INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	Analog and Digital Electronics
Course Code	:	AECB05
Class	:	B. Tech III Semester
Regulation	:	IARE- R18
Branch	:	CSE
Course Coordinator	:	Ms. C Devi Supraja, Assistant Professor
Course Faculty	:	Ms. M Lavanya, Assistant Professor Ms. V Bindusree, Assistant Professor Ms. S Swathi, Assistant Professor

COURSE OBJECTIVES:

The course shou	he course should enable the students to,		
Ι	Introduce components such as diodes, BJTs and FETs.		
II	Know the applications of components.		
III	Understand common forms of number representation in logic circuits		
IV	Learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.		
V	Understand the concepts of combinational logic circuits and sequential circuits.		

COURSE OUTCOMES (CO's):

CO 1	Acquire knowledge of electrical characteristics of ideal and practical diodes under forward and reverse bias to analyze and design diode application circuits such as rectifiers.
CO 2	Utilize operational principles of bipolar to derive appropriate small-signal models and use them for the analysis of basic circuits.
CO 3	Understand the basic concept of number systems, Boolean algebra principles and minimization techniques for Boolean algebra
CO 4	Analyze Combination logic circuit such as multiplexers, adders, decoders
CO 5	Understand about synchronous and asynchronous sequential logic circuits.

COURSE LEARNING OUTCOMES (CLO's):

AECB05.01	Understand and analyze diodes operation and their characteristics in order to design basic form circuits
AECB05.02	Explain half wave rectifier for the given specifications.
AECB05.03	Design full wave rectifier for the given specifications
AECB05.04	Design rectifier with capacitive filter for the given specifications
AECB05.05	Understand the different parameters of transistors such as depletion width and channel width for
	understanding the functioning and design of this component.
AECB05.06	Estimate the performance of BJT on the basis of their operation and working.
AECB05.07	Explain the operation of Operating Point and Load Line Analysis
AECB05.08	Explain the operation of CB,CE,CC I/O Characteristics

AECB05.09	Understand the importance of h-parameter model
AECB05.10	Understand the basic concept of number systems, Binary addition and subtraction for digital systems.
AECB05.11	Explain the complements of Binary & Decimal number systems
AECB05.12	Discuss about digital logic gates, error detecting and Correcting codes for digital systems.
AECB05.13	Illustrate the switching algebra theorems and apply them for reduction of Boolean function.
AECB05.14	Identify the importance of SOP and POS canonical forms in the minimization or other optimization of
	Boolean formulas in general and digital circuits.
AECB05.15	Evaluate functions using various types of minimizing algorithms like Karnaugh map or tabulation method.
AECB05.16	Design Gate level minimization using KMaps and realize the Boolean function using logic gates.
AECB05.17	Analyze the design procedures of Combinational logic circuits like adders, Subtractors.
AECB05.18	Analyze the design of decoder, demultiplexer, and comparator using combinational logic circuit.
AECB05.19	Understand bi-stable elements like latches flip-flop and Illustrate the excitation tables of different flip flops
AECB05.20	Understand the concept of Shift Registers and implement the bidirectional and universal shift registers.
AECB05.21	Implement the synchronous& asynchronous counters using design procedure of sequential circuit and excitation tables of flip – flops.

TUTORIAL QUESTION BANK

MODULE-I DIODE AND APPLICATIONS				
	Part – A (Short Answer Quest	tions)		
S. No	Question	Blooms	Course	Course
		Taxonomy	Outcomes	Learning
		Level		Outcomes
1	Explain about forward bias and reverse bias of diode?	Understand	CO 1	AECB05.01
2	Write the Applications of diode?	Understand	CO 1	AECB05.01
3	Draw the V-I characteristics of diode?	Understand	CO 1	AECB05.01
4	List the differences between ideal diode and practical diode?	Remember	CO 1	AECB05.01
5	Define diffusion and transition capacitance?	Remember	CO 1	AECB05.01
6	Define static and dynamic resistance?	Remember	CO 1	AECB05.01
7	Explain the load line Analysis of diode?	Understand	CO 1	AECB05.01
8	Define Fermi level?	Remember	CO 1	AECB05.01
9	Write the equation of diode current.	Remember	CO 1	AECB05.01
10	Define cut-in voltage?	Remember	CO 1	AECB05.01
11	Write the differences between avalanche and zener breakdown mechanisms?	Understand	CO 1	AECB05.01
12	Define depletion region?	Remember	CO 1	AECB05.01
13	Explain the temperature dependence of V-I characteristics of PN diode?	Understand	CO 1	AECB05.01
14	Define rectifier?	Remember	CO 1	AECB05.02
15	Give the advantages and disadvantages of HWR and FWR?	Understand	CO 1	AECB05.02
16	Define ripple factor and mention the ripple factor of HWR and FWR	Remember	CO 1	AECB05.03
17	Define transformer utilization factor and mention the TUF of HWR and FWR	Remember	CO 1	AECB05.03
18	Define efficiency and mention the efficiency of HWR and FWR.	Remember	CO 1	AECB05.03
19	Define drift and diffusion currents?	Remember	CO 1	AECB05.01
20	What is the need for a filter in rectifier?	Remember	CO 1	AECB05.04
	Part – B (Long Answer Quest	ions)		
1	Explain the formation of depletion region in an open-circuited	Remember	CO 1	AECB05.01
	p-n junction diode and also the effect of forward and reverse			
	biasing of p-n junction on the depletion region with neat			
2	Analyze the differences between drift and diffusion current in	Understand	CO 1	AECB05.01
-	a semiconductor with neat diagrams?	Chaerstana	001	
3	Explain the operation of PN- junction diode under forward	Understand	CO 1	AECB05.01
	bias and reverse bias condition and Sketch the V-I			
	characteristics of p-n junction diode.			
4	Explain the temperature dependence of VI characteristics of PN diode?	Understand	CO 1	AECB05.01
5	Derive the diode current equation and discuss various	Remember	CO 1	AECB05.01
6	Explain the Zener and avalanche breakdown mechanisms of	Understand	CO 1	AECB05.01
	p-n junction diode in detail?			
7	Explain the switching functions of DIODE with a suitable wave forms.	Understand	CO 1	AECB05.01
8	Explain the differences between Static and dynamic resistances of a $p - n$ diode.	Remember	CO 1	AECB05.01
9	Draw the circuit diagram of a half wave rectifier. Explain the	Remember	CO 1	AECB05.02
10	Define and derive the expressions for the following of a half wave rectifier with resistive load. i) Ripple factor ii) Peak inverse voltage iii) Efficiency iv)	Remember	CO 1	AECB05.02
	Average current v) RMS current vi) Transformer utilization factor			

11	Draw the circuit diagrams of a full wave rectifier and Bridge rectifier. Explain the operation of the circuit with relevant waveforms.	Remember	CO 1	AECB05.03
12	Define and derive the expressions for the following of a full wave rectifier with resistive load. i) Ripple factor ii) Peak inverse voltage iii) Efficiency iv) Average current v) RMS current vi) Transformer utilization factor	Remember	CO 1	AECB05.03
13	Distinguish between Half wave rectifier, center tapped full wave rectifier and bridge rectifier	understand	CO 1	AECB05.03
14	Explain the operation of capacitor filter and derive expression for ripple factor?(HWR)	Understand	CO 1	AECB05.04
15	Explain the operation of C-section filter and derive expression for ripple factor?(FWR)	Understand	CO 1	AECB05.04
16	Discuss the merits and Demerits of half wave, full wave and bridge rectifier.	Remember	CO 1	AECB05.03
17	Explain the switching characteristics of diode with the help of simple diode circuit.	Remember	CO 1	AECB05.01
18	What is the ripple factor if a power supply of 220 V, 50 Hz is to be Full Wave rectified and filtered with a 220μ F capacitor before delivering to a resistive load of 120Ω ? Compute the value of the capacitor for the ripple factor to be less than 15%.	Remember	CO 1	AECB05.04
19	A bridge rectifier uses four identical diodes having forward resistance of 5Ω each. Transformer secondary resistance is 5Ω and the secondary voltage of $30V(\text{rms})$.Determine the dc output voltage for IDC=200mA and the value of the ripple voltage.	Understand	CO 1	AECB05.03
20	A HWR circuit supplies 100mA DC current to a 250Ω load. Find the DC output voltage, PIV rating of a diode and the r.m.s. voltage for the transformer supplying the rectifier?	Remember	CO 1	AECB05.02
	Part - C(Problem Solving And Critical Th	inking Question	is)	
1	Find the value of D.C. resistance and A.C resistance of a Germanium junction diode at 250° C with reverse saturation current, Io = 25μ A and at an applied voltage of 0.2V across the diode?	Remember	CO 1	AECB05.01
2	The reverse saturation current of a silicon $p - n$ function diode at an operating temperature of 270C is 50 nA. Estimate the dynamic forward and reverse resistances of the diode for applied voltages of 0.8 V and -0.4 V respectively?	Remember	CO 1	AECB05.01
3	Determine the values of forward current in the case of P-N junction diode, with $I_0=10 \mu A V f=0.8V$ at $T=300^0 K$.Assume silicon diode?	understand	CO 1	AECB05.01
4	An Ideal Ge P-n junction diode has a reverse saturation current of 30 μ A at a temperature of 125 ^o C.Find the dynamic resistance for a 0.2V bias in the forward and reverse direction	Understand	CO 1	AECB05.01
5	The voltage across a silicon diode at room temperature of 300 K is 0.7 V when 2 ma current flows through it. If the voltage increases to 0.75 v, Evaluate the diode current assuming VT=26mv.	Understand	CO 1	AECB05.01

6	Determine the values of forward current in the case of P-N	Remember	CO 1	AECB05.01
-	junction diode, with I0=10 uA Vf=0.8V at T=3000K.Assume			
	silicon diode?			
7	A p-n junction diode has a reverse saturation current of $30 \mu A$	Remember	CO 1	AECB05.01
,	at a temperature of 125° C. At the same temperature, find the	remember	001	Theorem
	dynamic resistance for 0.2 V bias in forward and reverse			
	direction?			
0	The voltage compass a silicon diada at room temperature of	Domomhor	CO 1	AECD05.01
0	The voltage across a sincon diode at room temperature of 200^{0} K is 0.7 V when 2 we surrough through it. If the	Remember	01	AECD03.01
	500 K is 0.7 V when 2 that current flows through it. If the			
	voltage increases to 0.75 v, Evaluate the diode current			
0	assuming $\sqrt{1=20}$ mV.	D 1	CO 1	
9	Determine the dynamic forward and reverse resistance of p-n	Remember	CO 1	AECB05.01
	junction silicon diode when the applied voltage is 0.25 V at			
- 10	$T=3000$ K with give $10=2 \mu$ A?			
10	A full wave bridge rectifier having load resistance of 100Ω is	understand	COI	AECB05.03
	fed with 220V, Assuming the diodes are ideal, Find the			
	following terms,			
	i) DC output voltage			
	ii) Peak inverse voltage			
	iii) Rectifier efficiency.			
	MODULE-II			
	BIPOLAR JUNCTION TRANSIS	STOR (BJT)		
	Part - A (Short Answer Que	stions)		
1	Define Transistor?	Remember	CO 2	AECB05.05
2	Define operating point Q?	Understand	CO 2	AECB05.06
3	Draw the symbols of NPN and PNP transistor and mark the	Understand	CO 2	AECB05.05
	current directions?			
4	Draw the hybrid model of a CB configuration?	Remember	CO 2	AECB05.06
5	Explain the breakdown in transistor?	Understand	CO 2	AECB05.06
6	Explain the transistor switching times?	Understand	CO 2	AECB05.06
7	Explain the phenomena of reach through in a transistor	Understand	<u>CO 2</u>	AECB05.07
8	Define early effect or base width modulation?	Remember	$\frac{\text{CO } 2}{\text{CO } 2}$	AFCB05.05
0	List the advantages of h. parameters	Understand	$\frac{\text{CO } 2}{\text{CO } 2}$	AECB05.05
10	East the advantages of h- parameters	Understand	$\frac{\text{CO } 2}{\text{CO } 2}$	AECD05.00
10	Explain about the various regions in a transistor?	Understand	$\frac{\text{CO } 2}{\text{CO } 2}$	AECD05.00
11	When does a transistor act as a switch?	Understand	<u> </u>	AECB03.07
12	Draw the output characteristics of NPN transistor in CE	Understand	002	AECB05.06
10	Configuration?	TT 1 . 1	<u> </u>	
13	Explain the criteria for fixing operating point	Understand	<u>CO 2</u>	AECB05.06
14	Describe the various current components in a BJT?	Remember	<u>CO 2</u>	AECB05.06
15	Write the relation between IC, β , IB and ICBO in a BJT?	Remember	CO 2	AECB05.06
16	Draw the circuit diagram of Common base, common emitter	Understand	CO 2	AECB05.08
	and common collector configurations			
17	Draw the input characteristics of common emitter	Understand	CO 2	AECB05.08
	configuration.			
18	Draw the small signal model of a CE configuration?	Understand	CO 2	AECB05.09
19	Define hie and hfe in CE configuration?	Remember	CO 2	AECB05.09
20	Define hoe and hre in CB configuration?	Understand	CO 2	AECB05.09
	Part– B (Long Answer Ques	stions)		
1	With a neat diagram explain the various current components	Understand	CO 2	AECB05.05
-	in an NPN bipolar junction transistor and hence derive the			
	general equation for collector current. IC.			
2	Define Early-effect: Explain why it is called as base-width	Remember	CO 2	AECB05.06
-	modulation? Discuss its consequences in transistors in detail?	i cinemiteri		
2	What is thermal runaway in transistors? Obtain the condition	Understand	CO 2	AECR05.06
3	for thermal stability in transisters?	Understalld		ALCDUJ.00
Λ	Fundamental statistics in transistors ?	Domomber	CO 2	AECD05.07
4	Explain clearly the DC and AC load line and also explain how	Keinember	002	AECB05.07
	to obtain quiescent point graphically for a transistor amplifier			
	of CE configuration.	TT 1	a a a	
5	Draw the input and output characteristics of a transistor in	Understand	CO 2	AECB05.08
	common emitter i ontigurations and explain its working?			

6	Draw the input and output characteristics of a transistor in	Remember	CO 2	AECB05.08
7	Draw the input and output characteristic of a transistor in	Understand	CO 2	AFCB05.08
,	common collector configurations?	Onderstand	002	ALCD05.00
8	Describe the significance of the terms, α , β and γ and derive the relation between them?	Understand	CO 2	AECB05.06
9	Explain the constructional details and operation of Bipolar Junction Transistor with neat sketches?	Remember	CO 2	AECB05.05
12	Draw the small-signal model of common base BJT amplifier. Derive expressions for voltage gain, input resistance current gain and output resistance?	Understand	CO 2	AECB05.09
13	Draw the small-signal model of common collector BJT amplifier. Derive expressions for voltage gain, input resistance, current gain and output resistance?	Remember	CO 2	AECB05.09
14	Draw the small-signal model of common emitter BJT amplifier. Derive expressions for voltage gain, input resistance current gain and output resistance?	Understand	CO 2	AECB05.09
15	Derive the equations of current gain Ai, voltage gain Av, input impedance Zi, output admittance Yo, voltage gain with Rs(Avs), current gain with Rs(Ais) using a general two port active network.	Understand	CO 2	AECB05.09
16	Write the expression for collector current (IC) in terms of emitter current (IE) and α dc and in terms of base current (IB) and α dc	Understand	CO 2	AECB05.09
17	Draw the hybrid model of a CC configuration?	Remember	CO 2	AECB05.09
18	Define α , β , γ of a transistor and show how they are related to each other	Understand	CO 2	AECB05.09
19	Define following i) Active Region ii) Cut off region iii) Saturation region	Understand	CO 2	AECB05.07
20	What is the importance of DC load line	Remember	CO 2	AECB05.07
20	What is the importance of DC load line Part - C(Problem Solving And Critical Th	Remember inking Questions	CO 2	AECB05.07
20	What is the importance of DC load line Part - C(Problem Solving And Critical Th A common collector circuit has the following components $R1=27k\Omega, R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega$. The transistor parameters are hie=1k Ω , hfe=85 and hoe=2 μ A/V. Determine Ai, Ri, Av, Ro.	Remember inking Questions Understand	CO 2	AECB05.07 AECB05.09
20 1 2	What is the importance of DC load linePart - C(Problem Solving And Critical ThA common collector circuit has the following components $R1=27k\Omega,R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega.$ Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A common collector circuit has the following components $R1=27k\Omega,R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega.$ Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A common collector circuit has the following components $R1=27k\Omega,R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega.$ Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.	Remember inking Questions Understand Remember	CO 2 CO 2 CO 2 CO 2	AECB05.07 AECB05.09 AECB05.09
20 1 2 3	 What is the importance of DC load line Part - C(Problem Solving And Critical Th A common collector circuit has the following components R1=27kΩ,R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. The transistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V. Determine Ai, Ri, Av, Ro. A common collector circuit has the following components R1=27kΩ,R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. The transistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V. Determine Ai, Ri, Av, Ro. A common collector circuit has the following components R1=27kΩ,R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. The transistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V. Determine Ai, Ri, Av, Ro. A Common emitter circuit has the following components. Rs=1k, R1=110K, R2=12K Rc=6K. h-parameters are hie=1.2K,hre=2.5*10-4,hfe=75,hoe=25uA/V. Draw theequivalent hybrid model and calculate Ai, Ri, Ro and Av? 	Remember inking Questions Understand Remember Understand	CO 2 CO 2 CO 2 CO 2 CO 2	AECB05.07 AECB05.09 AECB05.09 AECB05.09 AECB05.09
20 1 2 3 4	What is the importance of DC load linePart - C(Problem Solving And Critical ThA common collector circuit has the following components $R1=27k\Omega,R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega.$ Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A common collector circuit has the following components $R1=27k\Omega,R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega.$ Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A common collector circuit has the following components $R1=27k\Omega,R2=27k\Omega, Re=5.6k\Omega, RL=47k\Omega, Rs=600\Omega.$ Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A Common emitter circuit has the following components.Rs=1k, R1=110K, R2=12K Rc=6K. h-parameters arehie=1.2K,hre=2.5*10-4,hfe=75,hoe=25uA/V. Drawtheequivalent hybrid model and calculate Ai, Ri, Ro and Av?The h-parameters of a transistor used in a CE circuit are hie=1.0 K, hre=10×10-4, hfe = 50, hoe = 100 K. The loadresistance for the transistor is 1 K in the collector circuit.Determine Ri, Ro, AV& Ai in the amplifier stage. (AssumeRs = 1000)?	Remember inking Questions Understand Remember Understand Understand	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AECB05.07 AECB05.09 AECB05.09 AECB05.09 AECB05.09 AECB05.09
20 1 2 3 4 5	What is the importance of DC load line Part - C(Problem Solving And Critical Th A common collector circuit has the following components R1=27kΩ,R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. The transistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V. Determine Ai, Ri, Av, Ro. A common collector circuit has the following components R1=27kΩ,R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. The transistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V. Determine Ai, Ri, Av, Ro. A common emitter circuit has the following components. Rs=1k, R1=110K, R2=12K Rc=6K. h-parameters are hie=1.2K,hre=2.5*10-4,hfe=75,hoe=25uA/V. Draw theequivalent hybrid model and calculate Ai, Ri, Ro and Av? The h-parameters of a transistor used in a CE circuit are hie =1.0 K, hre=10×10-4, hfe = 50, hoe = 100 K. The load resistance for the transistor is 1 K in the collector circuit. Determine Ri, Ro, AV& Ai in the amplifier stage. (Assume Rs = 1000)? Compute current gain, voltage gain, input and output impedance of the CB amplifier if it is driven by a voltage source of internal resistance Rs=1k.The load impedance is RL=1K. The transistor parameters are hib= 22, hfb= -0.98, hrb=2.9×10-4, hob= 0.5µA/V.	Remember inking Questions Understand Remember Understand Understand Remember	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AECB05.07 AECB05.09 AECB05.09 AECB05.09 AECB05.09 AECB05.09 AECB05.09 AECB05.09 AECB05.09
20 1 2 3 4 5 6	What is the importance of DC load linePart - C(Problem Solving And Critical ThA common collector circuit has the following componentsR1=27kΩ, R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A common collector circuit has the following componentsR1=27kΩ, R2=27kΩ, Re=5.6kΩ, RL=47kΩ, Rs=600Ω. Thetransistor parameters are hie=1kΩ, hfe=85 and hoe=2µA/V.Determine Ai, Ri, Av, Ro.A Common emitter circuit has the following components.Rs=1k, R1=110K, R2=12K Rc=6K. h-parameters arehie=1.2K,hre=2.5*10-4,hfe=75,hoe=25uA/V. Drawtheequivalent hybrid model and calculate Ai, Ri, Ro and Av?The h-parameters of a transistor used in a CE circuit are hie=1.0 K, hre=10×10-4, hfe = 50, hoe = 100 K. The loadresistance for the transistor is 1 K in the collector circuit.Determine Ri, Ro, AV& Ai in the amplifier stage. (AssumeRs = 1000)?Compute current gain, voltage gain, input and outputimpedance of the CB amplifier if it is driven by a voltagesource of internal resistance Rs=1k. The load impedance isRL=1K. The transistor parameters are hib= 22, hfp= -0.98,hrb=2.9×10-4, hob= 0.5µA/V.A bipolar junction transistor with hie = 1100Ω, hfe = 50, hre= 2.4x10-4, hoe = 25 µA/V, is to drive a load of 1KΩ in <td>Remember inking Questions Understand Remember Understand Understand Remember Understand</td> <td>CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2</td> <td>AECB05.07 AECB05.09 AECB05.09</td>	Remember inking Questions Understand Remember Understand Understand Remember Understand	CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	AECB05.07 AECB05.09 AECB05.09

	circuit with RS= 0.5K and RL =5K, calculate Ri, AV and RO.			
	Assume, he = 50, he =1K, hoe = $25 \mu A/V$.			
8	A silicon NPN transistor has Ico = 20nA and β =150, Vbe =	Understand	CO 2	AECB05.06
	0.7V. It is operated in Common Emitter Configuration having			
	vbb = 4.5v, $Rb=150K$, $Rc = 3K$, $vcc = 12v$. Find the emitter,			
	transistor operates. What will happen if the value of the			
	collector resistance is increased to very high values?			
9	Draw small signal equivalent circuit of Emitter Follower	Understand	CO 2	AECB05.09
-	using accurate hparameter model. For the emitter follower			
	circuit with RS= 2K and RL =5K, calculate Ri, AV and RO.			
	Assume, hfe = 50, hie =1K, hoe = 25 μ A/V.			
10	A common emitter circuit has the following components	Understand	CO 2	AECB05.09
	$R1=27k\Omega$, $R2=27k\Omega$, $Re=5.6k\Omega$, $RL=47k\Omega$, $Rs=600\Omega$. The			
	transistor parameters are hie=1k\Omega, hie=85 and hoe= $2\mu A/V$.			
	MODULE-III			
	NUMBER SYSTEMS			
	Part – A (Short Answer Quest	ions)		
1	Write short notes on binary number systems.	Remember	CO 3	AECB05.10
2	Discuss 1"s and 2"s complement.	Understand	CO 3	AECB05.11
3	Discuss octal number system.	Understand	CO 3	AECB05.10
4	Convert the octal numbers into binary, decimal and	Understand	CO 3	AECB05.10
	Hexadecimal numbers			
	(45.5)8, (32.2)8.			
5	Show an example to convert gray code to binary code.	Remember	<u>CO 3</u>	AECB05.11
6	Describe a short note on four bit BCD codes.	Remember	<u>CO 3</u>	AECB05.11
1	Illustrate about unit –distance code? State where they are	Understand	CO 3	AECB05.11
0	Used.	Damamhan	CO 2	AECD05 12
<u> </u>	List the applications of effor correcting codes.	Understand	CO_3	AECB05.12
9	equivalent.	Understand	03	AECB05.10
10	Give the examples of unit distance codes	Understand	CO 3	AECB05.11
11	Convert $(4075)_8$ into base 5.	Understand	CO 3	AECB05.10
1				
1	Which gates are called as universal gate justify.	Understand	$\frac{\text{CO}3}{\text{CO}3}$	AECB05.12
2	State Demorgan's theorem	Remember	$\frac{003}{003}$	AECB05.13
3	Draw the symbols and truth tables of XOP and XNOP gates	Remember	$\frac{003}{003}$	AECB05.13
	Define sum of products and product of sum	Remember	$\frac{003}{003}$	AECB05.12
6	State and prove the distributive property of Boolean algebra	Remember	$\frac{003}{003}$	AECB05.14
7	Simplify ABC+AB'C+ABC'	Understand	CO 3	AECB05.12
8	Convert the given expression in standard SOP form	Remember	CO 3	AECB05.14
0	Y = AC + AB + BC	During 1	00.2	
9	Convert the given expression in standard POS form $V = (A + B)(B + C)(A + C)$	Remember	03	AECB05.14
	Part – B (Long Answer Quest	ions)		
1	Explain error occurred in data transmission can be detected	Understand	CO 3	AECB05.12
-	using parity bit?	Chieffound	000	1110100112
2	Define weighted codes and non weighted codes with	Remember	CO 3	AECB05.11
	examples?			
3	Explain what do you mean by error detection and correcting	Understand	CO 3	AECB05.12
	code with examples.			
4	Explain the gray to binary and binary- to- gray conversion with	Understand	CO 3	AECB05.11
5	examples Evaluation the conversion of AND/OD/NOT logic to NAND/	Understand	CO 2	
3	NOR logic with example	Understand	03	AEC 505.14
6	Explain Self complemented codes.	Understand	CO 3	AECB05.11
7	Differentiate between BCD code and 2421 code and XS-3.	Understand	CO 3	AECB05.11

8	Given the 8bit data word 01011011, generate the 12 bit	Understand	CO 3	AECB05.12
	composite word for the hamming code that corrects and			
	detects single errors.			
9	Write the first 10 decimal digits in base 3 and base 16.	Remember	CO 3	AECB05.10
10	A device transmits the binary data using even parity, the	Remember	CO 3	AECB05.12
	message is 1011001. Identify the receiver receives the correct			
	data or not.			
11	Convert the given expression in standard POS form	Remember	CO 3	AECB05.14
	Y = (A+B)(B+C)(A+C).			
12	Obtain the canonical SOP form of the following functions.	Understand	CO 3	AECB05.10
	i) $Y(A,B) = A+B$. ii) $Y(A,B,C,D) = AB+ACD$			
13	Simplify the expression $Z = AB + AB'$. (A'C')'	Remember	CO 3	AECB05.10
14	Simplify the following 3 variable expression using Boolean	Remember	CO 3	AECB05.10
	algebra Y= $\prod M(3,5,7)$.			
15	Simplify the following 3 variable expression using Boolean	Understand	CO 3	AECB05.10
	algebra Y= $\sum m(1,3,5,7)$.			
	CIE –II			-
1	Give the Boolean expressions, symbols and truth tables for	Understand	CO 3	AECB05.12
	following gates,			
	i) AND ii) NOR iii) EX-OR iv) OR v) EX-NOR.			
2	Realize all the logic gates using NAND gate.	Remember	CO 3	AECB05.14
3	Realize all the logic gates using NOR gate.	Remember	CO 3	AECB05.12
4	Explain standard SOP and POS forms with examples	Remember	CO 3	AECB05.14
5	State and prove Boolean theorems and properties.	Understand	CO 3	AECB05.13
	Part - C (Problem Solving And Critical Th	inking Question	ns)	
1	Convert the following Hexadecimal number to their Decimal	Remember	CO 3	AECB05.10
	equivalent (EAFI)16.	D	CO 2	AECD05 10
2	what is the gray code equivalent of the Hex Number $3A/$. Find 0 's complement of (25.630)10	Remember	05	AECB05.10
3	Find 7 bit hamming code for given massage 1010 by using odd	Understand	CO 3	AECB05.12
5	narity	Understand	005	ALCD05.12
	Perform the subtraction using 1's complement and 2's	Remember	CO 3	AECB05 11
-	Complement	Remember	005	ALCD05.11
	i) $(11010)_2 - (10000)_2$			
	i) $(1000100)_2 - (1010100)_2$			
5	Convert following hexadecimal number to decimal.	Understand	CO 3	AECB05.11
C	i) F2816 ii) BC216	Charlound	000	120200111
	CIE-II			-
1	Implement $Y = Y = AB' + A' B$ using 2 input NAND gates	Remember	CO 3	AECB05.14
2	Simplify using postulates and theorems of Boolean algebra	Remember	<u> </u>	AECB05.13
-	i) $(X+Y'+XY)(X+Y')X'Y$	Remember	605	THEED05.115
	ii) $(AB+C+D)(C'+D)(C'+D+E)$			
3	For each of the following expressions, construct the	Remember	CO 3	AECB05.13
	corresponding logic circuit using AND/OR/INVERT logic.			
	i) $Y=AB(C+D)$			
	ii) $Z=(W+PQ')'$			
4	Implement $Y = AB' + A' B$ using 2 input NOR gates	Understand	CO 3	AECB05.14
5	Realize X-OR operation a)NAND gate b)NOR gate	Remember	CO 3	AECB05.12
	MODULE-IV			
	MINIMIZATION OF BOOLEAN F	UNCTIONS		
	Part – A (Short Answer Questions)			
1	Realize 16×1 Mux using only 2×1 Mux	Understand	CO 4	AECB05.18
2	Design logic circuit for parity bit generator	Remember	CO 4	AECB05.18
3	What is decoder? How do you convert a decoder in to a De-	Understand	CO 4	AECB05.18
	Multiplexer	Chattound	201	
4	Design BCD to gray code converter and realize using logic	Understand	CO 4	AECB05.18
	gates.			
5	What is K-Map and State the limitations of karnaugh map.	Remember	CO 4	AECB05.15
6	What do you mean by adder circuit?	Understand	CO 4	AECB05.17

7	State the truth table for 1 bit half adder.	Remember	CO 4	AECB05.17
8	Design a logic circuit to convert BCD and gray code.	Understand	CO 4	AECB05.18
9	Design Full adder using Logic Gates.	Remember	CO 4	AECB05.17
10	Design Half subtractor using NAND Gates.	Understand	CO 4	AECB05.17
11	Design a Full adder using NOR Gates.	Remember	CO 4	AECB05.17
12	Design Half subtractor using NOR Gates	Understand	CO 4	AECB05.17
13	Design a Full subtractor using NAND Gates.	Remember	CO 4	AECB05.17
14	Design a Full subtractor using NOR Gates.	Understand	CO 4	AECB05.17
15	State the truth table for 1 bit full adder.	Remember	CO 4	AECB05.17
16	Design a Full adder using NAND Gates.	Remember	CO 4	AECB05.17
17	How do you compare serial adder and parallel adder	Remember	CO 4	AECB05.17
18	Explain the terms multiplexer and de multiplexer	Remember	CO 4	AECB05.17
19	List some of the applications of multiplexer and de multiplexer	Remember	CO 4	AECB05.17
20	Explain about ripple carry adder	Remember	CO 4	AECB05.17
	Part – B (Long Answer Quest	ions)		I
1	Design 4 bit parallel adder using full adders. Remember	Understand	CO 4	AECB05.17
2	Design a excess-3 adder using 4-bit parallel binary adder and	Remember	CO 4	AECB05.17
	logic gates. B) What are the applications of full adders?			
3	Explain the operation of 4 to 16 decoder.	Understand	CO 4	AECB05.18
4	Explain the differences between multiplexers and De-	Remember	CO 4	AECB05.18
	multiplexers with the help of neat logic diagrams.			
5	Design a 64:1 MUX using 8:1 MUXs.	Understand	CO 4	AECB05.18
6	Design a 4 bit parallel adder using Full adder modules.	Remember	CO 4	AECB05.17
7	Implement the given function in 4:1 mux f= $\Sigma m(0,1,3,5,6)$	Understand	CO 4	AECB05.18
8	Design a full adder using two half adders and OR gate.	Remember	CO 4	AECB05.17
9	Design a 4-bit Binary Adder using full adder.	Understand	CO 4	AECB05.17
10	Design a combinational circuit that generates the 9"s	Remember	CO 4	AECB05.18
	complement of BCD digit			
11	Design a combinational circuit that generates logic "1" for odd	Understand	CO 4	AECB05.18
	inputs.			
12	Explain the working of carry look-ahead generator.	Remember	CO 4	AECB05.17
13	Explain the design procedure for code converter with the help	Understand	CO 4	AECB05.18
	of example			
14	Design a logic circuit to convert gray code to binary code.	Remember	CO 4	AECB05.18
15	Design a logic circuit to convert binary code to gray code.	Understand	CO 4	AECB05.18
16	Design a logic circuit to convert BCD code to binary code.	Remember	CO 4	AECB05.18
17	Realize the Boolean expression for half subtractor.		CO 4	AECB05.17
18	Design a combinatorial circuit that accepts a three bit number	Remember	CO 4	AECB05.18
	and generates an output Binary number equal to the cube of			
	the given input number.			
19	Implement the circuit to produce the octal number for given 4	Understand	CO 4	AECB05.18
	bit binary number.			
20	Design an 8424 to 2421 BCD code converter and draw its	Understand	CO 4	AECB05.18
	logic diagram.			
	Part – C (Problem Solving And Critical Th	inking Questio	ns)	
1	$F(w,x,y,z) = \sum m (1,4,5,6,7,9,14,15)$ Realize using De- Multiplexer	Remember	CO 4	AECB05.18
2	Design a 4-bit Combinational circuit which generates the	Understand	CO 4	AECB05.18
	output as 2"s complement of input binary number.			
3	Simplify the following Boolean expressions using K-map and	Understand	CO 4	AECB05.16
	implement it by using NOR gates. A) F(A,B,C,D)=AB'C'			
	+AC+A'CD'b)F(W,X,Y,Z)=w'x'y'z'+wxy'z'+w'x'yz+			
	WXYZ			
4	Simplify the following using Tabular method.	Remember	CO 4	AECB05.16
	$F(A,B,C,D) = \sum (1,5,6,12,13,14) + d\sum (2,4)$			
	$\sum m(1,2,3,5,9,12,14,15) + d(4,8,11)$			
5	Design a combinatorial circuit that converts a decimal digit	Understand	CO 4	AECB05.18
	from 2,4,2,1 code to the 8,4,2,1 code?			
6	Design a combinatorial circuit that accepts a three bit number	Remember	CO 4	AECB05.18

	and generates an output Binary number equal to the square of					
	the input number.					
7	4 Design a 4-bit Combinational circuit which generates the	Understand	CO 4	AECB05.18		
	output as 1"s complement of input binary number.					
8	Construct and explain the working of decimal adder.	Remember	CO 4	AECB05.17		
9	Realize the Boolean expression for full subtractor.	Understand	CO 4	AECB05.17		
10	Design half adder using AND & OR gates.	Remember	CO 4	AECB05.17		
MODULE-V						
SEQUENTIAL CIRCUITS FUNDAMENTALS Part = A (Short Answer Questions)						
1.	Differentiate combinational and sequential logic circuits?	Understand	CO 5	AECB05.19		
2	Explain basic difference between a shift register and counter?	Understand	<u> </u>	AECB05 20		
3.	Illustrate applications of shift registers?	Remember	<u>CO 5</u>	AECB05.20		
4.	Define bidirectional shift register?	Remember	<u>CO 5</u>	AECB05.20		
5.	Differentiate Flip-flop and latch?	Analysis	CO 5	AECB05.19		
6.	Define Counter?	Remember	<u>CO 5</u>	AECB05.21		
7.	Classify the basic types of counters?	Understand	<u>CO 5</u>	AECB05.21		
8	Differentiate the advantages and disadvantages of ripple	Understand	<u> </u>	AECB05.21		
0.	counters?	Chaelstand	005	Theorem 1		
9	Describe the applications of counters?	Understand	CO 5	AECB05.21		
10	Design D-latch using NAND?	Understand	CO 5	AECB05.19		
11	Design and explain gated latch logic diagram?	Understand	CO 5	AECB05.19		
12	Define race around condition? How it can be avoided?	Remember	CO 5	AECB05.19		
13	Convert the following JK Flip Flop to using, i) SR ii) T iii) D	Understand	CO 5	AECB05.21		
14	Convert the following SR Flip-Flop to using, i) JK ii) D iii) T	Remember	CO 5	AECB05.21		
15	Explain what is a synchronous latch?	Remember	CO 5	AECB05.19		
16	Construct a latch using universal gates?	Understand	CO 5	AECB05.19		
17	Explain what do you mean a stable state?	Remember	CO 5	AECB05.21		
18	Define a Flip-Flop?	Remember	CO 5	AECB05.19		
19	Define applications of Flip-Flops?	Remember	CO 5	AECB05.19		
20	Explain what is meant by clocked flip-flop?	Understand	CO 5	AECB05.19		
Part – B (Long Answer Questions)						
1	Explain the design of Synchronous Sequential circuit with an example?	Understand	CO 5	AECB05.21		
2	Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers?	Remember	CO 5	AECB05.20		
3	Explain about Binary Ripple Counter? What is MOD counter?	Understand	CO 5	AECB05.21		
4	How do you convert Jk- Flip Flop to SR- Flip Flop	Remember	CO 5	AECB05.21		
5	How do you convert T- Flip Flop to SR- Flip Flop	Understand	CO 5	AECB05.21		
6	How do you convert D- Flip Flop to T- Flip Flop	Understand	CO 5	AECB05.21		
7	Design a Modulo-12 up Synchronous counters using T-Flip	Understand	<u> </u>	AECB05 21		
7	Flops and draw the Circuit diagram for synchronous mod-12 counter?	Childerstand	05	ALCD05.21		
8	Explain the Ripple counter design. Also the decade counters design?	Understand	CO 5	AECB05.21		
9	Design a 3 bit ring counter? Discuss how ring counters differ from twisted ring counter?	Understand	CO 5	AECB05.21		
10	Design a Johnson counter?	Understand	CO 5	AECB05.21		
11	Design Johnson ounters and state its advantages and Disadvantages?	Understand	CO 5	AECB05.21		
12	Explain with the help of a block diagram, the basic components of a Sequential Circuit?	Understand	CO 5	AECB05.19		

13	Explain about RS and JK flip-flops with functional diagram and Truth tables?	Understand	CO 5	AECB05.19		
14	Define T – Flip-flop with the help of a logic diagram and characteristic table?	Remember	CO 5	AECB05.19		
15	Define Latch. Explain about SR-Latch using NAND and NOR gates.	Remember	CO 5	AECB05.19		
16	Construct the transition table for the following flip-flops SRFF, DFF	Remember	CO 5	AECB05.21		
17	Differentiate Synchronous and Asynchronous counters?	Remember	CO 5	AECB05.21		
18	What do you mean by a) latch b) gated latch.	Remember	CO 5	AECB05.21		
19	Differentiate between gated SR- latch and edge triggered SR- Flip Flop.	Remember	CO 5	AECB05.21		
20	How do you convert Jk- Flip Flop to D- Flip Flop	Remember	CO 5	AECB05.21		
Part - C (Problem Solving And Critical Thinking Questions)						
1	Explain the JK and Master slave Flip-flop? Give its timing waveform?	Understand	CO 5	AECB05.21		
2	Define JK – Flip-flop with the help of a logic diagram and characteristic table?	Remember	CO 5	AECB05.19		
3	Design and implement 4-bit binary counter (using D flip flops) which counts all possible odd numbers only?	Understand	CO 5	AECB05.21		
4	List the characteristic equations for RS,JK,T and data Flip- Flops?	Remember	CO 5	AECB05.19		
5	Describe the steps involved in design of asynchronous sequential circuit in detail with an example?	Understand	CO 5	AECB05.21		
6	Design a MOD-5 synchronous counter using flip flops and Implement it? Also draw the timing diagram?	Understand	CO 5	AECB05.21		
7	Design a Ring counter using JK flip-flop?	Remember	CO 5	AECB05.21		
8	Design a Twisted Ring counter using JK flip-flop?	Remember	CO 5	AECB05.21		
9	Design MOD5 up and Down counter?	Remember	CO 5	AECB05.21		
10	How do you convert Jk- Flip Flop to T- Flip Flop	Remember	CO 5	AECB05.21		

Prepared by Ms. C Devi Supraja, Assistant Professor

HOD, CSE