

axis as shown in Fig. 1.27. The influence of this distribution at a 

point P is an integral of the influences of the point elements between x1 and x2. So we have 



 

 

 

Figure 1.27   Constant-strength vortex distribution along the x axis

Following the formulation used for the constant-source element, and observing that the u and w velocity 

components for the vortex distribution are the same as the corresponding w and u components of the source 

distribution. 

In most situations the influence is sought at the center of the element where |r1|= |r2| and consequently w(panel 

− center, 0±) = 0. 

 

1.9 Two-Dimensional Linear-Strength Singularity Elements 

The representation of a continuous singularity distribution by a series of constant- strength elements 

results in a discontinuity of the singularity strength at the panel edges. To overcome this problem, a linearly 

varying strength singularity element can be used. The requirement that the strength of the singularity remains 

the same at the edge of two neighbor elements results in an additional equation.  

 

 

Figure 1.28  Decomposition of a generic linear strength element to constant-strength and linearly varying 

strength elements.



 

1.9.1 Linear Source Distribution 

Consider a linear source distribution along the x axis (x1 < x < x2) with a source strength of σ (x ) = 

σ0 + σ1(x − x1), as shown in Fig. 1.29. Based on the principle of superposition, this can be divided into a 

constant-strength element and a linearly varying strength element with the strength σ (x ) = σ1x. Therefore, 

for the general case (as shown in the left-hand side of Fig. 10.10) the results of this section must be added to 

the results of 

the constant-strength source element. 

The influence of the simplified linear distribution source element, where σ (x ) = σ1x , at a point P is obtained 

by integrating the influences of the point elements between x1 and x2. 

 

 

 

Figure 1.29 Nomenclature for calculating the influence of linearly varying strength source. 

 

1.9.2 Linear Doublet Distribution 

Consider a doublet distribution along the x axis with a strength μ(x ) = μ0 + μ1(x − x1), consisting of 

elements pointing in the z direction [μ = (0, μ)], as shown in Fig. 1.30. In this case, too, only the linear term 

(μ(x ) = μ1x ) is considered and the influence at a point P(x, z) is an integral of the influences of the point 

elements  between x1 and x2: 

 

 
 

Figure 1.30   Linearly varying strength doublet element. 

 

         



 

 

1.9.3 Linear Vortex Distribution 

In this case the strength of the vortex distribution varies linearly along the element, 

γ (x ) = γ0 + γ1(x − x1) 

Again, for simplicity consider only the linear portion where γ (x ) = γ1x and γ1 is a constant. The influence of 

this vortex distribution at a point P in the x –z plane is obtained by  integrating the influences of the point 

elements between x1 and x2. 

 

1.9.4 Quadratic Doublet Distribution 

A quadratic doublet distribution can be replaced by an equivalent linear vortex distribution presented 

in the previous section. However, in situations when the Dirichlet type boundary condition is applied, it is 

more convenient to use the corresponding doublet distribution (instead of the linear vortex distribution). Thus, 

a quadratic doublet distribution along the x axis (x1 < x < x2) will have a strength distribution of 

μ(x ) = μ0 + μ1(x − x1) + μ2(x − x1)2 

where the doublet elements pointing in the z direction [μ = (0, μ)] are selected as shown in Fig. 1.31. Since the 

contribution of the constant and linear strength terms were evaluated in the previous sections only the third 

term (μ(x ) = μ2x 2) is considered and the influence at a point P(x, z) is an integral of the influences of the point 

elements  between x1 and x2: 

 

 

Figure 1.31   Quadratic-strength doublet element. 

 

1.10 Three-Dimensional Constant-Strength Singularity Elements 

 In the three-dimensional case, as in the two-dimensional case, the discretization process includes two parts: 

discretization of the geometry and of the singularity element distribution. If these elements are approximated 

by polynomials (both geometry and singularity strength) then a first-order approximation to the surface can be 

defined as a quadrilateral1 panel, a second-order approximation will be based on parabolic curve- fitting, 

while a third-order approximation may use a third-order polynomial curve-fitting. Similarly, the strength of 

the singularity distribution can be approximated (discretized) by constant-strength (zero-order), linearly 

varying (first-order), or by parabolic (second-order) functions. 

The simplest and most basic three-dimensional element will have a quadrilateral geometry and a constant-

strength singularity. When the strength of this element (a constant) is unknown a panel code using N panels 

can be constructed to solve for these N constants. In the following section, such constant-strength elements 

will be described. 

 

 



 

 

 

 

Figure 1.32 Quadrilateral constant-strength source element. 

 

The derivation is again performed in a local frame of reference, and for a global coordinate system a coordinate 

transformation is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT-II 

METHOD OF CHARACTERISTICS, BOUNDARY CONDITIONS 
 

2.1 Introduction 

The method of characteristics has been used for many years to compute supersonic irrotational flows. 

Although the method has a strong analytical basis, its practical implementation is, essentially, always 

numerical and it is then used to compute the values of the flow variables at a series of distinct points in the 

flow rather than continuously throughout the flow field. Let’s consider a general steady two-dimensional 

irrotational flow field. We have already derived the velocity potential (φ) equation for such flow field.  

 

----- (2.1) 

Consider the change in any flow variable,f, df which can be determined by small changes in the 

coordinates dx and dy as illustrated in Fig.1.2. The change in the variable, df, 

 

 If f =  then this will give: 

                   

But u =   so this equation gives: 

 

                     ----- (2.2) 

Similarly if f =   then this will give: 

                                      

But v =  so this equation gives: 

                   ----- (2.3) 

Now consider eqs. 2.1, 2.2 and 2.3 which involve second derivatives of φ and can be solved using Cramer’s 

Rule. 

 For example 

     -----------(2.4) 

In general, this equation can be solved for any chosen values of dx and dy, i.e., for any chosen direction, to 

give  at a selected point in the flow. However, it is possible to have indeterminate in 

certain directions. More over this differential is expected to be finite at that point. Hence in these directions, 



 

eq. 2.4 must give an indeterminate value.  

                                          

Let’s consider the denominator of eq 32.4 since along a particular direction  is indeterminate. 

Hence the denominator should be zero, as: 

 

Dividing by gives: 

 
The subscript on dy/dx indicates that the slope of the characteristic line or a specific direction is being 

considered along which differentials are indeterminate. Solving above equation we get: 

 
Lets represent the component of velocities in terms of velocity vector and angle made by the streamline with 

co-ordinate axes as, 

 
Hence, we get the same equation for slope as, 

 
 

where, M=V/a. 

We can introduce the local Mach angle, a, where ( ) by replacing Mach 

number as, 

 
After much manipulation and rearrangement, it can be shown that this equation gives: 

                                 -------------(2.5) 

There are two characteristic lines. This clearly means that the characteristic lines or lines along which 

derivatives are indeterminate makes Mach angle with the streamline. Hence the net angle made by the 

characteristic line with the x-axis is the summation of the angle made by the streamline with x-axis and angle 

made by the Mach wave with streamline. Hence Mach waves are the character lines. 



 

 

2.2 Governing Equation 

We know about the direction of the characteristic line obtained from the indeterminacy of the eq. (2.4) for 

zero denominators. However finiteness of the differential compels the zero value of the numerator. This 

condition evolves the equation to be solved along the characteristic lines. 

Hence for the numerator eq. (2.4) we have, 

 
 

Substituting for slope (dy/dx) of the characteristic lines from eq. (2.5) that gives: 

 
Using the velocity relation we have, 

 
However, 

 
Substituting this expression in eq. 2.1 we get, 

 

 



 

 

 

 
This is the equation governing the changes in the variables along the characteristic lines. It can be noted that it 

is an ordinary differential equation whereas the original equation, velocity potential equation, was a partial 

differential equation 

 We have already seen the solution for equation during consideration of expansion fan (2.4). On the similar 

line, the integration equation of leads to, 

 
This is the simple algebraic equation which we will have to solve along the characteristic line. 

Following figure represents the details of the characteristic lines. 

 

 

 
Fig. 2.1. Schematic representation of the details of the characteristic line 



 

We know that there are two characteristic lines from eq. 2.5. 

For C+ characteristics line of Fig.2.1: 

 
For C- characteristics line of Fig.33.1: 

 
K+ and K - are constants along the + and - characteristic lines. 

 

2.3 Strategy to solve numerically along the characteristic line 

 

Consider any point 3 in the flow field at which properties are to be evaluated. Point 1 and 2 supposed to the 

points of known properties. Consider C+ characteristic line passing through point 2 and C- passing through 1 

intersecting at point 3. Hence point 3 lies on both the characteristic lines. Therefore for point 1 and 3 we have,  

 

 
Fig. 2.2. Solution strategy at a point in the flow field.  

Similarly for the point 2 and 3 

 
Hence, 

 
First adding these two equations and then subtracting them gives: 



 

 
which can be also written as: 

 
This helps in finding θ3 and v3 from known properties. Since v3 depends only on M, this allows M3and 

hence a3 can be evaluated. Since the stagnation pressure and temperature are constant throughout the flow 

field therefore using M3 we can calculate P3, T3, a3, and ρ3 and then V3. The characteristic lines are, in general, 

curved. Their local slope depends on the local values of v and θ. However, if points 1 and 3 and 2 and 3 are 

close together, the characteristic lines can be assumed to be straight with a slope equal to the average of the 

values at the end points. 

 
Since θ3 and a3 are determined by solving above two equations we can determine x3 and y3.  

The procedure discussed above was for an "internal" point, i.e., a point 3 in the flow field that did not lie on a 

boundary. If a point lies on the boundary, the flow direction at this point will be determined by the slope of the 

boundary, e.g., consider the point 5 shown in Fig. 2.3 which lies on a solid wall. The flow direction at this 

point θ5 is equal to the slope of the wall as indicated. Consider the characteristic line between points 4 and 5 as 

shown in the same figure. Since (K - )4 = (K - )5 it follows that: 

                                                                     

 
Fig. 2.3. Demonstration of wall boundary condition. 

However, θ5  is known, hence v5  is given by: 

 

                                   

With v5 determined, the values of all the flow properties at 5 can be determined as discussed before. The 

characteristic line between 4 and 5 is, of course, assumed to be straight which determines the position of the 

point 5. 

 



 

 2.4 Irrotational Euler Equation 

 

Irrotationality of the flow can be evident in the compressible flow field for weak or zero entropy gradients as 

per the Croco's theorem. Supersonic flows shocked in the presence of weakly curved oblique shocks can be 

treated as irrotational flows. Let’s consider such irrotational flow. We know that the curl of velocity vector 

being zero is the irrotationality condition. Hence, 

 
                                                                                         

 
 Component wise equality gives,  

  

This gradient equality will be used for simplifying the momentum equation. The momentum equation for the 

in viscid compressible can be written as, 

    

 The u-momentum or x-directional momentum equation is, 

 

 
  

Multiplication of dx on either side gives,  

 
 However, from the irrotationality condition, we know that, 

 
 

Using this, u-momentum equation gets modified as, 

 
 Further simplification of this equation leads to, 

 
Similarly, v and w momentum equations can be obtained, 

 

 
 Adding all the momentum equations, we get, 

  



 

Where     

This leads to the irrotational form of the Euler equation as,   

 

 ----------------(2.8) 

 

2.5 Velocity Potential Equation 

 

We know that, if curl of any vector field is zero then the corresponding vector field can be represented by 

gradient of scalar as, 

 

 
In view of the same, velocity field can be represented by gradient of potential for the irrotationalitty condition. 

 
 However we know that, 

 
and 

 
Therefore the components of velocities can be represented by corresponding potential gradients as, 

 
The mass conservation equation for the steady state condition is,  

 

 
 

Replacing the components of velocities we get, 

 

 --------------(2.9) 

 

However we have already derived the irrotational form of the Euler equation which can be used to replace the 

density gradients of above equations, 

 
 

 -----------------------(2.10) 

 

The definition of sound speed leads to,  

 



 

 
Replacing dp of above equation using Eq. 2.10 we get, 

 
 

Hence, partial differentials of density are, 

 
 

 
 

 
 

 
 

The partial derivatives of density can be used to simplify the Eq. 28.2 as, 

 
---(28.4) 

This equation is called as velocity potential equation. This equation is derived for steady irrotational flows 

from mass and momentum equations. This equation has two unknowns via velocity potential and acoustic 

speed or speed of sound. However the speed of sound seen in above equation can also are represented by 

velocity potential using energy equation. Let’s consider that the total enthalpy is constant in the flowfield. 

 

 
 

 
 

 
 

 
 

 ---- (28.5) 

Simultaneous solution of Equations 28.4 and 28.5 gives the velocity potential. Using this we can get the 

velocity field using the potential gradients. However direct solution of these equation is not possible. Hence 

linearization of these equations is essential. 



 

 

2.6 Linearization of Velocity Potential Equation 

 

Consider the steady irrotational flow around the thin aerofoil as shown in Fig. 2.4. At location A, velocity is 

only in x direction. However, presence of body perturbs the components of velocity at location B. 

 

 

 
Fig. 2.4. Schematic of the perturbed velocity field. 

Lets represent the general velocity field as, 

   

here,  and , ,  are the perturbed velocities in the x, y and z directions respectively such 

that. 

        

 
Since the velocity field is irrotational, we can represent the velocity field using gradient of velocity potential 

as, 

 

Let the perturbed velocity field be presented by perturbed velocity potential, . Hence, 

   

Therefore, 

     

Such that, 

 

 



 

 
 

and 

, ,  

We can use these expressions in the known velocity potential equation. 

 

 
This expression in the form of perturbed velocity potential can be written as, 

  

  

or, 

--- (2.11) 

 

But we know that, total enthalpy is constant in flow field. We can use this fact to represent the speed of sound 

encountered in the above equation as, 

 

   

 

 
 

 
 

Using this expression and further simplification, Eq. 2.11 can be written as, 

 



 

--- (2.12) 

The equation (2.1) is the exact equation for steady irrotational flow around the thin configurations. 

We can simplify this equation, since the perturbed velocities, , and are small in comparison with the 

freestream velocity . 

Hence, 

, and <<1 

 So,  

 

This approximations leads to two facts, 

1. Except for the Transonic flows (Flows having Mach number in the range 0.8 to 1.2) 

   

 2. If Mach number of the flow is less than 5.0 

 

,  

  

For these two facts we get, 

 
Or, 

   

This is the linear equation and this approximation is valid for steady irrotational subsonic and supersonic 

flows under the assumption of small perturbation. 



 

2.7 Supersonic flow over a cone 

 

2.7.1 Introduction 

 

The flow over a cone is a two-dimensional axisymmetric problem.  It is also referred to as “Quasi-Two 

dimensional Problem”. This is so, because, the cone under consideration is aligned symmetrically about the z-

axis or along the direction of , as shown in the Fig.2.5 

 

 
 

Fig. 2.5: Geometry in consideration and the fluid flow direction 

 

The supersonic flow over a cone is of great practical importance in applied aerodynamics. The nose cones of 

many high-speed missiles and projectiles are approximately conical, are the nose regions of the fuselages of 

most supersonic airplanes. 

In the particular problem of supersonic flow over a cone, consideration is given to a sharp right circular cone 

with zero angle of attack. Consider a cone on the co-ordinate system, as shown in Fig. 2.5 which is 

symmetric about the Z axis and extends to infinity with a semi-vertex cone angle θ. The supersonic flow with 

free stream velocity is considered along the Z axis, such that the angle of attack is 0
o
. Typical flow field 

for supersonic flow over cone is as shown in Fig. 2.6. For such a supersonic flow over the surface of the cone, 

it is expected that a oblique shock wave attached to the tip of the cone is formed. Further, the shape of the 

shock wave formed is also conical.  

 

A streamline from the supersonic free stream discontinuously deflects as it passes through the shock, and then 

curves continuously downstream of the shock, becoming parallel to the cone surface asymptotically at 

infinity. Further, it is also assumed that the pressure and all the other flow properties are constant along the 

surface of the cone. Since the cone surface is simply a ray from the vertex, consider other such rays between 

the cone surface and the shock wave, as shown by the dashed line in Fig 2.6. Hence assumption of constancy 

of flow properties can be extended along these rays as well. Therefore properties variation takes place as the 

fluid moves from one ray to the next.  



 

 
Fig.2.6: Flow field in the presence of supersonic flow over a cone. 

 

2.7.2 Mathematical Formulation for Supersonic flow over cone 

 

Consider Fig. 2.7. For the terminologies of the derivation in concerned with supersonic flow over cone. At 

any angular location in the flow field, the radial and normal components of velocity are Vr 

and Vθ, respectively. Understanding the flow field around the cone necessarily means solving for the flow 

field between the body and the shock wave by calculating these velocity components. Since the flow field is 

symmetric about the z axis all properties are independent of Φ. 

So, 

 
Further, since we have assumed that the flow properties are constant along a ray from the vertex 

 

 
 

Fig. 2.7: Schematic for terminologies regarding derivation for supersonic flow over cone. 

 



 

From the equation of continuity, we get 

 
But, since the geometry is symmetric about the z axis and extends to infinity, the scale on the Z-axis can be 

neglected while considering the spherical co-ordinate system to analyze the problem. Hence the mass 

conservation equation can be written as,  

 

  

 

  

 

  

 

 --------------------------(2.13) 

This is the continuity equation for the axisymmetric flow over the cone.  

 

For this axisymmetric flow, there is increase in the entropy across the shock, but the change in entropy is zero 

in the region between the shock and the cone since post shock flow is isentropic, i.e, .Further, the flow 

in this region is steady and adiabatic, hence .Therefore, from Crocco's 

equation, ,we find that i.e., the conical flow field is irrotational. 

Hence, 

 

 

Applying the axisymmetric conical flow constant as, and, we can get as 

 

 
This simplifies the irrotatinality constant to, 

------------------------------(2.14)



 

2.7.2 Unit process is one or more grouped operations in a manufacturing system that can be defined and 

separated from others. 

 

2.8 Flow through duct. 

 

The procedure for using the method of characteristic lines are to numerically calculate the flow in a duct 

is as follows: 

 
Fig. 2.8. Supersonic flow through duct 

 

1. The conditions on some initial line must be specified, e.g., conditions on the line AB in 

Fig. 2.8 must be specified. 

2. The shape of the walls, e.g., AD and BC in Fig. 2.8, must be known. 

3. Using the initial values of the variables on line A, determine the stagnation pressure, 

temperature, etc. 

4. Starting with a series of chosen points on line AB, march the solution forward to the 

points defined by the intersection of characteristics with each other or with the wall as 

indicated. 

5. At each point, use the calculated values of v and θ to get flow variables. 

A computer program based on this procedure can be easily developed. 

 

2.8.1 Nozzle Design 

Supersonic nozzles are used in a variety of engineering applications to expand a flow to desired 

supersonic conditions. Supersonic nozzles can be divided into two different types: gradual-expansion 

nozzles and minimum-length nozzles (Fig. 2.9). Gradual-expansion nozzles are typically used in 

applications where maintaining a high-quality flow at the desired exit conditions is of importance (e.g., 

supersonic wind tunnels). For other types of applications (e.g., rocket nozzles), the large weight and 

length penalties associated with gradual-expansion nozzles make them unrealistic; therefore minimum-

length nozzles, which utilize a sharp corner to provide the initial expansion, are commonly used. 



 

 
Fig. 2.9 Types of nozzles. 

For both gradual-expansion and minimum-length nozzles, the flow can be divided into simple and non-

simple regions. A non-simple region is characterized by Mach wave reflections and intersections. In 

order to meet the requirement of uniform conditions at the nozzle exit, it is desirable to minimize the 

non-simple region as much as possible. This can be performed by designing the nozzle surface such that 

Mach waves (e.g., characteristics) are not produced or reflected while the flow is straightened.  

The Method of Characteristics is therefore applied to allow the design of a supersonic nozzle which 

meets these requirements. In the present work, design of both gradual-expansion nozzle and minimum-

length nozzle is demonstrated. 

The boundary layer on the nozzle and side walls has a displacing effect which reduces the effective 

height and width of the nozzle. Allowance for this is to be made by adding a correction for boundary 

layer. The side walls should also diverge to allow for their boundary layers. 

 

2.8.2 Method of characteristics is & Method of waves 

 

The method of characteristics deals with a continuous velocity field, the computation being made at the 

lattice points of a network of characteristics. The wave method deals with a patch work field of cells of 

uniform flow, with discontinuities between them. Accuracies in the two methods are similar, being 

dependent on the fineness of the mesh 

Computation with waves is convenient only in plane flow, since it depends on the theorem that the 

strength of a wave does not change after intersections and reflections. In axially symmetric flow and 

in general 3-D flow the strength of a wave varies continuously. 

The wave method is more intuitive in plane flow than the characteristic method and is usually 

preferred. In some problem it is more convenient – because of the idea of wave cancellation to 

determine a boundary shape. 

2.9 Design of Minimum-Length Nozzle (MLN) 

It should be noted that for this two-dimensional nozzle configuration, flow symmetry implies that only 

half of the nozzle is physically required, assuming that the characteristic reflections in the non-simple 

region are maintained. Therefore, we can make the assumption of a half-symmetric minimum-length 

nozzle, in which a nozzle flap is extended from the symmetry plane such that it meets the length 

requirement for the last characteristic intersecting the nozzle surface (Fig.2.10). 



 

 

 
 

Fig. 2.10. Schematic of characteristic lines for MLN. 

 2.9.1 Implementation of Method of Characteristics 

The two-dimensional Method of Characteristics is a relatively simple analytical model for analyzing 

supersonic two-dimensional flow. This analysis is performed by considering the characteristic lines in 

the flow. Points along each characteristic have five important properties: M (Mach number), θ (flow 

angle), ν (Prandtl-Meyer function), and x and y (position). For the assumption of steady, supersonic, 

we know that, 

 

The constant for summation can be said to be K+ and for subtraction to be K-. These constants are the 

Riemann invariants, which are constant along the characteristics C+ and C-.  

2.9.2 Design of Gradual expansion nozzle 

The steps involved in this calculation are precisely same as those used for the minimum length 

nozzle except for the fact that the expansion fan at the sharp corner is now replaced by a series of 

right running characteristic characteristic lines originating from the arc of the circle. One major 

assumption that has been made here is that a characteristic originating from any point on the 

expansion section is always reflected from the axis in such a way that it reaches the straightening 

portion of the nozzle. Multiple reflections of characteristic lines within the smooth expansion portion 

of the nozzle would make the problem much complicated without really improving the results much. 
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UNIT- III 

NUMERICAL SOLUTION OF TRANSONIC SMALL 

DISTURBANCE EQUATION 

 

3.1 THE TRANSONIC SMALL DISTURBANCE EQUATION 

 

We consider the techniques for numerically the transonic flow over airfoils and bodies of 

revolution. Our ultimate interest is in techniques for predicting the pressure distribution Cp 

and the loads (lift Cl, drag Cd and the pitching moment about the quarter chord cm) over these 

geometries. For simplicity, we extensively discuss only 2-D planar flows. From the previous 

chapter, we recall that the governing equations are: 

 

           (3.1) 

It is possible to eliminate the explicit appearance of density r from equation and arrive at the 

following quasi-linear form of the full potential equation: 

(3.2) 

Equation 3.2 is called quasi-linear because it is linear in its highest derivatives. It is, of 

course, nonlinear . It is this nonlinearity that allows us to model shock waves, a very non-

linear phenomenon. From a mathematical theory called the method of characteristics, one can 

show that equation (3.2)  

 

3.1.1 Loads over the Airfoil 

 

The airloads over the airfoil may be found once Cp is known as follows: 
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where Y(x) is the airfoil shape  
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We are interested in the solution of the governing equations, in the entire region between the 

airfoil and infinity. Because of the nonlinearity of the governing equations, we can not 

analytically solve the governing equations except in some highly simplified cases. Thus, our 

approach is necessarily numerical, and is based on CFD techniques. 

 

3.1.2 Small Disturbance Assumptions 

 

In this, we attempt to simplify the problem by making some physically acceptable assumptions. 

In the next chapter, we will discard these restrictive assumptions and will solve equation set 3.1 

and 3.2 directly. 

 The assumptions we make are: 

1. The body is thin, has a small angle of attack, and has only a mild camber. As a result, 

the body slope dY/dx, in a coordinate system attached to the free stream (known as 

the wind tunnel coordinate system) is small. 

2. As a consequence, we assume that the local flow velocity components u and v are 

not significantly different from their free stream values. 

It must be noted that the above assumption and the resulting analysis known as the transonic 

small disturbance (TSD) theory are, to some extent, only of historical interest. Today, most 

real world problems are solved by directly solving equations 3.1 and 3.2, known as the full 

potential equations (FPE). Nevertheless, the TSD theory provides a useful starting point for 

the more accurate FPE approach. 

Disturbance Potential : 

 We introduce a disturbance potential, φ, related to the full potential ϕ as follows: 

It must be remembered that in this chapter we are using the wind tunnel coordinate system, and 

the freestream velocity is parallel to the x- axis.  

 

(3.3) 

3.2 Mathematical Characteristics of the TSD Equation: 

The transonic small disturbance equation is still nonlinear, in spite of the approximations that 

were made to arrive at this equation. It is this nonlinearity which makes formation of shock 

waves possible. To see why, consider the following equation which is similar in form to 

equation  

These two solutions may occur across a jump ( a shock wave) as shown below: 

Solution 1 
Solution 2 

 

 

 

 

x 

 

= -C = -C 

u  x  V   x 

v  y   y 



 

Note that the flow will slow down across the first jump, as the disturbance velocity changes 

in magnitude from a positive value to a negative value. This type of jump is classified as a 

compression shock. The second jump, on the other hand, corresponds to an expansion shock, 

across which the flow abruptly increases in velocity. We therefore conclude that our TSD 

equation can give    rise to compression shocks as well as expansion shocks. Expansion 

shocks violate the second law of Thermodynamics, and should be excluded, as part of the 

numerical solution procedure. When A is positive, there are no real characteristics, and the 

equation is elliptic. When A is zero, the equation is called parabolic, with characteristic lines 

that are parallel to the y- axis. Finally, when A is negative, two distinct characteristics exist, 

and the equation is hyperbolic. 

At any point P in space, these two characteristics will have slopes that   are equal in 

magnitude and opposite in sign, and will be symmetric about the x- axis, as shown. The 

region in front of the point P enclosed by the characteristics is known as the domain of 

dependence of point P. The region downstream of P, enclosed within the characteristics is 

influenced by point P and known as the domain of influence of P. 
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dy/dx=-1/ 

 

In a general transonic flow, the quantity A can change sign from point to point. Thus, the 

TSD equation may be elliptic in some (subsonic) regions of the flow, parabolic on sonic 

lines, and supersonic and hyperbolic in other regions: 
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Any numerical scheme must account for the fact that these three regions may simultaneously 

exist in a transonic flow. The numerical scheme must be properly designed, so that a point P 

depends on its entire surrounding when the point is in an elliptic region. The numerical scheme 

must also ensure that the point P depends only on its domain of dependence in hyperbolic 

regions. Finally, the numerical scheme must capture the sonic line where the equation is 

parabolic, and the shock wave, across which the flow is discontinuous. Simplifying, the 

following small disturbance approximation to surface pressure coefficient results: 

Boundary Conditions 

 

Before the transonic small disturbance equation may be solved, we need to specify 

the boundary conditions. Of course, the boundary conditions must take into account the 

physics of the problem, and the mathematical characteristics of the equation. 

Boundary Conditions at the Solid Boundary: 

 

At any point on the body surface, the flow must be tangential to the body. 

r 

In other words, the slope of the velocity vector V must equal the body slope. 

 

 

(3.4) 

 

Where this boundary condition should be applied? We have two choices. This boundary 

condition may be applied either at the actual airfoil surface, or on a slit along the chord line, 

located on the x- axis. The latter choice makes the solution procedure simpler because we 

can use a Cartesian coordinate system, rather than a curvilinear coordinate system that is 

wrapped around the body. Within the assumptions built into the small disturbance theory, 

these two approaches may be shown to be equivalent. Note that this slit is a discontinuity, 

across which both the disturbance velocity potential and its y- derivative are discontinuous. 
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Boundary Conditions along a cut downstream of the airfoil trailing edge: Consider an airfoil at 

an angle of attack, producing lift. Then, in a potential flow, the following line integral over any 

contour enclosing the airfoil will produce a nonzero result, known as the circulation. 

 

In the above integral, dS is an infinitesimal line segment vector, tangential to the contour. 

If this contour does not enclose the airfoil, then, using Stokes' theorem the above line integral 

may be shown to be equivalent to the following area integral: 

 

 

The area integral is zero because the curl of the velocity vector is zero in a potential flow. 

 

 

Line integral 

over this 

contour 

yields zero. 

 

 

 

 

Line integral over this contour yields a non-zero result. 

 

 

Thus, the circulation in equation is related to the jump in the velocity potential (or the jump in 

the disturbance potential): 

The jump in the value of the velocity potential or the disturbance potential   implies that these 

are not single valued functions. Somewhere in the x-y plane, these functions must experience an 

abrupt jump in their value, by an amount equal to the circulation, G. The location where the 

jump occurs may, however, be chosen to suit our convenience. In our analysis, we will assume   

that the disturbance potential jumps by an unknown amount along a cut that starts at airfoil 

trailing edge, and ends at downstream infinity. 
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3.3 Far Field Boundary Conditions: 

All numerical calculations are necessarily done on a finite domain. This means the 

outermost boundary where the disturbance velocity potential is solved for, ends at a finite 

distance from the airfoil. Boundary conditions consistent with the physics of the flow must be 

specified on this problem, and over-specification of the boundary conditions must be avoided. 

The specification of boundary conditions is different for subsonic free stream (M< 1) and 

supersonic free stream ( M  >1). 

Subsonic free stream: 

In this case, the disturbance velocity vanishes at the farfield boundary and the 

potential flow satisfies the linearized velocity potential equation. Since this equation is linear, 

it may be solved by superposition of sources, sinks, doublets (sources and sinks placed in 

close proximity with the product of their strength times the separation distance is a constant) 

and vortices. 

For closed bodies, no mass may be generated within the airfoil, or in the flow. 

Therefore, we should not use source or sink singularities. A doublet (source-sink combination) 

may be placed somewhere on the airfoil chord line to represent the airfoil thickness effects and 

the lateral displacement of streamlines. A vortex may also be placed somewhere along the 

airfoil chord (usually at the quarter chord) to simulate the lift effects. 

Now, from incompressible flow, a doublet of strength A produces the following disturbance 

potential at the far field boundary, at a distance r from the doublet: 

 Because this quantity rapidly goes to zero at large distances from the airfoil, the doublet effects 

(i.e. the airfoil thickness effects) are usually not included in the farfield boundaries. 

The vortex of strength   placed somewhere on the airfoil chord line introduces the following 

disturbance: 

This expression may be shown to satisfy equation. The distances x and y must be measured 

from the location of the vortex. Note that the above expression reduces to the familiar 

incompressible form associated with point vortices, when the Mach number is zero. 

 

3.3.1 Supersonic Free stream: 

When the free stream is supersonic, the uses of sources, sinks and doublets are not 

appropriate, because signals from the airfoil cannot travel upstream. The proper boundary 

conditions are as follows. 
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Upstream Boundary: At this boundary, is set to zero. 

 

Downstream Boundary: On this boundary, it is not appropriate to specify any boundary 

conditions, because in supersonic flow information can only flow downstream. In other words, 

the behavior of   is determined by the flow over the airfoil itself. Thus, we should determine 

from the nonlinear governing equation or its linearized form. 

 

Lateral Boundaries: At these boundaries, the linearized potential equation may be examined to 

arrive at the proper boundary conditions. From the mathematical theory of characteristics, this 

equation has two characteristics, and two corresponding compatibility conditions that must be 

satisfied along the characteristics. These are: 

These characteristic equations and their compatibility equations must be applied at the lateral 

boundaries. Equation set, which corresponds to a characteristic that starts in the interior of the 

flow out proceeds upwards and outwards is applied at the top boundary. Equation corresponds to 

a characteristic with a negative slope, which starts at the interior and proceeds down towards the 

lower lateral boundary. Therefore, this equation is applied at the bottom boundary. 
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One can apply the method o f characteristic at the downstream boundary as well to 

solve it is far easier to solve the governing equations at this boundary, in a manner identical 

to that used in the interior. 

 

 

 



 

 

Murman-Cole  Difference  Scheme:  Aυxx +  υyy = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT - IV 

NUMERICAL METHODS FOR EULER EQUATIONS, 

BOUNDARY LAYER EQUATIONS 
 

4.1 Solution of the Euler Equations 
 

4.1.1 Formulation 

The results of potential flow calculations have proved accurate enough to be used as the basis of 

the wing design of the latest generation of transport aircraft, such as the Boeing 767 and Airbus 

A 310. Nevertheless, the assumption of potential flow is not strictly correct when shock waves 

are present, and this inconsistency must set a limit to the accuracy that could be obtained even if 

the discretion errors were entirely eliminated. To provide a correct description of inviscid 

transonic flow we must solve the Euler equations. The widespread use of Euler codes has so far 

been impeded by large numerical errors (leading, for example, to generation of, spurious 

vorticity), and excessively slow convergence (often no convergence). Recent developments 

promise to correct this situation. 

The emphasis here will be on the calculation of steady state solutions. While other iterative 

methods can be conceived, most of the methods so far developed are based on the concept of 

integrating the equations in time until they reach a steady state. An exterior problem can reach a 

steady state as a result of the propagation of disturbances away to infinity. This mechanism of 

convergence by expulsion of errors is effective as long as out- going disturbances are not too 

strongly reflected back into the interior and boundary conditions must therefore be treated with 

care. Since the time dependent terms are used merely as a device for generating an iterative 

scheme, they may be modified to increase the rate of convergence. The time dependent 

formulation is similar in principle to the Jacobi method. When applied to Laplace’s equation, for 

example, the Jacobi method is equivalent to integrating the heat equation 

υt = υxx + υyy    

until it reaches a steady state. 

 
 

Figure 4.1: Transonic flow solution obtained with 3 multigrid cycles NACA 640410, Mach .720, 

α = 0◦,  CL=.6640,  CD=.0031,  192 × 32 grid Residual .58010−6 

 

An advantage of the time dependent formulation is that it brings the problem within the frame 

work of the mathematical theory of difference methods for hyperbolic equations. Stemming 

from the early work of Courant, Von Neumann, and Lax, this theory is by now highly 

developed.  

 

 



 

A stability theory for the initial boundary value problem has been formulated and refined by 

Kreiss, Gustaffson and Sundstrom, and the application of this theory has been worked out for a 

variety of discretization schemes. Procedures have also been developed for the construction of 

boundary conditions designed to allow outgoing waves to pass through the outer boundary. The 

availability of this body of theory provides a solid foundation for the development of codes to 

treat practical aerodynamic problems. 

A special case occurs when the flow is everywhere supersonic. The steady state equations then 

constitute a hyperbolic system in which the stream wise coordinate plays the role of the time like 

variable, and the entire flow field can be calculated in a single sweep, marching downstream. 

 

4.1.2 Semi-Discrete Finite Volume Schemes 

A convenient way to assure a steady state solution independent of the time step is to separate 

completely the space and time discretization procedures. In the scheme proposed by Jameson,  

Schmidt and Turkel one begins  by applying a semi-discretization in which only the spatial 

derivatives are approximated. The resulting ordinary differential equations are then solved by a 

multi-stage time stepping procedure. 

The space discretization scheme can be developed by writing the Euler equations in the integral 

form. The computational domain is divided into quadrilateral cells denoted by the subscripts i, j 

as, sketched in Figure 4.1 

 

4.1.2.1 Adaptive  Dissipation 

The finite volume scheme defined by equations is not dissipative, allowing undamped 

oscillations with alternate sign at odd and even mesh points. In order to eliminate spurious 

oscillations, which will be triggered by discontinuities in the solution, one can follow either of 

two strategies. The first is to begin with a non-dissipative scheme, and to attempt to add just 

enough dissipation where it is needed to control the tendency to produce spurious oscillations. 

The second approach is to try to construct a scheme which is guaranteed to prevent oscillations 

by preserving the monotonicity of an initially monotone profile, typically through the use of 

one-sided upwind differencing.  

In this section I describe an adaptive scheme for adding dissipation which has proved 

effective in practice. The idea of the adaptive scheme is to add third order dissipative terms 

throughout the domain to provide a base level of dissipation sufficient to prevent nonlinear 

instability, but not sufficient to prevent oscillations in the neighborhood of shock waves. In order 

to capture shock waves additional first order dissipative terms are added locally by a sensor 

designed to detect discontinuities. 

 

Figure 4.2:  Finite Volume Scheme 



 

4.1.2.2 Upwind Differencing, Total Variation Diminishing Schemes, and Flux vector 

Splitting 

 

It is not easy to simulate a propagating discontinuity by a numerical method. The simplest model 

of convection is provided by the one dimensional wave equation 

ut + ux = 0 

This equation can be approximated by the one sided scheme 

ui
n+1

 = ui
n
  −λ(ui

n
  −ui

n
−1) 

where λ is the Courant number ∆t/∆x. This scheme is stable for 0 < λ < 1 and it is appealing 

for two reasons: 

1. It simulates the physical process of wave propagation by looking back- wards along the 

direction of propagation: if λ = 1, it exactly represents propagation along characteristics. 

2. It has the property of preserving the monoticity of an initially mono- tone profile: this 

excludes the possibility of generating an overshoot behind a shock wave. 

These observations have motivated numerous studies of one sided schemes, dating back to the 

early work of Courant, Isaacson and Rees. There has recently been a revival of interest in 

the use of one sided differencing for compressible flow calculations, beginning with the 

nonconservative λ scheme of Moretti, and the conservative scheme of Steger and Warming. 

There is by now a rather extensive theory of difference schemes for the treatment of a scalar 

conservation law. 

4.1.2.3 Boundary Conditions 

The pressure at the wall is then estimated by   extrapolation from the pressure at the adjacent cell 

centers, using the known value. 

The rate of convergence to a steady state will be impaired if outgoing waves are reflected back 

into the flow from the outer boundaries. The treatment of the far field boundary condition is 

based on the introduction of Riemann invariants for a one dimensional flow normal to the 

boundary. Let subscripts and e denote free stream values and values extrapolated from the 

interior cells adjacent to the boundary and let qn and c be the velocity component normal to the 

boundary and the speed of sound. Assuming that the flow is subsonic at infinity. 

4.2.1 Explicit Time Stepping Schemes 

Multi-stage schemes for the numerical solution of ordinary differential equations are usually 

designed to give a high order of accuracy. Since the present objective is simply to obtain a steady 

state as rapidly as possible, the order of accuracy is not important. This allows the use of 

schemes selected purely for their properties of stability and damping.  



 

 

Figure 4.3:  Explicit Scheme 

For this purpose it pays to distinguish the hyperbolic and parabolic parts stemming respectively 

from the convective and dissipative terms, and to treat them differently.  This leads to a new 

class of hybrid multi-stage schemes. 

Let wn be the value of w after n time steps. Dropping the subscripts i, j the general m/ stage 

hybrid scheme to advance a time step ∆t can be written as 

w(0) =   wn 

w(1) = w(0)  − α1∆tR(0) 

. . .  

In order to assess the properties of these schemes it is useful to consider the model problem 

ut  + ux  + µ∆x3uxxxx  = 0  

In the absence of the third order dissipative term this equation describes the propagation of a 

disturbance without distortion at unit speed. With centered differences the residual has the form 

∆tRi = λ (ui+1 –ui-1)+λµ(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2) 

where λ = ∆t/∆x is the Courant number.  If we consider a Fourier    mode 

û = eipx the discr et ization in  space yields  

where z is the Fourier symbol of the residual.  Setting ξ = p∆x, this is 

z = −λi sin ξ − 4λµ(1 − cos ξ)2  

 

A single step of the multistage scheme yields 

ûn+1  = g(z)ûn 

where g(z) is the amplification factor. The stability region of the scheme is given by those values 

of z for which g(z)   ≤ 1. 

Schemes of this subclass have been analyzed in a book by van der Houwen, and more recently 

in papers by Sonneveld and van Leer, and Roe and Pike. They are second order accurate in time 

for both linear and nonlinear problems if αm−1 = 1/2. An efficient 4 stage scheme, which is also 

fourth order accurate for linear problems, has the coefficients 

 



 

α1 = 1/4, α2 = 1/3, α3 = 1/2  

 

The amplification factor of this scheme is given by the polynomial 

z2 z3 z4 

g(z) = 1 + z + +      +    

2 6 24 

 

where Dx and Dy are difference operators approximating.The scheme is second order 

accurate in time if β = 1/2, and in the linear scalar case it will be  unconditionally  stable  for  all  

∆t  >  0  if  β  >  1/2.   

In this form the scheme is too expensive, since it calls for the solution of coupled nonlinear 

equations at each time step.    

 

4.2.2 Implicit Schemes 

An obvious way to accelerate convergence to a steady state is to increase the time step. The time 

step of an explicit scheme is limited by the Courant Friedrichs Lewy condition, which requires 

that the region of dependence of the difference scheme must at least contain the region of 

dependence of the differential equation.  This motivates the introduction of implicit schemes. 

The celebrated paper of Beam and Warming give an elegant formulation of implicit schemes for 

nonlinear hyperbolic equations. 

A prototype implicit scheme for a system of equations such as the Euler equations (2.5), can be 

formulated as 

wn+1 =    wn  − β∆t[Dxf (wn)+ Dyg(wn)] 

(1 − β)∆t[Dxf (wn+1 + Dyg(wn+1))] 

 

 

 

Figure 4.4(a)  Stability region of standard 4 stage scheme Contour lines |g| = 1., .9, .8, . . . and 

locus of z(ξ) for  λ = 2.6, µ = 1/32 

 Coefficients α1 = 1/4, α2 = 1/2, α3 = ½  

 



 

 

 

 

 

Figure 4.4(b)  Amplification factor |g| of standard 4 stage scheme for λ = 2.6,µ = 1/32  

Coefficients α1 = 1/4, α2 = 1/2, α3 = 1/2 

 

If  β  =  1/2  the  scheme  remains  second  order  accurate  because  ||δw|| = O(n4) operations for 

inversion. Because of this rapid growth of the operation count with n, the Newton method 

appears to be uncompetitive except on very coarse meshes. 

Beam and Warming derive a relatively inexpensive scheme by replacing the operator on the left 

side of equation by a product of two one dimensional operators: 

(I + β∆tDxA)(I + β∆tDyB)δw + ∆tR = 0  

 

Equation can be inverted in two steps 

(I + β∆tDxA)δw∗ + ∆tR = 0  

(I + β∆tDyB)δw = δw∗
 

Equation remains second order accurate if β = 1/2, and unconditionally stable for the linear   

scalar   case if β > 1/2. It also has the desirable feature for steady state calculations that the 

steady state is independent of ∆t. The corresponding scheme in three dimensions is unstable. 

This reduction of an implicit scheme to an alternating direction scheme was originally 

introduced by Mitchell and Gourlay. Briley and Mac- Donald have also developed an equivalent 

alternating direction procedure for solving nonlinear hyerbolic equations. The alternating 

direction method has been used for transonic flow calculations by Steger and Pulliam. 

An alternative reduction is to replace the operator on the left hand side of equation by a product 

of factors with upwind and downwind differencing, leading to an LU implicit scheme. Care must 

then be taken to ensure that the operators in the two factors have respectively positive and 

negative eigen values. This scheme has been used to calculate transonic flows through cascades 

by Buratynski and Caughey. 



 

 

Another approach to Increasing the time step is to replace the residual at each point by a 

weighted average of residuals at neighboring points. Consider the multi-stage scheme described 

by equation (5.30). In the one dimensional case one might replace the residual Ri by the average 

at each stage of the scheme. 

R̄ i  = sRi−1 + (1 − 2s)Ri + sRi+1 

This smooths the residuals and also increases the support of the scheme, thus relaxing the 

restriction on the time step imposed by the  Courant  Friedrichs  Lewy  condition.   If  s  >  1/4, 

however, there  are Fourier  modes  such  that  R̄ i  =  0  when Ri   ƒ=  0.   To avoid this restriction 

it is better to perform the averaging implicitly by setting 

sR̄ i−1 + (1 − 2s)R̄ i − sR̄ i+1  = Ri  

Foran infinite interval this equation has the explicit solution 

∑ 

1 − r 

1 + rq=−∞ 
rq Ri+q 

 

Thus  the  effect  of  the  implicit  smoothing  is  to  collect  information   from residuals at all 

points in the field, with an influence coefficient which decays by  factor r at each additional 

mesh interval  from the point of  interest

 

1 + r > λ 

  

1 − r λ∗ 

4.2.3 Multigrid Scheme 

 

While the available theorems in the theory of multi grid methods generally assume ellipticity, it 

seems that it ought to be possible to accelerate the evolution of a hyperbolic system to a steady 

state by using large time steps on coarse grids, so that disturbances will be more rapidly expelled 

through the outer boundary. The interpolation of corrections back to the fine grid will introduce 

errors, however, which cannot be rapidly expelled from   the fine grid, and ought to be locally 

damped, if  a fast rate of convergence is   to be attained. Thus it remains important that the 

driving scheme should have the property of rapidly damping out high frequency   modes. 

In a novel multigrid scheme proposed by Ni, the flow variables are stored at mesh nodes, and the 

rates of change of mass, momentum and energy in each mesh cell are estimated from the flux 

integral appearing in equation. The corresponding change 6wo associated with the cell is then 

distributed unequally between the nodes at its four corners by the rule where  δwo   is  the  

correction  at  a  corner,  and  A  and  B  are  the Jacobian matrices. The signs are varied in such a 

way that the accumulated corrections at each node correspond to the first two terms of a Taylor 

series in time, like a Lax Wendroff scheme. As it stands, this scheme does not damp oscillations 

between odd and even points. Ni introduces artificial viscosity by adding a further correction 

proportional to the difference between the value at each corner and the average of the values at 

the four corners of the cell.  Residuals on the coarse grid are formed by taking weighted 

averages of the corrections at neighboring nodes of the fine grid, and corrections are then 

Ri = 



 

 

assigned to the corners of coarse grid cells by the same distribution rule. When several grid 

levels are used, the distribution rule is applied once on each grid down to the coarsest grid, and 

the corrections are then interpolated back to the fine grid. Using 3 or 4 grid levels, Ni obtained a 

mean rate of convergence of about .95, measured by the average reduction of the residuals in a 

multigrid cycle. The performance of the scheme seems to depend critically on the presence of 

the added dissipative terms to provide the necessary damping of high frequency modes. In Ni’s 

published version of the scheme these introduce an error of first order. 

 

The flexibility in the formulation of the hybrid multi-stage schemes allows them to be designed 

to provide effective damping of high frequency modes with higher order dissipative terms. This 

makes it possible to devise rapidly convergent multigrid schemes without any need to 

compromise the accuracy through the introduction of excessive levels of dissipation. 

In order to adapt the multi-stage scheme for a multigrid algorithm, auxiliary meshes are 

introduced by doubling the mesh spacing. Values of the flow variables are transferred to a 

coarser grid by the rule, where the subscripts denote values of the mesh spacing parameter, S is   

the cell area, and the sum is over the 4 cells on the fine grid composing each   cell on the coarse 

grid. This rule conserves mass, momentum and energy. With the result that the evolution on the 

coarse grid is driven by the residuals on the fine grid. This process is repeated on successively 

coarser grids. Finally the correction calculated on each grid is passed back to the next finer grid 

by bilinear interpolation. 

 

 
 

Figure 4.5 Multigrid Scheme 

 

Since the evolution on a coarse grid is driven by residuals collected from the next finer grid, the 

final solution on the fine grid is independent of the choice of boundary conditions on the coarse 

grids. The surface boundary condition is treated in the same way on every grid, by using the 

normal pressure gradient to extrapolate the surface pressure from the pressure-in the cells 

adjacent to the wall. The far field conditions can either be transferred from the fine grid, or 

recalculated by the procedure.  

 

It is also possible to use different dissipative terms on the coarse grids.  In practice the best 

convergence rates have been obtained by using second differences. It turns out than an effective 

multigrid strategy is to use a simple saw tooth cycle (as illustrated in Figure 4.6), in which a 

transfer is made from each grid to the next coarser grid after a single time step. After reaching 



 

 

the coarsest grid the corrections are then, successively interpolated back from each grid to the 

next finer grid without any intermediate Euler calculations. On each grid the time step is varied 

locally to yield a fixed Courant number, and the same Courant number is generally used on all 

grids, so that progressively larger time steps are used after each transfer to a coarser grid. In 

comparison with a single time step of the Euler scheme on the fine grid, the total computational 

effort in one multigrid cycle   is 

1 1 4 

1 + 

+       

4 16 + . . . ≤ 3 

Plus the additional work of calculating the forcing functions P, and interpolating the corrections. 

 

It is important that the time stepping scheme should be effective at damping the high frequency 

modes. One can fairly easily devise 3 and 4 stage schemes in the class defined by which meet 

this requirement. 

An effective 3 stage scheme is given by the coefficients 

 

α1 = .6, α2 = .6 

 

Additional flexibility is provided by a class of schemes in which the dissipative terms are 

evaluated twice. This may be used to make a further improvement in the high frequency 

damping properties, or else to extend the stability region along the real axis to allow more 

margin for the dissipation Introduced  by an  upwind  or  TVD scheme of  the type described   

In the case of pure dissipation (Qw = 0), the amplification factor reduces to 

g = 1 + x + α1βz2 

 

The 5 stage scheme combines van der Houwen’s optimal coefficients with two evaluations of 

the dissipative terms to attain a stability interval of 4 along both the imaginary and the real axes. 

 

 
 

Figure  4.6:  Saw  Tooth  Multigrid Cycle 



 

 

 
 

Figure 4.7: Stability region of 3 stage scheme with single evaluation of dissipation Contour lines 

|g| = 1., .9, .8,. . . and locus of z(ξ) for λ = 1.5, µ = 0.04 Coefficients α1  = .6, α2 = .6 

 

 
 

Figure 4.8 Amplification factor |g| of 3 stage scheme with single evaluation of dissipation  for 

λ = 1.5, µ = 1/32 Coefficients α1 = 1/4, α2 = 1/2, α3 = 1/2 



 

 

 

 

 
Figure 4.9 Stability region of 4 stage scheme with two evaluations of dissipation Contour lines |g| 

= 1., .9,.8, . .. and locus of z(ξ) for λ = 2.4, µ = 0.05 Coefficients α1 = 1/4, α2 = 1/3, α3 = 1/2, β = 1 

 

 

 
Figure 4.10 Amplification factor 4 stage scheme with two evaluations of dissipation for λ = 2.4, 

µ =   0.05 Coefficients α1 = 1/4, α2 = 1/3, α3 = 1/2, β = 1 



 

 

 

 
Figure 4.11 Stability region of 5 stage scheme with two evaluations of dissipation 

Contour lines |g| = .9, .8, .7 . .. and locus of z(ξ) for λ = 3, µ = 0.04 Coefficients α1 = 1/4, 

α2 = 1/6, α3 = 3/8, β = 1 

 

 
Figure 4.12 Amplification factor 5 stage scheme with two evaluations of dissipation for λ = 3,µ  = 

0.04 Coefficients α1 = 1/4, α2 = 1/6, α3 = 3/8, β = 1 



 

 

4.3 Results from the Euler Equations 

This section presents some typical results of multigrid calculations of the Euler equations for two-

dimensional flow. The 5 stage scheme defined by equation was used in all the examples, and 

residual averaging was also used to allow steps corresponding to a Courant number of 7.5.  

The first example is the flow past a circular cylinder at Mach .50, calculated on a grid with 128 

cells in the circumferential direction and 32 cells in the radial direction. The calculation was started 

from an initial condition of uniform flow.  

 
Figure 4.13  Inner part of the grid for 128 X 32 cells 

 

There is a shockwave of moderate strength slightly beyond the crest of the cylinder. One curve 

shows the decay of the logarithm of the error (measured by the root mean square rate of change of 

density on the fine grid): the mean rate of convergence is just less than 8 per multigrid cycle. The 

other curve shows the buildup of the number of grid points in the supersonic zone: it can be seen 

that the flow field is fully developed in about 30 cycles. 

 

 
Figure  4.14 Inner  part of the grid for NACA 0012 160 X 32  cells 

 



 

 

The next examples are transonic flows past airfoils. A 0-mesh was used in these calculations with 

the outer boundary   at a distance of about 50 chords.  Each result was obtained with 50 cycles   on 

an 80 x 16 mesh, followed by 50 cycles on a 160 x 32 mesh. This was sufficient for full 

development of the flow field.   The flow past the NACA 0012 airfoil contains a fairly strong 

shock wave on the upper surface, which is resolved in about 5 mesh cells, and a weak shock wave 

on the lower surface, which is quite smeared. The Korn airfoil is designed to be shock free at the 

given Mach number and angle of attack.  The result of the Euler calculation   is in close agreement 

with the result of the design calculation.  

 

 
Figure 4.15 Inner  part of the grid of Korn airfoil 160 X 32   cells 

 

 
Figure  4.16 Pressure distribution for NACA 0012 Mach .800 α1.25◦  CL .3504 CD .0227 160X32 

grid 50 cycles Residual   .15210−3 



 

 

The drag should be zero in a shock free flow, and the calculated value of the drag coefficient CD = 

.0005 is an indication of the level of discretization error. Another measure of error is the entropy, 

which should also be zero.       

 

 

 

Figure 4.17 Initial state and first 10 cycles in evolution of Burger’s equation (reading upwards) 

Adaptive dissipation(scheme 1a)  128 cells 5 grids  λ =   2.0 

 

 
 

Figure 4.18 Pressure distribution for Korn airfoil Mach .750 α0◦ CL .6254 CD .005 160X32 grid 50 

cycles Residual  .11210−3 



 

 

4.4 Viscous Flow Calculations 
 

4.4.1 Boundary Layer Corrections 
 

While it is true that the viscous effects are relatively unimportant outside the boundary layer, the 

presence of the boundary layer can have a drastic influence on the pattern of the global flow. This 

will be the case, for example, in the event that the flow separates. The boundary layer can also 

cause global changes in a lifting flow by changing the circulation.  These effects are particularly 

pronounced in transonic flows. The presence of a boundary layer can cause the location of the 

shock wave on the upper surface of the wing to shift 20% of the chord. 

While we must generally account for the presence of the boundary layer, the accuracy attainable in 

solutions of the Navier Stokes equations for complete flow fields is severely limited by the extreme 

disparity between the length scales of the viscous effects, and those of the gross patterns of the 

global flow. This has encouraged the use of methods in which the equations of viscous flow are 

solved only in the boundary layer, and the external flow is treated as inviscid.  These zonal methods   

can give very accurate results in many cases of practical concern to the aircraft designer. 

In the outer region the real viscous flow is approximated by an equivalent inviscid flow, which has 

to be matched to the inner viscous flow by an appropriate selection of boundary conditions. In most 

of the boundary layer the viscous flow equations may consistently be approximated by the 

boundary layer equations. This is sufficient in regions of weak interaction, in which the viscous 

effect on the pressure is small. There are, however, regions of strong interaction in which the 

classical boundary layer formulation fails, because of the appearance of strong normal pressure 

gradients across the boundary layer. Coupling conditions for the interaction between the inner 

viscous flow and the outer inviscid flow can be derived from an asymptotic analysis in which the 

Reynolds number is assumed to become very large.  The two solutions could be patched at the outer 

edge of the boundary layer. It is often more convenient, however, to allow the equivalent inviscid 

flow to overlap the inner viscous region. 

A complete analysis of the viscous flow over an airfoil should include the following principal 

effects: 

1. The displacement effect of the boundary layer over the   airfoil 

2. The displacement effect of the wake 

3. The wake curvature effect induced by the momentum defect in the wake 

4. The Interaction of the boundary layer  with the trailing edge 

5. The interaction of the boundary layer with shock   waves 

 

 
Figure 4. 19 Boundary Layer Corrections 

 



 

 

 

 
 

Figure 4.20:  Viscid-Inviscid Interactions on Airfoils 

 

The first three of these are weak Interactions, and the last two are strong interactions. 

The displacement effect is caused by the outward displacement of the streamlines which results 

from the reduced mass flow in the boundary layer. This effect can be modeled by adding an 

equivalent thickness to the body, equal to the displacement thickness of the boundary layer, and 

applying the flow tangency condition at the surface of the modified body. An alternative 

formulation, discussed, for example, by Light hill, is to extend the equivalent inviscid flow to the 

real body, and to apply a transpiration boundary condition. This condition can be derived by 

considering the defect equation for the difference between the inviscid and viscous flows. By 

integrating the continuity equation across the boundary layer,    and assuming that the inviscid and 

viscous flows match at the edge of the boundary layer  thickness,  and  the  subscript  i denotes  the  

inviscid  flow.  This is the boundary condition that is now applied in the calculation of the 

equivalent inviscid flow.   

We can write it as dQ(ρv)wall =  ds  

where Q is the mass flux defect defined by the integral in equation (6.1). If the outer inviscid flow is 

represented by the Euler equations, similar defect equations for the momentum and energy provide 

the additional boundary conditions that are needed to solve the Euler equations. The displacement 

effect is usually more pronounced on the upper surface than it is on the lower surface. This leads to 

an equivalent decambering of the airfoil which acts to reduce the lift. 

There is also a displacement effect due to the wake behind the airfoil. 

The matching condition for the wake displacement effect is 1[v]wake = ρwQwds 

where [v] is the jump in the normal velocity across the wake, ρw is the average of the densities in 

the Inviscid flow on the two sides of the wake,  and Qw is the total mass flux defect  in the  wake.  

The main result of the wake displacement effect is a reduction in the pressure near the trailing edge, 

and a corresponding increase in the  drag. 

The curvature of the wake induces an additional reduction of the lift. Because there is a momentum 

defect in the wake, it acts like a jet flap with     a negative momentum coefficient. The deflection of 

the wake towards the direction of the outer stream requires a normal pressure gradient, with the 

result that the pressure at the trailing edge is larger on the upper surface than it is on the lower 

surface. The Kutta condition for the equivalent inviscid flow must be modified to allow for this 

difference in the   pressures. 

The matching condition for the wake curvature effect is [p]wake = Cwκw  

where [p] is the jump in the pressure across the wake, Cw is the total momentum defect in the wake  

and κw  is the wake   curvature.   The magnitude   of the wake curvature effect is formally of the 

same order as that of the displacement effect. 



 

 

The analysis of the flow in regions of strong interaction is more complicated because of the 

breakdown of the boundary layer approximation. In the region of the trailing edge the flow in the 

boundary layer accelerates, and the boundary layer thickness decreases, because the retardation of 

the flow by skin friction suddenly ceases.  Melnik has developed a consistent model of the strong 

interaction of an un separated turbulent boundary layer with a cusped trailing edge, under the 

assumption that the Reynolds number is large. As the flow passes through a shockwave, the sharp 

pressure rise at the foot of the shock wave causes a steep thickening of the boundary layer. As long 

as the shock wave is not too strong, it turns out, however, that the growth of boundary layer 

thickness through the shockwave is quite well predicted by boundary layer theory, although the 

local details of the flow are not accurately modeled. Consequently the coupling condition can still 

be used to obtain the global flow. 

The coupled viscous and inviscid equations are solved iteratively. The simplest procedure is a direct 

one. The inviscid flow is first solved without a boundary layer, and the boundary layer is calculated 

using the wall pressure from the inviscid solution as a boundary condition. The inviscid flow is then 

recalculated with a boundary condition which accounts for the presence of the boundary layer, and 

the process is repeated until the solution converges. A linearized analysis of this procedure indicates 

that it will generally be necessary to under-relax the changes in the boundary conditions, and that   

it will become unstable near a separation point. 

This difficulty has led to the introduction of semi-inverse methods in which the transpiration 

boundary condition is prescribed in both the inviscid flow calculation and the boundary layer 

calculation. The inviscid flow calculation provides an estimate ue, I of the speed at the edge of the 

boundary layer. An inverse boundary layer method is used to calculate a corresponding estimate ue, 

V of the speed at the edge of the boundary layer from the boundary layer equations. In Carter’s 

method, the equivalent mass flux defect Q appearing in the transpiration boundary condition is then 

multiplied by the correction factor (ue, V) 

1 + ω ue, I − 1 

where ω is a fixed relaxation factor, and the process is repeated. Le Balleur uses a more 

complicated correction formula with a locally varying relaxation factor. These methods converge 

for flows containing separated regions. The method of Bauer, Garabedian, Korn and Jameson was 

the first to incorporate boundary layer corrections into the calculation of transonic potential flow. 

This method only accounted for displacement effects on the airfoil, and modeled the wake as a 

parallel semi-infinite strip. Nevertheless, this simple model substantially improved the agreement 

with experimental data. More complete theoretical models including effects due to the wake 

thickness and curvature have been developed by Collyer and Lock, Le Balleur, and Melnik, Chow, 

Mead, and Jameson. Recently Whit field, Thomas, Jameson, and Schmidt have developed a method 

based on the use of the Euler equations for the inviscid flow. It can be seen that the inclusion of the 

boundary layer correction shifts the inviscid result into close agreement with the experimental data. 

 

4.4.2Reynolds Averaged Navier Stokes Equations 

The simulation of attached flows by zonal methods now rests on a firm theoretical foundation, and 

has reached a high level of sophistication in practice.  The treatment of three-dimensional flows is 

presently limited by a lack of available boundary layer codes for general configurations.  During the 

last few years there has also emerged the possibility of simulating flows with small separated 

regions by zonal methods. In cases of massive flow separation, where the flow is often observed to 

be unsteady, adequate zonal models have yet to be developed. Zonal methods also have the 

disadvantage that extensions to more general configurations require a separate asymptotic analysis 

of each component region, such as the corner between a wing and   a nacelle pylon, with the result 

that they can become unmanageable as the complexity of the configuration is increased. 

 



 

 

 
Figure 4.21: Comparisons Between the Viscid and Inviscid Solutions and Experimental Data RAE 

2822 Airfoil,  Mach  .725,  CL .743 

 

For these reasons a continuing body of research is directed at the global solution of the Reynolds 

averaged Navier Stokes equations.  The hope is  that it will be possible  to  develop  a  fairly  

universal  method,  which  will  be   able to predict separated flows where the present zonal 

methods fail,     in particular, separated flows that are two-dimensional and unsteady, and three-

dimensional separated flows, both steady and unsteady. The present state of the art has been very 

thoroughly reviewed by Mehta and Lomax [1011. During the past decade the Navier Stokes 

equations have been the subject of exploratory investigations aimed at establishing the feasibility of 

their solution, but the methods so far developed have been too expensive to permit their use in a 

routine production mode. 

The principal requirements for a satisfactory solution of the Reynolds averaged Navier Stokes 

equations are: 

1. The reductions of the discretization errors to a level such that any numerically introduced 

dissipative terms are much smaller than the real viscous terms. 

2. The closure of the equations by a turbulence model which accurately represents the turbulent 

stresses. 

The problem of sufficiently reducing the numerical errors is particularly severe in regions of strong 

interaction, such as the foot of a shock wave, where it may not be possible to attain a high order of 

accuracy in the difference approximation. The use of a fine enough mesh to overcome this problem 

has so far been impeded by a lack of powerful enough computers. 

The development of the necessary numerical methods is already quite well advanced. The methods 

described in the previous section can generally be carried over to the Navier Stokes equations. 

MacCormack has extended both his explicit scheme and his new implicit scheme to the treatment of 

viscous flows. Diewert has used MacCormack’s explicit scheme in his path-finding calculations of 

viscous flows over airfoils, and Shang and Hankey have recently used the same scheme to calculate 

the flow past a hypersonic cruiser. Beam and Warming have also made a corresponding extension 

of their alternating direction implicit scheme to treat viscous flows. 

 



 

 

Rapid developments in the speed and memory of computers are steadily improving the prospect of 

useful simulations of the Reynolds averaged Navier Stokes equations. In the opinion of Mehta and 

Lomax, the development of reliable turbulence models is now the crucial pacing item. No single 

turbulence model has been found which can be used in the simulation of a variety of flows. At the 

present time not much is known about the behavior of turbulence in separated regions, and this has 

impeded the development of turbulence models for complex three-dimensional flows. It appears 

that near term improvements in the computational simulation of turbulent flow will probably 

depend heavily on experimental inputs and checks. 

 

Quite satisfactory methods are now available for the prediction of steady transonic flows using 

either the potential flow equation or the Euler equations as a mathematical model. 

With the advent of a new generation of computers it will be entirely feasible to calculate solutions 

of the Euler equations for a complete aircraft.  A code to solve the Euler equations for wing-body-

tail-fin combinations is already operational. The Cray 2, for example, is projected to be at least six 

times faster than the Cray 1,   and will   have   256 million words of memory. When a Cray 1 is 

used to perform calculations with the four- stage scheme, three-dimensional Euler solutions on a 

25000 point mesh can be advanced 200 steps in 150 seconds. Assuming that the multigrid 

acceleration procedure described in Section 5e is introduced, 200 steps should be ample for 

convergence. Using a grid with one million points, it should therefore be possible to calculate a 

solution in 20 minutes or less with a Cray 2. One million grid points should be enough for a 

reasonably accurate representation of an airplane, and the corresponding memory requirement, of 

the order of 40 million words, would not tax the new machines. 

We can also anticipate the routine calculation of unsteady flows for the determination of structural 

loads. Looking further ahead, we can see on the horizon the increasingly real possibility of 

simulating the flow past a complete aircraft with the Reynolds averaged Navier Stokes equations. 

 

4.4.2 Steady State Laminar Boundary Layer on a Flat Plate. 

 

We consider a flat plate at y = 0 with a stream with constant speed U parallel to the plate. We are 

interested in the steady state solution. We are not interested in how the flow outside the boundary 

layer reached the speed U.  

 
Figure 4.22: Laminar Boundary Layer on a Flat Plate 

 

In this case, we need only to ∂u consider boundary conditions and the equation simplifies since ∂t = 

0. At the plate surface there is no flow across it, which implies that 

v = 0 at y = 0.  

 



 

 

Due to the viscosity we have the no slip condition at the plate. In other words, 

u = 0 at y = 0.  

At infinity (outside the boundary layer), away from the plate, we have that 

u → U as y → ∞.  

For the flow along a flat plate parallel to the stream velocity U, we assume no pressure gradient, 

soothe momentum equation in the x direction for steady motion in the boundary layer is 

u∂u + v ∂u 

and the appropriate boundary conditions are: 

At y = 0, x > 0; u = v = 

0, At y → ∞, all x; u = U, 

At  x = 0;u = U. 

These conditions demand an infinite gradient in speed at the leading edge x = y = 0, which implies a 

singularity in the mathematical solution there. However, the assumptions implicit in the boundary layer 

approximation break down for the region of slow flow around the leading edge. The solution given by the 

boundary layer approximation is not valid at the leading edge. It is valid downstream of the point x = 0.  

At y → ∞,  all x; ∂y  = U.  

The boundary value problem admits a similarity solution. We would like to reduce the partial differential 

equation (3.33) to an ordinary differential equation. We would like to find a change of variables which 

allows us to perform the reduction mentioned above. 

Figure 4.23: Functions f (η), ft(η)  and ftt(η). The horizontal axis represents the range   of values of η 

considered, and in the vertical axis we have the values of the functions f (η), ft(η) and  ftt(η). 

 

Once we have computed numerically f (η) and its derivatives up to second order, we can obtain the velocity 

components (u, v) at any point (x, y) of the flow domain, according to the equations. 

 

4.4.5 Boundary-layer Thickness, Skin friction, and Energy dissipation 

 

According to equation, the pressure across the boundary layer is constant in the boundary-layer 

approximation, and its value at any point is therefore determined by the corresponding main-stream 

conditions. If U(x,t) now denotes the main stream velocity. 



 

 

Elimination of the pressure from equation gives in terms of dimensional variables the boundary layer 

momentum equation. 

In most physical problems the solutions of the boundary layer equations are such that the velocity 

component u attains its main-stream value U only asymptotically as R1/2y/L → ∞.  The thickness of the 

layer is therefore indefinite, as there is always some departure from the asymptotic value at any finite 

distance y from the surface. In practice the approach to the limit is rapid and a point is soon reached 

beyond which the influence of viscosity is imperceptible. It would therefore be possible to regard the 

boundary layer thickness as a distance δ from the surface beyond which u/Y > 0.99, for example, but this is 

not sufficiently precise (since ∂u/∂y is small there) for experimental work, and is not of theoretical 

significance. 

 

The scale of the boundary layer thickness can, however, is specified adequately by certain lengths capable 

of precise definition, both for experimental measurement and for theoretical study. These measures of 

boundary layer thickness are defined as follows: 

• Displacement thickness δ1: 

• Momentum thickness δ2: 

• Energy thickness δ3: 

 

The upper limit of integration is taken as infinity owing to the asymptotic approach of u/U to 1, but in 

practice the upper limit is the point beyond which the integrand is negligible. 

Uδ1 is the diminution, due to the boundary layer, of the volume flux across a normal to the surface; the 

streamlines of the outer flow are thus displaced away from the surface 

Two other quantities related to these boundary layer thickness are the skin friction τω and the dissipation 

integral D.  
 

4.5 Turbulent Flat Plate Boundary Layer 
 

A laminar boundary layer over a flat plate eventually becomes turbulent over certain range of Reynolds 

number. There is no unique value pf Reynolds number, for this change to happen. It mainly depends on the 

free stream turbulence and surface roughness parameters. With a very fine polished wall and with a quiet 

free stream, one can delay the transition. A controlling parameter such as the critical Reynolds number of 

transition Rex, CR may be defined.  

On a flat plate with a sharp leading edge in a typical free stream air flow, the transition occurs between the 

Reynolds number ranges of 2×10
5
 to 3×10

5
.  

So the transitional Reynolds number is normally taken as Rex, CR =3×10
5
 . 

  

The complex process of transition from laminar to turbulent flow involves the instability in the flow field. 

The small disturbances imposed on the boundary layer flow will either grow (i.e. instability) or decay 

(stability) depending on the location where the disturbance is introduced. If the disturbance occurs at a 

location where Rex  < Rex, CR  , then the boundary layer will return to laminar flow at that location. 

Disturbances imposed on locations Rex  > Rex, CR   will grow and the boundary layer flow becomes turbulent 

from this location. The transition to turbulence involves noticeable change in the shape of boundary layer 

velocity profile as shown in Fig. 4.24. As compared to laminar profiles, the turbulent velocity profiles are 

flatter and thicker at the same Reynolds number. Also, they have larger velocity gradient at the wall. 

There is no exact theory for turbulent flat plate flow rather many empirical models are available. To begin 

with the analysis of turbulent boundary layer, let us recall the momentum-integral relation which is valid 

for both laminar as well as turbulent flows. 

 

 

  



 

 

 
Fig. 4.24: Comparison of laminar and turbulent boundary layer profiles for flat plate. 

 

 
 

Fig. 4.25: Comparison of laminar and turbulent boundary layer profiles for flat plate. 

 

 



 

 

 
 

 

4.4.6 Two-dimensional Laminar Jet. 

We consider a two-dimensional jet as illustrated in the figure below. x is the horizontal coordinate and y is 

the vertical coordinate. u and v are, respectively, the horizontal and vertical fluid velocities. The jet in the 

direction of the x axis generates a flow where the fluid velocity along the y axis tends to zero. We assume 

that the boundary layer approximation is valid and the governing equation for the fluid motion are 

equations but with ∂u/∂t. The pressure does not vary in the y direction according to equation, soothe 

pressure is constant across the boundary layer and its gradient is given by the pressure gradient outside the 

boundary layer.  

 



 

 

Figure 4.26: Streamlines obtained from equation (8.176) with M = 1000kg/sec2, ν = 0.01m2/sec and ρ = 

1000kg/m3. 

 

Figure 4.27: Velocity field obtained from equations (8.177) and (8.178) with M = 1000kg/sec2, ν = 

0.01m2/sec and ρ = 1000kg/m3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT-V 

TIME DEPENDENT METHODS  

 

5.1 TIME-DEPENDENT METHODS  

 The time-dependent scalar-transport equation 

 One-step methods for single variables 

 One-step methods for CFD 

 Multi-step methods 

 Uses of time-marching in CFD 

 

5.1.1 The Time-Dependent Scalar-Transport Equation 

 

The time-dependent scalar-transport equation for an arbitrary control volume is 

 

  
As a preliminary we examine numerical methods for the first-order differential equation 

 

 

Initial-value problems of the form (3) are solved by time-marching. There are two main types of 

method: 

• One-step methods: use the value from the previous time level only; 

• Multi-step methods: use values from several previous times. 

5.1.2 CFL conditions 

In mathematics, the Courant–Friedrichs–Lewy (CFL) condition is a necessary condition for convergence 

while solving certain partial differential equations (usually hyperbolic PDEs) numerically by the method of 

finite differences. It arises in the numerical analysis of explicit time integration schemes, when these are 

used for the numerical solution. As a consequence, the time step must be less than a certain time in 

many explicit time-marching computer simulations, otherwise the simulation produces incorrect results.  

 
5.2 FTCS scheme 

In numerical analysis, the FTCS (Forward-Time Central-Space) method is a finite difference 

method used for numerically solving the heat equation and similar parabolic partial differential 

equations. It is a first-order method in time, explicit in time, and is conditionally stable when applied 

to the heat equation. When used as a method for advection equations, or more generally hyperbolic 

partial differential equation, it is unstable unless artificial viscosity is included. 

By definition, is explicit because u I at time step n + 1 can be solved explicitly in terms of the 

known quantities at the previous time step n, thus called an explicit   scheme. 

Order of accuracy of the scheme is O(Δt, Δx2). The method is conditionally stable, and the 

stability condition is given by d ≤ 0.5. 
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Figure  5.2: Explicit FTCS  scheme. 

 

 

Figure 5.3: Explicit FTCS  

5.3 BTCS scheme 

 

Writing this equation for all grid points at n +1 time level, leads to a tridiagonal system and can be 

solved using TDMA algorithm. The BTCS scheme is also known as the Laasone method. This is 

unconditionally stable. Order of accuracy of the scheme is O(Δt, Δx2). 
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Figure 5.4: Computational molecule for the implicit BTCS scheme. 

 

5.3.1Richardson method 

Richardson method is a Central Time Central Space (CTCS) scheme for parabolic type diffusion 

equations. This is known as the Richardson method. Order of accuracy of the scheme is O(Δt 2, 

Δx2). A stability analysis would show that it is unconditionally unstable, no matter how small t is. 

Thus, it is of no practical use. It may be noted that the unstable behavior refers to the equation as a 

whole.  It is a stable method for convection equation. 
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Figure 5.5: Computational molecule for the Richardson Method. 

5.3.2 Dufort–Frankel scheme 

The Richardson method can be modified to produce a stable algorithm. This is achieved n by replacing 

ui on the right-hand side with the time-average of previous and current time values at n − 1 and n + 1.  

This new formulation is called Dufort–Frankel scheme. 

 

This scheme is explicit and can be shown to be unconditionally stable by the von Neumann stability 

analysis. Since Dufort–Frankel stencil is constructed on the basis of an ad-hoc modification of the 

Richardson scheme, its consistency must be examined by computing the modified equation. Note that 

the Dufort–Frankel method is a two-level method since the stencil contains values of u at two time 

levels other than the current level n.    
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Figure 5.6: Computational molecule for the Dufort–Frankel scheme. 
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Consequently, to start the computation, values of u at n and n − 1 are required.  Therefore, either two 

sets of initial data must be available or from a practical point of view, a one-step method may  be 

used as a starter to generate additional   data. 

Order of accuracy of the scheme is O(Δt2, Δx2, (Δt/Δx)2). Even though the method is 

unconditionally stable, accurate solution will be obtained only if Δt, Δx. 

 

5.3.3 Crank–Nicolson scheme 

Both FTCS and BTCS schemes are first-order in time and second-order in space. Since they are 

first-order accurate in time, the time step Δt must be kept small to ensure acceptable accuracy.   A 

scheme  having a  second-order accuracy in time  for  parabolic PDE  can be obtained by taking the 

average of the FTCS and BTCS schemes. 
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Figure 5.7: Grid points for the Crank–Nicolson scheme. 

 

The new scheme known as the Crank–Nicolson scheme or trapezoidal differencing scheme named 

after their inventors John Crank and Phyllis Nicolson.  

Where we have expressed uxx at n + 1/2 time level by the average of the previous and current time 

values at n and n + 1 respectively. Crank–Nicolson method can also be written as an algorithm. A 

stability analysis would indicate that this implicit method is unconditionally stable.  

5.3.4 Generalized implicit method 

A general form of the finite difference approximation for diffusion equation may be obtained from 

Crank–Nicolson method by expressing space derivative by a weighted average of previous and 

current time values at n and n + 1.  Where in practice 0 < β < 1. This is known as the β-method. β = 

0 gives the explicit FTCS scheme, β = 1 gives the fully implicit BTCS scheme, and β = 1/2 gives the 

Crank–Nicolson method. For 1/2 ≤ β ≤ 1, the method is unconditionally stable, but for 0 ≤ β < 1/2 

 

5.3.5 Alternating Direction Implicit (ADI) method 

It is clear that, when implicit schemes are applied to multidimensional problems, the resulting 

implicit matrix system is not tridiagonal anymore as for three point discretizations on one-

dimensional equations. Since each discretized equation consists of five unknowns, we obtain a 

pentadiagonal matrix system. Unfortunately, we do not have an efficient direct solver, such as 

Thomas algorithm, for the solution of a pentadiagonal matrix system. However, a multidimensional 



 

 

problem can be split into a series of pseudo-one-dimensional problems and each of which can be 

solved using Thomas algorithm. More specifically, in a two-dimensional problem, each time step is 

split into two sub step of equal duration Δt/2 and approximating the spatial derivative in a partially 

implicit manner while alternating between x and y directions.  This method is called Alternating 

Direction Implicit (ADI) method. The following are the two steps of ADI method by Peaceman 

and Rachford. 
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Figure 5.8: Grid system for ADI method. 

 

The ADI formulation can be shown to be an approximate factorization method based on the 

Crank–Nicolson scheme.  

 
Figure 5.9 Analysis of ADI Method



 

 

5.3.6 Splitting or fractional step method 

 

In the fractional step method, introduced by Yanenko, the original multidimensional equation 

is split into a series of one-dimensional equations and then solve them sequentially TDMA. 

This formulation can also be considered as a approximate factorization method. The method 

provides the following discretized equations for two-dimensional diffusion equation. This 

scheme is of the order of O Δt, Δx2, Δy2   and is unconditionally stable. The temporal 

accuracy can be made second-order by using a Crank–Nicolson scheme within each fractional 

step. 

This scheme is of the order of O
.
Δt2, Δx2, Δy2

. 
and is unconditionally stable. 


