

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ANALO	G ELECTRONICS	5			
Course Code	AECB02					
Programme	B.Tech					
Semester	III E	EEE				
Course Type	Core					
Regulation	IARE - R18					
	Theory			Practical		
Course Structure	Lecture	es Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Chief Coordinator	Mrs. M Sreevani, Assistant Professor					
Course Faculty	Faculty Mr. P Sandeep Kumar, Assistant Professor					

COURSE OBJECTIVES:

The cours	The course should enable the students to:				
Ι	Explain the components such as diodes, BJTs and FETs their switching characteristics, application.				
II	Learn the concepts of high frequency analysis of transistors.				
III	Describe the various types of basic and feedback amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.				
IV	Discuss the basic building blocks of linear integrated circuits.				
V	Understand the concepts of waveform generation and introduce some special function ICs.				

COURSE OUTCOMES(COs):

CO1	Describe the concept of diode and transistor operation with applications.
CO2	Understand the principle of operation of MOSFET in CS, CG, CD amplifiers and analyze MOSFET with
	high frequency equivalent circuit.
CO3	Analyze the different types of multistage amplifiers and Power amplifiers.
CO4	Study and analyze the different characteristics of feedback amplifiers and oscillators.
CO5	Understand the principle of operation of Op-amp characteristics with different applications.

COURSE LEARNING OUTCOMES:

AECB02.1	Understand the basic concept of PN diode with characteristics.
AECB02.2	Analyze the application of diode in Rectifiers, clippers and clampers.
AECB02.3	Understand the working of different configurations of Bipolar Junction Transistor.
AECB02.4	Design the various biasing circuits.
AECB02.5	Analyze the different types of Amplifiers with BJT.
AECB02.6	Understand the principle of operation of MOSFET and as switch.
AECB02.7	Apply small-signal model to MOSFET and determine the voltage gain and input and output impedance.
AECB02.8	Analyze the MOSFET characteristics of common source, common gate and common drain amplifiers.
AECB02.9	Determine the parameters of MOSFET amplifier from drain and transfer characteristics.
AECB02.10	Analyze the high frequency equivalent circuit model of MOSFET.
AECB02.11	Understand the classification of transistor amplifiers.
AECB02.12	Understand the different coupling schemes used in amplifiers.
AECB02.13	Analyze frequency response of multistage amplifiers.
AECB02.14	Analyze hybrid-pi model of BJT.
AECB02.15	Analyze the different types of power amplifiers.
AECB02.16	Understand the concept of characteristics of feedback amplifiers.
AECB02.17	Analyze the different configurations of feedback amplifiers.
AECB02.18	Distinguish the constructional features and operation of feedback amplifiers and oscillators.
AECB02.19	Understand the basic concept of condition for oscillations.
AECB02.20	Analyze the different types of oscillators.
AECB02.21	Understand the basic concept Operational amplifier.
AECB02.22	Analyze different characteristics of OP-amp.
AECB02.23	Understand the different types of op-amp based on input.
AECB02.24	Analyze the different applications of Op-amp.
AECB02.25	Design the different types of waveform generators.

TUTORIAL QUESTION BANK

	MODULE-I DIODE CIRCUITS			
	PART-A (SHORT ANSWER OUF	STIONS)		
S No	Question	Blooms	Course	Course
5.110	Question	Taxonomy	Outcome	Learning
		Level	Outcome	Outcomes
1.	What do you mean by diode?	Remember	CO1	AECB02.01
2.	Explain about forward bias of diode?	Understand	C01	AECB02.01
3.	Explain about reverse bias of diode?	Understand	CO1	AECB02.01
4.	Write the Applications of diode?	Remember	CO1	AECB02.01
5.	Draw the V-I characteristics of diode?	Remember	CO1	AECB02.01
6.	Define cut-in voltage?	Remember	CO1	AECB02.01
7.	Mention different names for cut-in voltages and its values for Si.	Remember	CO1	AECB02.01
<i>,.</i>	Ge.	rtememoer	001	11120202.01
8.	Define rectifier?	Remember	CO1	AECB02.02
9.	Give the broad classification of rectifiers.	Understand	CO1	AECB02.02
10.	What do you mean by clipper?	Understand	CO1	AECB02.02
11.	Define clamper.	Remember	CO1	AECB02.02
12.	How many types of clampers are there?	Remember	CO1	AECB02.02
13.	Define Transistor?	Remember	CO1	AECB02.03
14	What is meant by operating $point(\Omega)$?	Understand	C01	AECB02.03
15	Draw the symbols of NPN and PNP transistor?	Remember	C01	AECB02.03
10.	PART-B (LONG ANSWER OUE)	STIONS)	001	1120202.03
1	Explain the operation of p-n junction diode under forward and	Remember	CO1	AECB02.01
	reverse bias conditions and Sketch the V-I characteristics.	Remember	001	1120202.01
2	Explain the operation of any two rectifiers with neat output	Remember	CO1	AECB02.01
	waveforms.	1.0	001	120202101
3.	Explain the operation of clamper circuits with neat output	Remember	CO1	AECB02.04
	waveforms.			
4.	With the help of a neat circuit diagram explain the working of two	Remember	CO1	AECB02.02
	level diode clippers.			
5.	With neat circuit diagram explain the input and output	Remember	CO1	AECB02.02
	characteristics of BJT in CB configuration.			
6.	With neat circuit diagram explain the input and output	Understand	CO1	AECB02.02
	characteristics of BJT in CE configuration.			
7.	With neat circuit diagram explain the input and output	Remember	CO1	AECB02.02
	characteristics of BJT in CC configuration.			
8.	With the help of neat circuit diagram explain the operation of self	Remember	CO1	AECB02.02
	bias circuit.			
9.	Derive the expressions for voltage gain, current gain, input	Remember	CO1	AECB02.02
	impedance and output impedance of CE amplifier.			
10.	Derive the expressions for voltage gain, current gain, input	Remember	CO1	AECB02.03
	impedance and output impedance of CB amplifier.			
	PART-C (ANALYTICAL QUES	TIONS)		
1.	What is meant by Q-point? Also explain the need for biasing a	Remember	CO1	AECB02.01
	transistor.			
2.	Draw the fixed bias circuit and derive an expression for the Q-	Remember	CO1	AECB02.01
	factor.			
3.	Draw the voltage divider bias circuit and derive an expression for	Remember	CO1	AECB02.02
	the Q-factor.			
4.	Determine voltage gain, current gain, input impedance and output	Remember	CO1	AECB02.02
	impedance of CE amplifier using NPN transistor with hie = 1200Ω ,			
	hte = 36, hre =0, and hoe= $2*10-6$ Mhos. RL= $2.5k\Omega$, Rs= 500Ω .			
5.	The h-parameter of a transistor in the CE amplifier mode are hie =	Remember	CO1	AECB02.02

	1100 Ω , hfe = 50, hre =2.5*10-4, and hoe=25*10-6 Mhos.			
	Determine the current gain, input impedance and output impedance			
	RL=2.5k Ω .			
6.	For a CB transistor amplifier driven by a voltage source of internal	Remember	CO1	AECB02.02
	resistance Rs=1200 Ω , RL=1000 Ω . The h-parameters are hib =			
	22 Ω , hfb = -0.98, hrb = 3*10-4, and hob=0.5*10-6 A/V. Compute			
	the current gain, input impedance and output impedance, overall			
-	voltage gain, overall current gain, power gain.	D 1	CO1	
7.	A CB transistor amplifier has the following values of h-	Remember	COI	AECB02.02
	parameters. $hib = 22\Omega$, $hib = -0.98$, $hrb = 5*10-4$, and			
	$nob=0.34^{+}10^{-}6$ A/V. Calculate the values of voltage gain, current			
	A source resistance as zero			
8	If the base current in a transistor is $20\mu\Lambda$ when the emitter current	Remember	CO1	AECB02.04
0.	is 6 4mA, what are the values of αdc and βdc^2 Also determine the	Kemember	001	ALCD02.04
	collector current?			
	Design a collector to base bias circuit using silicon transistor to	Remember	CO1	AECB02.04
9.	achieve a stability factor of 20, with the following specifications:		001	120202101
	$VCC = 16V, VBE = 0.7V, VCEO = 8V, Icq=4ma \& \beta=50?$			
10.	Design a self bias circuit using silicon transistor to achieve a	Remember	CO1	AECB02.05
	stability factor of 10, with the following specifications: VCC =			
	16V, VBE = 0.7V, VCEQ = 8V, ICQ = 4 mA & β = 50?			
	MODULE-II			
	MOSFET CIRCUITS			
	PART-A (SHORT ANSWER QUE	STIONS)	1	1
1.	Draw the drain characteristics of depletion type MOFET?	Understand	CO2	AECB02.06
2.	What is MOSFET?	Understand	CO2	AECB02.06
3.	What are the regions of operation of a MOSFET?	Understand	CO2	AECB02.06
4.	Draw the I-V characteristic of MOSFET.	Remember	<u>CO2</u>	AECB02.07
5.	Draw the circuit symbol of N-channel MOSFET.	Remember	CO2	AECB02.08
6.	Draw the drain characteristics of n-channel enhancement type	Remember	CO2	AECB02.07
7	MOSFE1 ?	Domomhor	<u> </u>	AECD02.08
7. 8	Draw the circuit symbol of F-channel MOSFET.	Remember	CO2	AECB02.08
0. 0	How MOSEET can acts as switch?	Remember	CO2	AECB02.09
<i>9</i> .	Draw the circuit diagram of CS amplifier	Remember	CO2	AECB02.00
10.	Draw the circuit diagram of CD amplifier	Remember	CO2	AECB02.09
11.	Draw the circuit diagram of CG amplifier	Remember	CO2	AECB02.09
12.	Define transconductance	Remember	CO2	AECB02.09
14	Define Pinch-off region	Remember	CO2	AECB02.09
15.	Define Ohmic region.	Remember	CO2	AECB02.08
10.	PART-B(LONG ANSWER OUES	STIONS)	002	1110102.00
1.	Explain the construction & operation of a P-channel MOSFET in	Understand	CO2	AECB02.06
	enhancement and depletion modes with the help of static drain			
	characteristics and transfer characteristics?			
2.	Sketch the drain characteristics of MOSFET for different values of	Understand	CO2	AECB02.07
	VGS & mark different regions of operation.			
3.	Explain the principle of CS amplifier with the help of circuit	Remember	CO2	AECB02.09
	diagram. Derive the expressions for AV, input impedance and			
	output Impedance?			
4.	Draw the small-signal model of common drain FET amplifier.	Remember	CO2	AECB02.09
	Derive expressions for voltage gain and output resistance?		~ ~ ~ ~	
5.	Draw the small-signal model of common source FET amplifier.	Remember	CO2	AECB02.07
	Derive expressions for voltage gain and output resistance?			
6.	Draw the small-signal model of common gate FET amplifier.	Remember	CO2	AECB02.07
	Derive the expressions for voltage gain and output resistance?			4

7.	List any four merits of MOSFET to show that they are more suitable than JFETS in Integrated circuits?	Understand	CO2	AECB02.07
8.	Compare enhancement and depletion modes of a MOSFET with the help of its characteristics and construction?	Understand	CO2	AECB02.09
9.	Derive the expression for transconductance of MOSFET?	Understand	CO2	AECB02.09
10.	Define pinch-off voltage and trans conductance in field effect transistors? Also mention the differences between BJT & FET.	Remember	CO2	AECB02.08
	PART-C (ANALYTICAL OUES	TIONS)		
1.	Define the three FET parameters: gm, rd and μ . Prove that μ =gm x	Remember	CO2	AECB02.09
	rd.			
2.	Common Source FET amplifier circuit has the following circuit	Remember	CO2	AECB02.08
	parameters: $RD = 5K\Omega$, $RG = 10M\Omega$, $rd = 35K\Omega$, $\mu=50$.			
	Determine AV,Ri& RO?			
3.	A Common Source FET amplifier circuit with un bypassed Rs has	Remember	CO2	AECB02.08
	the following circuit parameters: $Rd = 15K$, $RS = 0.5K\Omega$, $Rg =$			
	1M, rd = 5K, gm = 5mS and VDD = 20 V. Determine AV& RO?			
4.	A self biased p – channel JFET has a pinch – off voltage of $VP = 5$	Remember	CO2	AECB02.09
	V and IDSS = 12 mA . The supply voltage is 12 V . Determine the			
5	values of RD and RS so that $ID = 5$ mA and $VDS = 6V$?	Demension		AECD02.07
5.	type N-channel MOSEET	Remember	02	AECD02.07
6	Compare Depletion MOSFET and enhancement MOSFET Also	Remember	CO2	AECB02.07
0.	Derive the expression for transconductance in a CS field effect	Remember	002	THEODO2.07
	transistor.			
7.	A common source MOSFET amplifier is to be constructed using a	Remember	CO2	AECB02.09
	n-channel MOSFET which has a conduction parameter of			
	50mA/V and a threshold voltage of 2.0 volts. If the supply voltage			
	is +15 volts and the load resistor is 470 Ohms, calculate the values			
	of the resistors required to bias the MOSFET amplifier at			
	1/3(VDD). Draw the circuit diagram and Values			
	given: $VDD = +15v$, $VTH = +2.0v$, $k = 50mA/V2$ and $RD = 4$			
	70Ω.			
8.	For the circuit shown in fig. Determine i) Input impedance	Remember	CO2	AECB02.10
	II)output impedance and III)Voltage gain?			
	Roξ5.1 KQ			
	$D \qquad G_2 \qquad g_m = 2 mg$ $r_d = 50 kg$			
9	Explain the construction and principle of operation of Depletion	Understand	CO2	AECB02.08
7.	type P-channel MOSFET.	Chaerstand	002	THEED02.00
10.	Explain the construction and principle of operation of	Understand	CO2	AECB02.08
	Enhancement type P-channel MOSFET.			
	MODULE-III			
	MULTI-STAGE AND POWER AM	PLIFIERS		
	PART-A (SHORT ANSWER QUE	STIONS)	1	1
1.	What is meant by band width?	Remember	CO3	AECB02.11
2.	List the classification of amplifiers.	Remember	CO3	AECB02.11
3.	What are the merits and demerits of a cascade amplifier over a	Understand	CO3	AECB02.11
	simple CE amplifier?			
4.	Define distortion.	Remember	CO3	AECB02.11
5.	How many types of coupling schemes are there?	Understand	<u>CO3</u>	AECB02.12
6.	what are the advantages of multistage amplifiers?	Understand	CO3	AECB02.13
1.	what is the need for cascading?	Kemember	03	AECB02.13

8.	Classify power Amplifiers.	Remember	CO3	AECB02.15
9.	What are the advantages of class-B power amplifier.	Understand	CO3	AECB02.15
10.	Define power amplifier.	Remember	CO3	AECB02.13
11.	What do you mean by Gain band width product?	Remember	CO3	AECB02.14
12.	Define differential amplifier.	Remember	CO3	AECB02.14
13.	What are the drawbacks in Class A power amplifier?	Understand	CO3	AECB02.15
14.	Draw the circuit diagram of Darlington pair.	Remember	CO3	AECB02.14
15.	Define frequency response.	Remember	CO3	AECB02.12
	PART-B (LONG ANSWER QUES	STIONS)	•	L
1.	Explain about different types of distortions that occur in amplifier	Understand	CO3	AECB02.11
2	Explain the two stage amplifier with Darlington connection Give	Remember	CO3	AECB02.12
	the advantages of this circuit What are the drawbacks of a	itementeer	005	1110002.12
	Darlington amplifier.			
3.	Compare the different types of coupling methods used in	Understand	CO3	AECB02.12
	multistage			
	amplifiers.			
4.	Define the terms collector dissipation and conversion efficiency of	Understand	CO3	AECB02.15
	class A power amplifier.			
5.	In a modified class B power amplifier cross over, how distortion	Understand	CO3	AECB02.15
	can be eliminated?			
6.	Briefly explain about cascade amplifiers.	Understand	CO3	AECB02.13
7.	State the advantages of push pull class B power amplifier over	Remember	CO3	AECB02.15
	class B power amplifier.			
8.	Draw the push-pull class-B power amplifier and explain its	Remember	CO3	AECB02.15
	operation. Show that the maximum conversion efficiency is 78.5%.			
9.	Compare different power amplifiers.	Remember	CO3	AECB02.14
10.	What are the advantages and disadvantages of transformer	Remember	CO3	AECB02.13
	coupling.			
	PART-C (ANALYTICAL QUES	FIONS)		
1.	A Darlington emitter follower circuit uses two identical transistors	Remember	CO3	AECB02.12
	having the following h-parameters hie=1.1K, hre=2.2*10, hfe=50,			
	hoe= 20μ A/V. RE2= 3 K Ω , RS= 400Ω , R1= 90 K Ω , R2= 10 K Ω .			
	Compute overall A I & AV, Ri, Ro.			
2.	A CE-CC Amplifier uses RS=1K Ω , . RC1= RE2=4K Ω . The h-	Remember	CO3	AECB02.13
	parameters hie=1.2K, hre=5*10-4, hfe=50, hoe=25µA/V, hic=1.2			
	Ω , hrc=1, hfc= -51, hoc=25 μ A/V. Compute individual & overall			
	A I & AV, Ri, Ro			
3.	A CE-CE(cascade) Amplifier uses RS=1K Ω , . RC1=15K Ω ,	Remember	CO3	AECB02.13
	RE1=100 Ω , RC2=4K Ω , RE2=330 Ω , R1=200K Ω R2=10K Ω for			
	the first stage, for second stage $R1=47K\Omega$, $R2=4.7K\Omega$. The h-			
	parameters hie=1.2K, hre= $2.5*10-4$, hre= 50 , hoe= $25*10-6$ A/V.			
4	Compute individual & overall A I, AV, Ri, & Ro.	D 1		AECD02.15
4.	Draw the circuit diagram of Direct coupled class-A power	Remember	03	AECB02.15
	amplifier and explain its operation. Snow that the maximum			
5	Conversion efficiency is 25%.	Demension	CO2	AECD02.15
5.	For a class B power amplifier driven from a 24v power supply and	Remember	03	AECB02.15
	driving a load 822, compute filiput D.C power filoutput power fil)			
	Load resistance is 22V maximum			
6	$\Delta CE_{\rm RC}$ coupled amplifier uses transistor with the following h	Remember	CO3	AECR02 12
0.	parameters hfe=50 hoe=30×10.6 mhos hre=2.5×10.4 The value of	Kemennen	0.03	ALCD02.15
	gm at the operating point is 50m mbos. The biasing resistor R1			
	between Vcc and base is 100KO and R ² between base and ground			
	is $10K\Omega$. The load resistor Rc = 5KΩ. Let C = 160nF be the total			
	shunt capacitance in the input circuit and the coupling capacitor			
Į			L	6

	$Cc=6\mu F$, Calculate for one stage of the amplifier (i) mid-band			
-	current gain (11) mid-band voltage gain.	D 1	G00	45000015
7.	A single transistor is acting as ideal Class B amplifier with load of $1KO$ if DC collector current is $15mA$, $VCC=20V$. Determine its	Remember	CO3	AECB02.15
	efficiency.			
8.	Draw the circuit diagram of class B push pull power amplifier and	Remember	CO3	AECB02.15
	derive an expression for its conversion efficiency.			
9.	Draw the circuit diagram of class-B power amplifier and explain its	Remember	CO3	AECB02.15
	operation. Show that the maximum conversion efficiency is 78.5%.			
10.	Explain the two stage amplifier with CE-CC configuration. Give	Understand	CO3	AECB02.13
	the advantages of this circuit.			
	MODULE-IV FFEDRACK AMDI IFIED	2		
	PART-A (SHORT ANSWER QUE	STIONS)		
1.	Define feedback amplifier.	Remember	CO4	AECB02.16
2.	What is meant by positive and negative feedback?	Remember	CO4	AECB02.16
3.	What are the advantages and disadvantages of negative feedback?	Understand	CO4	AECB02.16
4.	How many types of topologies in negative feedback amplifiers?	Remember	CO4	AECB02.16
5.	Define sensitivity.	Remember	CO4	AECB02.17
6.	Define De-sensitivity.	Remember	CO4	AECB02.18
7.	Differentiate between voltage and current feedback in amplifiers.	Remember	CO4	AECB02.17
8.	What is Oscillator circuit?	Understand	CO4	AECB02.20
9.	What are the classifications of Oscillators?	Understand	CO4	AECB02.19
10.	What are the conditions for oscillations?	Understand	CO4	AECB02.19
11.	What are the RC oscillators?	Understand	CO4	AECB02.20
12.	What are the LC oscillators?	Understand	CO4	AECB02.20
13.	Draw the circuit diagram of Hartley oscillator.	Remember	<u>CO4</u>	AECB02.20
14.	Draw the circuit diagram of Colpitts oscillator.	Remember	CO4	AECB02.20
15.	Calculate the frequency of oscillation for the Colpitts oscillator with $c_{1=0} \downarrow uf c_{2=1} \downarrow uf c_{3=1} 00 \text{ pF}$ and $I = 470 \mu \text{H}$	Remember	CO4	AECB02.20
	PART-B (LONG ANSWER OUES	STIONS)		
1.	Explain the concept of feedback as applied to electronic amplifier	Understand	CO4	AECB02.16
	circuits. What are the advantages & disadvantages of positive and			
	negative feedback?			
2.	Derive an expression for frequency oscillation of Hartley oscillator	Remember	CO4	AECB02.20
2	using transistor.	The dension of	<u> </u>	AECD02.10
3.	what type of feedback is used in electronic amplifiers? what are	Understand	C04	AECB02.19
	mathematically			
4	Give the equivalent circuits and characteristics of ideal and	Understand	CO4	AECB02 17
	practical amplifiers of the following types (i) Voltage amplifier.(ii)	Onderstand	001	THEODOZ.17
	Trans-resistance amplifier.			
5.	Derive the expression for the input resistance with feedback Rif	Understand	CO4	AECB02.17
	and output resistance with feedback Rof in the case of			
	(a) Voltage series feedback amplifier. (b) Voltage shunt feedback			
	amplifier.			
6.	Draw the circuit for Voltage series amplifier and justify the type of	Remember	CO4	AECB02.18
	teedback. Derive the expressions for Av, Ri and Ro for the circuit.			
7.	Draw the circuit and explain the principle of operation of RC	Remember	CO4	AECB02.20
	phase-shift oscillator circuit. What is the frequency range of			
	of oscillations			
8	Derive the expression for the input resistance with feedback Dif	Remember	CO4	AFCB02.20
0.	and output resistance with feedback Rof in the case of	Remember		1110002.20
	(a)current series feedback amplifier. (b) current shunt feedback			
	amplifier.			_

9.	Derive an expression for frequency oscillation of Colpitts oscillator	Understand	CO4	AECB02.20
10	using transistor.	<u> </u>	GO (
10.	Draw the circuit diagram of Wein bridge oscillator using BJT and	Remember	CO4	AECB0219
	derive the expression for frequency of oscillations.			
1	PART-C (ANALYTICAL QUES	TIONS)	CO.1	AECD02.20
1.	In Hartley oscillator, if L1=0.2mH, L2=0.3mH and C=0.003 μ F,	Remember	C04	AECB02.20
	Calculate the nequency of its oscillation.	Domomhor	CO4	AECD02.10
2	Calculate the gain, input impedance, output impedance of voltage series feedback amplifier baying $A=300$ Bi=1 5K PO=50K and β	Remember	04	AECD02.19
۷.	series recuback amplifier having $A=500$, $KI=1.5K$, $KO=50K$ and $p=-1/12$			
	A Hartley oscillator is designed with $I = 20\mu$ H and a variable	Remember	CO4	AECB02 19
3	capacitance Find the Range of capacitance values if the frequency	Remember	0.04	ALCD02.17
5.	of oscillation is varied between 950 KHz to 2050 KHz.			
4.	The following information is available for the generalized feedback	Remember	CO4	AECB02.18
	n/w. Open loop voltage amplification (AV) = -100. Input voltage			
	to the system $(V,') = 1 \text{ mV}$. Determine the AECB02sed loop voltage			
	gain, the output voltage, feedback voltage, input voltage to the			
	amplifier, and type of feedback for (a) $\beta = 0.01$, (b) $\beta = -0.005$. c)			
	$\beta = 0.$			
5.	An amplifier has a mid band gain of 125 and bandwidth of 250	Remember	CO4	AECB02.18
	kHz. If 4% negative feedback is introduced, find the new			
6	bandwidth and gain.	D 1	CO (4 E C D 00, 17
6.	An amplifier with open loop voltage gain $Av = 1000 \pm 100$ is	Remember	CO4	AECB02.17
	available. It is necessary to have an amplifier where voltage gain varies by not more than ± 0.1 %			
	values by not more than \pm 0.1 %.			
	used			
	b. Find the gain with feedback.			
7.	An amplifier with $Av = -500$, produces 5% harmonic distortion at	Remember	CO4	AECB02.18
	full output. What value of β is required to reduce the distortion to			
	0.1 % ? What is the overall gain?			
8.	What are the advantages of negative feedback? Prove each one	Remember	CO4	AECB02.16
	mathematically?			
9.	For a voltage series feedback amplifier Find D, Avf, Rif, Rof.	Remember	CO4	AECB02.18
	$= \frac{1}{2} $			
	$R_{s=1K\Omega}$ + $R_{s=1K\Omega}$ +			
	the second secon			
10.	A Colpitts oscillator is designed with capacitance $C = 20\mu$ F and a	Remember	CO4	AECB02.20
	variable inductance. Find the Range of capacitance values if the			
	frequency of oscillation is varied between 1000 KHz to 2000 KHz.			
	MODULE-V			
	OPERATIONAL AMPLIFIE	RS		
	PART-A (SHORT ANSWER QUE	STIONS)		1
1.	Define an operational amplifier.	Remember	CO5	AECB02.21
2.	Mention the characteristics of an ideal op-amp.	Remember	CO5	AECB02.21
3.	Define input offset voltage.	Remember	CO5	AECB02.21
4.	Define Output offset voltage.	Remember	CO5	AECB02.21
5.	Define input bias current.	Remember	C05	AECB02.21
0. 7	Define spinteerster	Remember	C05	AECB02.21
/. o	Define differentiator aircuit	Remember Remember		AECB02.22
ð. 0	What are the two configuration of on amp ²	Understand		AECB02.22
9. 10	What is an integrated circuit?	Understand		AECD02.23
10.	what is an integrated encurt:	Unucistatiu	0.05	<u>8</u>

11.	What is an inverting amplifier?	Understand	CO5	AECB02.24
12.	What is a non-inverting amplifier?	Remember	CO5	AECB02.24
13.	Define Gain.	Remember	CO5	AECB02.21
14.	Draw the practical op-amp symbol.	Remember	CO5	AECB02.25
15.	What are the parameters of an op-amp?	Understand	CO5	AECB02.21
	PART-B (LONG ANSWER QUE	STIONS)		
1.	Explain the following terms in an OP-AMP. I) input Bias current	Understand	CO5	AECB02.21
	11) Input offset voltage and current 111)slew rate.	XX 1 1		
2.	Explain the operation of non-inverting Op-amp and derive the expression for output voltage?	Understand	CO5	AECB02.23
3.	With a neat diagram explain about square wave generator and derive the frequency of Oscillation.	Understand	CO5	AECB02.25
4.	With a neat diagram explain about triangular wave generator and derive the frequency of Oscillation.	Remember	CO5	AECB02.25
5.	Draw and explain the operation of an op-amp as an integrator for square wave input.	Remember	CO5	AECB02.24
6.	Draw and explain the operation of an op-amp as differentiator for sine wave input.	Remember	CO5	AECB0224
7.	Explain the operation of inverting Op-amp and derive the expression for output voltage?	Understand	CO5	AECB02.23
8.	With a neat diagram explain about free running oscillator and derive the frequency of Oscillation.	Understand	CO5	AECB02.25
9.	Draw and explain the operation of an op-amp as an integrator for sine wave input.	Remember	CO5	AECB02.23
10.	Draw and explain the operation of an op-amp as differentiator for square wave input.	Remember	CO5	AECB02.23
	PART-C (ANALYTICAL OUES	TIONS)	L	
1.	An op-amp with a slew rate = $0.5V/\mu S$ is used as an inverting amplifier to obtain a gain of 100. The voltage gain Vs frequency characteristic of the amplifier is flat up to 10 KHz. Determine i. The maximum peak-to-peak input signal that can be applied without any distortion to the output. ii. The maximum frequency of the input signal to obtain a sine wave output of 2V peak.	Remember	CO5	AECB02.21
2.	Design an integrator to integrate an input signal that varies in frequency from 10 Hz to about 1 KHz. If a sine wave of 1V peak at 1000 Hz is applied to this differentiator draw the output waveforms.	Remember	CO5	AECB02.23
3.	Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1 KHz. If a sine wave of 1V peak at 1000 Hz is applied to this differentiator draw the output waveforms.	Remember	CO5	AECB02.23
4.	Design and draw the wave forms of 1KHZ square waveform generator using 555 Timer for duty cycle i)D=25% ii) D=50%.	Remember	CO5	AECB02.25
5.	Explain about the term CMRR, Input offset voltage, input offset current, input bias current, out offset voltage with reference to OPAMPs.	Remember	CO5	AECB02.21
6	Design an op-amp differentiator that will differentiate an Input signal with $fmax = 100Hz$	Remember	CO5	AECB02.23
7.	Explain the operation of non-inverting Op-amp and derive the expression for voltage gain?	Understand	CO5	AECB02.22
8.	Explain the operation of non-inverting Op-amp and derive the expression for output voltage?	Understand	CO5	AECB02.22
9.	Explain the operation of inverting Op-amp and derive the expression for output voltage?	Understand	CO5	AECB02.22

10.	Design an op-amp integrator that will integrate an Input signal with	Remember	CO5	AECB02.23
	fmin = 100Hz.			

Prepared By:

Ms. M Sreevani, Assistant Professor

Mr. P Sandeep Kumar, Assistant Professor

ECE, HOD