INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Title	DIGITAL	DIGITAL SYSTEM DESIGN				
Course Code	AECB07		0	0		
Programme	B.Tech					
Semester	III	ECE				
Course Type	Core					
Regulation	R18					
		Theory			ctical	
Course Structure	Lectures	Tutorials	Credits	Practicals	Credits	
	3	1	4	-	-	
Chief Coordinator	Dr. V Vijay	Dr. V Vijay, Associate Professor				
Course Faculty	100	Dr. P Munaswamy, Professor				
	Dr. Lalit Ku	ımar Kaul, Pro	fessor			

COURSE OBJECTIVES:

2000

The cour	The course should enable the students to:					
Ι	Understand common forms of number representation in logic circuits.					
II	Learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.					
III	Understand the concepts of combinational logic circuits and sequential circuits.					
IV	Understand the Realization of Logic Gates Using Diodes & Transistors.					

-

-

COURSE OUTCOMES (COs):

1

CO 1	Understand the logic simplification and combinational logic design.
CO 2	Explore the MSI devices like Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU
CO 3	Understand the building blocks like FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of synchronous FSM, Algorithmic State Machines charts

CO 4	Understand the Logic Families And Semiconductor Memories				
CO 5	Explore the VHDL Design entry and Modeling, Synthesis and Simulation VHDL constructs and				
005	codes for combinational and sequential circuits				

COURSE LEARNING OUTCOMES (CLOs):

CLO 1	Understand number systems, binary addition and subtraction, 2's complement Representation
	and operations with this representation and understand the different binary codes.
CLO 2	Identify the importance of SOP and POS canonical forms in the minimization or other
	optimization of Boolean formulas in general and digital circuits.
CLO 3	Evaluate functions using various types of minimizing algorithms like Karnaugh map or
	tab <mark>ulation method.</mark>
CLO 4	Analyze the design procedures of Combinational logic circuits like adder, binary adder, carry
	look ahead adder
CLO 5	Understand Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder.
CLO 6	Analyze Barrel shifter and ALU
CLO 7	Understand bi-stable elements like latches, flip-flop and illustrate the excitation tables of
	different flip flops.
CLO 8	Analyze and apply the design procedures of small sequential circuits to build the gated latches.
CLO 9	Understand the concept of Shift Registers and implement the bidirectional and universal shift
1.00	registers.
CLO 10	Implement the synchronous counters using design procedure of sequential circuit and excitation
	tables of flip – flops.
CLO 11	Implement the Asynchronous counters using design procedure of sequential circuit and
	excitation tables of flip – flops.
CLO 12	Analyze TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out.
CLO 13	Implement Tristate TTL, ECL, CMOS families and their interfacing, Memory elements,
CLO 14	Understand Concept of Programmable logic devices like FPGA. Logic implementation using
	Programmable Devices.
CLO 15	Design entry: Schematic, FSM & HDL, different modeling styles in VHDL,
CLO 16	Understand Data types and objects, Dataflow, Behavioral and Structural Modeling,
CLO 17	Analyze Synthesis and Simulation VHDL constructs and codes for combinational and
	sequential circuits.
l	1

TUTORIAL QUESTION BANK

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome			
	UNIT-I						
	LOGIC SIMPLIFICATION AND COMBINATIONAL LOGIC DESIGN						
	PART-A (SHORT ANSWER QU	ESTIONS)					
1	Write short notes on binary number systems.	Remember	CO 1	AECB07.01			
2	Discuss 1's and 2's complement methods of subtraction.	Remember	CO 1	AECB07.01			
3	Discuss octal number system.	Remember	CO 1	AECB07.01			
4	Convert the octal numbers into binary numbers (47.5)8, (32.3)8.	Remember	CO 1	AECB07.01			
5	Show an example to convert gray code to binary code.	Remember	CO 1	AECB07.01			
6	Describe a short note on four bit BCD codes.	Remember	CO 1	AECB07.01			
7	Illustrate about unit-distance code? State where they are used.	Remember	CO 1	AECB07.02			
8	State error correcting codes.	Remember	CO 1	AECB07.01			
9	Convert 10101101.0111 to octal equivalent and hexadecimal equivalent.	Understand	CO 1	AECB07.01			
10	State about logic design and what do you mean by positive logic system.	Remember	CO 1	AECB07.01			
11	Identify Y for a given problem is $(2.3)8 + (1.7)8 = (Y)8$.	Remember	CO 1	AECB07.01			
12	Explain the specialty of unit –distance code.	Remember	CO 1	AECB07.02			
13	Convert (4065)8 into base 5.	Understand	CO 1	AECB07.01			
14	Convert (4065)8 into base 3.	Remember	CO 1	AECB07.01			
15	Convert 11001 ₂ into decimal?	Understand	CO 1	AECB07.01			
16	Convert (3543)8 into base 5.	Remember	CO 1	AECB07.01			
17	Convert (277)8 into base 3.	Remember	CO 1	AECB07.02			
18	Convert 10011001 ₂ into decimal?	Understand	CO 1	AECB07.01			
19	Convert (2431)8 into base 5.	Remember	CO 1	AECB07.01			
20	Convert (6254)8 into base 3.	Understand	CO 1	AECB07.01			
	PART-B (LONG ANSWER QUE	STIONS)	I				
1	Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.	Understand	CO 1	AECB07.01			

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
	i. 100 – 110000 ii. 11010 - 1101.			
2	 a) Rewrite the decimal number (215)10 as an octal number b) Find (3250 - 72532)10 using 9's complement c) Change (1001011101)2 to a hexadecimal number? 	Remember	CO 1	AECB07.01
3	a) Find (3250 - 72532)10 using 10's complement? b) Convert (B3D9)16 to a binary number. c) Convert (10110101)2 to decimal equivalent?	Understand	CO 1	AECB07.02
4	a)Convert 4510 to binary number b)Convert 0.62510 to binary number?	Remember	CO 1	AECB07.02
5	(a) Add 01100100 by 00011001. (b) Given that (292)10 = (1204)b determine `b'.	Understand	CO 1	AECB07.02
6	(a) What is the gray code equivalent of the Hex Number 3A7.(b) Find 9's complement of (25.639)10?	Remember	CO 1	AECB07.03
7	 (a) Find (72532 - 03250) using 9's complement. (b) Express each number as an octal number. a.101001001₂ b. 1234₁₆ 	Understand	CO 1	AECB07.03
8	Explain Self complemented codes.	Understand	CO 1	AECB07.02
9	Convert (4085)10 into base-4 and obtain its 9's complement.	Remember	CO 1	AECB07.01
10	Convert the following Hexadecimal number to their Decimal equivalent (EAF2)16.	Remember	CO 1	AECB07.02
11	Convert (3874)10 into base-4 and obtain its 9's complement.	Remember	CO 1	AECB07.03
12	Convert the following Hexadecimal number to their Decimal equivalent (DEA5)16.	Understand	CO 1	AECB07.03
13	Convert (7821)10 into base-4 and obtain its 9's complement.	Understand	CO 1	AECB07.02
14	Convert the following Hexadecimal number to their Decimal equivalent (8DAB)16.	Remember	CO 1	AECB07.01
15	Convert (3278)10 into base-4 and obtain its 9's complement.	Remember	CO 1	AECB07.02

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
16	Convert the following Hexadecimal number to their Decimal equivalent (CC63)16.	Remember	CO 1	AECB07.03
17	Convert (8745)10 into base-4 and obtain its 9's complement.	Understand	CO 1	AECB07.03
18	Convert the following Hexadecimal number to their Decimal equivalent (AAC5)16.	Understand	CO 1	AECB07.02
19	Convert (6548)10 into base-4 and obtain its 9's complement.	Remember	CO 1	AECB07.01
20	Convert the following Hexadecimal number to their Decimal equivalent (EAC8)16.	Remember	CO 1	AECB07.02
	PART-C (PROBLEM SOLVING AND CRITICAL	THINKING Q	UESTIONS)
1	Given the 8bit data word 01011011, generate the 12-bit composite word for the hamming code that corrects and detects single errors.	Apply	CO 1	AECB07.01
2	Express each number as an octal number. (1001010000100010)2 c. (B78)16 d. (1234)16	Apply	CO 1	AECB07.01
3	A device transmits the binary data using even parity, the message is 1011001. Identify the receiver receives the correct data or not.	Apply	CO 1	AECB07.02
4	Subtract the following binary numbers using 1's complement. i) 1011-101 ii) 10110-1011	Apply	CO 1	AECB07.02
5	Differentiate between BCD code and 2421 code and XS- 3.	Apply	CO 1	AECB07.01
6	Find 7-bit hamming code for given message 1010 by using odd parity.	Apply	CO 1	AECB07.01
7	The message below coded in the seven-bit hamming code is transmitted through a noisy channel. Decode the message assuming the at most a single error occurred in each code word. 1001011,0111001,1110110	Apply	CO 1	AECB07.01
8	Generate an 11-bit hamming code for a given data 1011010 using odd parity.	Apply	CO 1	AECB07.01

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
9	Express each number as a hexadecimal number.	Apply	CO 1	AECB07.02
	a. $(1010101010)_2$ b. $(2526)_8$			
10	a. Convert 0.35_{10} to octal number.	Apply	CO 1	AECB07.02
	b. Convert $9F2_{(16)}$ to its binary equivalent			
	UNIT-II			
	MSI DEVICES			
	PART-A(SHORT ANSWER QUE		1	
1	Define K-map.	Remember	CO 2	AECB07.04
2	Define Implicant, Prime Implicant and Essential Prime Implicant.	Remember	CO 2	AECB07.06
3	Define Consensus Theorem.	Remember	CO 2	AECB07.05
4	Solve AB+BC+CA=AB+BC.	Remember	CO 2	AECB07.04
5	Simplify the Boolean function A'BC +A'BC' + AB'C' + AB'C using K- map.	Understand	CO 2	AECB07.06
6	Simplify the Boolean function $x'yz + x'yz' + xy'z' + xy'z$ without using K-Map.	Remember	CO 2	AECB07.04
7	Sketch and implement following logic function using k- map for given $Y(A, B,C,D) = \sum m(0,1,2,3,4,7,8,9,10,11,12,14).$	Understand	CO 2	AECB07.04
8	Design a logic circuit to convert BCD and gray code.	Apply	CO 2	AECB07.06
9	Design Full adder using Logic Gates.	Understand	CO 2	AECB07.04
10	Design Half subtractor using NAND Gates.	Understand	CO 2	AECB07.05
11	Simplify the Boolean function A'BCD +A'BC'D' + AB'C'D + AB'CD' using K- map.	Remember	CO 2	AECB07.04
12	Simplify the Boolean function A'BC D' +A'BC' D' + AB'C' D + AB'C D using K- map.	Understand	CO 2	AECB07.04
13	Simplify the Boolean function $x'y + x'z' + xy'z' + xy'$ without using K-Map.	Apply	CO 2	AECB07.06
14	Sketch and implement following logic function using k- map for given $Y(A, B,C,D) = \sum m(0,1,7,8,9,10,12,14).$	Understand	CO 2	AECB07.04
15	Sketch and implement following logic function using k- map for given $Y(A, B,C,D) = \sum m(0,1,2,3,4,7,8,9,10).$	Understand	CO 2	AECB07.05

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
16	Simplify the Boolean function A'BCD' +A'BC' D + AB'C' D + ABC D' using K- map.	Remember	CO 2	AECB07.04
17	Simplify the Boolean function $x'y'z + x'yz + x'y'z$ without using K-Map.	Understand	CO 2	AECB07.04
18	Sketch and implement following logic function using k- map for given $Y(A, B,C,D) = \sum m(0,1,7,8,11,12,14).$	Apply	CO 2	AECB07.06
19	Sketch and implement following logic function using k- map for given $Y(A, B,C,D) = \sum m(0,1,2,3,7,8,11,12,14).$	Understand	CO 2	AECB07.04
20	Simplify the Boolean function A'BCD' +A'BC'D + AB'C'D' + ABCD using K- map.	Understand	CO 2	AECB07.05
	PART-B (LONG ANSWER QUI	ESTIONS)		
1	Minimize the following function using K-map. F (A, B, C, D) = $\sum m (1, 3, 5, 7, 9, 10, 11, 12, 15).$	Understand	CO 2	AECB07.06
2	Minimize the following function using K-map $f = \sum m$ (1, 2, 3, 5, 12, 13).	Understand	CO 2	AECB07.06
3	 Simplify the following Boolean expressions using K-map and implement them using logic gates. (a) F (A, B, C, D)= AB'C' + AC + A'CD'. (b) F (W, X, Y, Z) = W'X'Y'Z' + WXY'Z' + W'X'YZ + WXYZ. 	Understand	CO 2	AECB07.05
4	Minimize the following function using K-map. F (A, B, C, D, E) = $\sum m$ (1,3,5,7,9,10,11,12,15,19,21,22,27) + $\sum d$ (0,4,8).	Understand	CO 2	AECB07.04
5	Minimize the Boolean function F (w, x, y, z) = Σm (1, 3, 7, 11, 15) + $\Sigma d(0, 2, 5)$, obtain its POS Expression.	Understand	CO 2	AECB07.04
6	Reduce the following expression using Karnaugh map (B 'A + A'B +AB').	Understand	CO 2	AECB07.05
7	Show that $AB+AB'C+BC' = AC+BC'$.	Understand	CO 2	AECB07.06
8	Convert (A+B) (A+B+C)(B+C) Expression into canonical POS.	Understand	CO 2	AECB07.06
9	Expand A (A'+B) (A'+B+C') to maxterms and minterms.	Understand	CO 2	AECB07.06

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
10	Identify all the prime implicants and essential prime	Understand	CO 2	AECB07.06
	implicants for a given function using k-map.			
	$F(A,B,C,D) = \Sigma m(0,1,2,5,6,7,8,9,10,13,14,15).$			
11	Convert (A+B+C) (A+C)(A+C) Expression into canonical POS.	Understand	CO 2	AECB07.05
12	Expand B (A+B) (A+B+C') to maxterms and minterms.	Understand	CO 2	AECB07.06
13	Identify all the prime implicants and essential prime implicants for a given function using k-map. $F(A,B,C,D)=\Sigma m(0,1,6,7,8,10,13,14,15).$	Understand	CO 2	AECB07.06
14	Convert (A+C) (B+C)(A'+C) Expression into canonical POS.	Understand	CO 2	AECB07.06
15	Expand C (A'+B') (A'+C') to maxterms and minterms.	Understand	CO 2	AECB07.06
16	Identify all the prime implicants and essential prime implicants for a given function using k-map. $F(A,B,C,D)=\Sigma m(0,1,2,6,7,8,9,10,15).$	Understand	CO 2	AECB07.05
17	Convert B (A+B)(B+C) Expression into canonical POS.	Understand	CO 2	AECB07.06
18	Expand A $(A'+C)(A'+C')$ to maxterms and minterms.	Understand	CO 2	AECB07.06
19	Identify all the prime implicants and essential prime implicants for a given function using k-map. $F(A,B,C,D)=\Sigma m(0,6,7,8,10,13,14,15).$	Understand	CO 2	AECB07.06
20	Convert (A'+B) (A+B'+C)(B+C) Expression into canonical POS. PART-C (PROBLEM SOLVING AND CRITICAL	Understand	CO 2	AECB07.06
1	Implement the Boolean function F = AB + CD + E using NAND gates?	Apply	CO 2	AECB07.04
2	Simplify the Boolean function F (w, x, y, z) = $\Sigma m(1, 3, 7, 11, 15) + \Sigma d(0, 2, 5)$.	Apply	CO 2	AECB07.06
3	Design all logic gates using NAND.	Apply	CO 2	AECB07.04
4	Design all logic gates using NOR.	Apply	CO 2	AECB07.04
5	A function having three data inputs to implement the logic for the function $F = \Sigma m (0, 1, 2, 3, 4, 7)$.	Apply	CO 2	AECB07.06
6	Construct and explain the working of decimal adder.	Apply	CO 2	AECB07.04
7	Realize the Boolean expression for half subtractor.	Apply	CO 2	AECB07.05

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
8	Simplify the Boolean function $F = \Sigma m(0, 1, 2, 3, 4, 7, 9, 10, 14, 15)$ using tabular method.	Apply	CO 2	AECB07.05
9	Convert A.B.C+A.D expression into standard SOP form.	Apply	CO 2	AECB07.05
10	Convert (A+B+C)(B+C')(A'+C) into standard POS	Apply	CO 2	AECB07.06
10	form.		002	1110207100
	UNIT-III		1	
	SEQUENTIAL LOGIC DE	SIGN		
	PART-A (SHORT ANSWER QUE	ESTIONS)		
1	Define stable state?	Remember	CO 3	AECB07.07
2	Define Flip-Flop?	Remember	CO 3	AECB07.07
3	List the applications of Flip-Flops?	Remember	CO 3	AECB07.07
4	Express your view about synchronous latch?	Remember	CO 3	AECB07.07
5	How do you build a latch using universal gates?	Understand	CO 3	AECB07.08
6	Explain about flip-flop memory characteristic?	Understand	CO 3	AECB07.08
7	Distinguish between synchronous and asynchronous latch?	Remember	CO 3	AECB07.07
8	Define clocked flip-flop?	Remember	CO 3	AECB07.08
9	Why a gated D latch is called a transparent latch?	Understand	CO 3	AECB07.08
10	List the two types of flip-flops?	Remember	CO 3	AECB07.08
11	Explain about Different types of Latches in detail	Remember	CO 3	AECB07.08
12	Explain about S-R (NOR gates) Latch?	Remember	CO 3	AECB07.09
13	Explain about S-R (NAND gates) Latch?	Remember	CO 3	AECB07.09
14	Draw The truth table of gated D-Latch?	Understand	CO 3	AECB07.08
15	Distinguish between Latch and Flip Flop?	Understand	CO 3	AECB07.07
16	Draw The truth table of gated SR-Latch?	Remember	CO 3	AECB07.09
17	Explain about J-K (NOR gates) Latch?	Remember	CO 3	AECB07.09
18	Draw The truth table of gated T-Latch?	Understand	CO 3	AECB07.08
19	Explain about J-K (NAND gates) Latch?	Understand	CO 3	AECB07.07
20	Draw The truth table of gated JK-Latch?	Remember	CO 3	AECB07.09
	PART-B (LONG ANSWER QUI	ESTIONS)		
1	List Shift registers?	Understand	CO 3	AECB07.07
2	List the types of Shift registers.	Analyze	CO 3	AECB07.07

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
3	Explain basic difference between a shift register and counter?	Apply	CO 3	AECB07.08
4	Classify the basic types of counters?	Analyze	CO 3	AECB07.07
5	Differentiate the advantages and disadvantages of ripple counters?	Understand	CO 3	AECB07.09
6	Sketch mod 10 asynchronous counter?	Apply	CO 3	AECB07.08
7	Sketch mod 6 asynchronous counter?	Analyze	CO 3	AECB07.07
8	How does a binary counter work?	Analyze	CO 3	AECB07.08
9	Sketch mod 5 asynchronous counter?	Analyze	CO 3	AECB07.09
10	State the use of clock pulse?	Analyze	CO 3	AECB07.09
11	Sketch mod 3 asynchronous counter?	Apply	CO 3	AECB07.08
12	Sketch mod 8 asynchronous counter?	Analyze	CO 3	AECB07.07
13	Sketch mod 5 synchronous counter?	Analyze	CO 3	AECB07.08
14	Sketch mod 10 synchronous counter?	Analyze	CO 3	AECB07.09
15	Sketch mod 2 synchronous counter?	Analyze	CO 3	AECB07.09
16	Sketch mod 7 asynchronous counter?	Apply	CO 3	AECB07.08
17	Sketch mod 4 asynchronous counter?	Analyze	CO 3	AECB07.07
18	Sketch mod 4 synchronous counter?	Analyze	CO 3	AECB07.08
19	Sketch mod 2 asynchronous counter?	Analyze	CO 3	AECB07.09
20	Sketch mod 11 asynchronous counter?	Analyze	CO 3	AECB07.09
	PART-C (PROBLEM SOLVING AND CRITICAL	. THINKING	QUESTIC	DNS)
1	Explain the working principle of JK Flip-Flop in detail.	Apply	CO 3	AECB07.10
2	Define Latch. Explain about Different types of Latches	Apply	CO 3	AECB07.10
	in detail.	. O. Y		
3	Differentiate combinational and sequential circuits.	Apply	CO 3	AECB07.10
4	Describe about T – Flip-flop with the help of a logic diagram and characteristic table. Derive a T-flip-flop from JK and D flip-flops.	Apply	CO 3	AECB07.11
5	Explain with the help of a block diagram, the basic components of a Sequential Circuit?	Apply	CO 3	AECB07.11
6	Explain about RS and JK flip-flops?	Apply	CO 3	AECB07.11
7	Define T – Flip-flop with the help of a logic diagram and characteristic table?	Apply	CO 3	AECB07.11

S. No	QUESTION Define Latch. Explain about Different types of Latches in detail?	Blooms Taxonomy Level Apply	Course Outcomes CO 3	Course learning Outcome AECB07.11	
9	Define JK – Flip-flop with the help of a logic diagram and characteristic table?	Apply	CO 3	AECB07.10	
10	List the characteristic equations for all Flip-Flops?	Apply	CO 3	AECB07.10	
	UNIT-IV				
	LOGIC FAMILIES AND SEMICONDUC		RIES		
	PART-A(SHORT ANSWER QUE	-	-		
1	What is negative logic?	Remember	CO 4	AECB07.12	
2	What is a logic family.	Remember	CO 4	AECB07.12	
3	Draw the n-channel and p-channel transistors.	Understand	CO 4	AECB07.13	
4	Draw the CMOS inverter circuit.	Understand	CO 4	AECB07.12	
5	What are different logic levels?	Remember	CO 4	AECB07.14	
6	What are power supply rails?	Remember	CO 4	AECB07.14	
7	What is Fanout?	Understand	CO 4	AECB07.14	
8	What is ESD?	Understand	CO 4	AECB07.13	
9	What is transition time?	Remember	CO 4	AECB07.13	
10	What is high-impedance state?	Remember	CO 4	AECB07.14	
11	What are PLD's?	Remember	CO 4	AECB07.14	
12	Draw the general structure of PLD's.	Understand	CO 4	AECB07.14	
13	Draw the 2 to 4 decoder logic symbol.	Understand	CO 4	AECB07.13	
14	What are the types of PLD's?	Remember	CO 4	AECB07.13	
15	What is three state buffer?	Remember	CO 4	AECB07.14	
16	What is magnitude comparator?	Understand	CO 4	AECB07.14	
17	Draw the full adder circuit truth table.	Understand	CO 4	AECB07.13	
18	Give the comparison between PROM and PLA.	Remember	CO 4	AECB07.13	
19	What is carry look ahead adder?	Remember	CO 4	AECB07.14	
20	Give the comparison between PAL and PLA.	Understand	CO 4	AECB07.14	
	PART-B (LONG ANSWER QUESTIONS)				
1	Explain about different logic families?	Understand	CO 4	AECB07.12	
2	Draw and explain TTL inverter and NAND gate.	Remember	CO 4	AECB07.12	
3	Draw and explain CMOS NAND and NOR.	Understand	CO 4	AECB07.13	

		Blooms	~	Course
S. No	QUESTION	Taxonomy	Course	learning
		Level	Outcomes	Outcome
4	What would happen if three-state outputs turned on	Remember	CO 4	AECB07.13
+		Kemember	0.04	ALCD07.13
	faster than they turned off?			
5	Explain about Complementary metal oxide	Understand	CO 4	AECB07.13
	semiconductor (CMOS) ?			
6	Write about the main characteristics of Logic families	Understand	CO 4	AECB07.14
7	Write about CMOS circuit's dynamic electrical	Remember	CO 4	AECB07.14
	behavior.			
8	Explain about various CMOS logic families.	Remember	CO 4	AECB07.13
9	Draw and explain general Structure of PLD	Remember	CO 4	AECB07.12
10	Explain about emitter coupled logic.	Understand	CO 4	AECB07.13
11	Explain about TTL logic family?	Understand	CO 4	AECB07.14
12	Explain about different programmable logic devices (PLD's)	Remember	CO 4	AECB07.14
13	Compare logic families of CMOS,TTL and ECL with their specifications.	Remember	CO 4	AECB07.13
14	Explain about programmable read only memory (PROM) logic device?	Remember	CO 4	AECB07.12
15	Realize the following Boolean function using PROM 1. $f1(x2,x1,x0) = \sum m(0,1,2,5,7),$ 2. $f2(x2,x1,x0) = \sum m(1,2,4,6)$	Understand	CO 4	AECB07.13
16	Realizing the following Boolean function using PLA 1. $f1(x3,x2,x1,x0) = \sum m(0,1,2,5,7,10,14),$ 2. $f2(x3,x2,x1,x0) = \sum m(1,2,4,6,7,9,11,13)$	Understand	CO 4	AECB07.14
17	Realize the following Boolean function using PAL 1. $f1(x3,x2,x1,x0) = \sum m(0,1,2,5,7,10,14),$ $2. f2(x3,x2,x1,x0) = \sum m(1,2,4,6,7,9,11,13).$	Remember	CO 4	AECB07.14
18	Realize the following Boolean function using PLA 1. $f1 (x3,x2,x1,x0) = {}^{\pi}M (0,1,2,5,7,10,14),$ 2. $f2(x3,x2,x1,x0) = {}^{\pi}M (1,2,4,6,7,9,11,13)$	Remember	CO 4	AECB07.13
19	Realize the following Boolean function using PAL 1. $f1 (x3,x2,x1,x0) = {}^{\pi}M (0,1,2,5,7,10,14),$ 2. $f2 (x3,x2,x1,x0) = {}^{\pi}M (1,2,4,6,7,9,11,13)$	Remember	CO 4	AECB07.12
20	Realize the following Boolean function using PLD's 1. $f1(x3,x2,x1,x0) = \sum m(1,3,5,7,9,11,13,15),$ 2. $f2(x3,x2,x1,x0) = \sum m(0,2,4,6,8,10,12,14)$	Understand	CO 4	AECB07.13
	PART-C (PROBLEM SOLVING AND CRITICAL	, THINKING	QUESTIC	DNS)
1	Give the comparison between PROM and PLA.	Remember	CO 4	AECB07.12
2	Give the classification of PLDs.and list the major	Remember	CO 4	AECB07.12
	differences between PLA and PAL			

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
3	Realize the following Boolean function using PLD's 1. $f1(x2,x1,x0) = \sum m(1,3,5,7),$ 2. $f2(x2,x1,x0) = \sum m(0,2,4,6,8)$	Understand	CO 4	AECB07.12
4	Realize the CMOS NAND gate in transistor level using NOR gate circuit.	Understand	CO 4	AECB07.13
5	Explain about four modeling styles of body architecture?	Remember	CO 4	AECB07.13
6	Draw and explain CMOS Or And Invert gates.	Understand	CO 4	AECB07.14
7	Draw and explain CMOS And Or Invert gates.	Remember	CO 4	AECB07.14
8	Write a VHDL code for Multiplexer and describe the operation of Mux?	Remember	CO 4	AECB07.14
9	Write a VHDL code for Decoder and describe the operation of Decoder?	Remember	CO 4	AECB07.13
10	Explain dataflow style and behavioral style of modeling in VHDL for the expression $Y = \overline{AB} + AC$. Develop suitable VHDL code.	Remember	CO 4	AECB07.12
	UNIT-V VLSI DESIGN FLOW			
	PART-A(SHORT ANSWER QUE			
1	What is the acronym of VHDL?	Understand	CO 5	
2			005	AECB07.15
~	Define synthesis?	Understand	CO 5	AECB07.15 AECB07.15
3	Define synthesis? What is Place and route?	Understand Understand	~	
3 4			CO 5	AECB07.15
	What is Place and route?	Understand	CO 5 CO 5	AECB07.15 AECB07.15
4	What is Place and route? What is an entity in VHDL programming?	Understand Remember	CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15
4	What is Place and route? What is an entity in VHDL programming? What is timing verification?	Understand Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.15
4 5 6	What is Place and route?What is an entity in VHDL programming?What is timing verification?What is compilation?What is the syntax of architecture?What is the syntax of signal declaration?	Understand Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.15 AECB07.16
4 5 6 7	What is Place and route? What is an entity in VHDL programming? What is timing verification? What is compilation? What is the syntax of architecture?	Understand Remember Remember Understand Remember	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.15 AECB07.16
4 5 6 7 8	What is Place and route?What is an entity in VHDL programming?What is timing verification?What is compilation?What is the syntax of architecture?What is the syntax of signal declaration?	Understand Remember Remember Understand Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.16 AECB07.16 AECB07.16
4 5 6 7 8 9	What is Place and route?What is an entity in VHDL programming?What is an entity in VHDL programming?What is timing verification?What is compilation?What is the syntax of architecture?What is the syntax of signal declaration?How to delete component in VHDL programming?	Understand Remember Understand Remember Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.16 AECB07.16 AECB07.16 AECB07.16
4 5 6 7 8 9 10	What is Place and route?What is an entity in VHDL programming?What is an entity in VHDL programming?What is timing verification?What is compilation?What is the syntax of architecture?What is the syntax of signal declaration?How to delete component in VHDL programming?What is the difference between signal and wire?	Understand Remember Understand Remember Understand Understand Remember	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.16 AECB07.16 AECB07.16 AECB07.16 AECB07.16
4 5 6 7 8 9 10 11	What is Place and route?What is an entity in VHDL programming?What is an entity in VHDL programming?What is timing verification?What is compilation?What is the syntax of architecture?What is the syntax of signal declaration?How to delete component in VHDL programming?What is the difference between signal and wire?What are the features of VHDL?	Understand Remember Understand Remember Understand Understand Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.15 AECB07.16
4 5 6 7 8 9 10 11 12	What is Place and route?What is an entity in VHDL programming?What is an entity in VHDL programming?What is timing verification?What is compilation?What is the syntax of architecture?What is the syntax of architecture?What is the syntax of signal declaration?How to delete component in VHDL programming?What is the difference between signal and wire?What are the features of VHDL?Draw and explain the design flow of VHDL?	Understand Remember Understand Remember Understand Understand Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AECB07.15 AECB07.15 AECB07.15 AECB07.15 AECB07.16 AECB07.16

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
16	Write about behavioral style of VHDL programming.	Understand	CO 5	AECB07.16
17	Write about dataflow style of VHDL programming.	Understand	CO 5	AECB07.16
18	Write about mixed style of VHDL programming.	Remember	CO 5	AECB07.16
19	Write about primary differences between the various	Remember	CO 5	AECB07.16
	programming styles of VHDL language.			
20	Write about primary differences between the dataflow	Understand	CO 5	AECB07.16
	style and behavioural style of VHDL language.		L	
	PART-B (LONG ANSWER QUI	ESTIONS)		
1	Give the VHDL code that models 4-bit up-down synchronous counter.	Remember	CO 5	AECB07.15
2	Write the VHDL code of state machine to detect the sequence "1001" on a data input then produce a logic '1' output when the sequence has been detected. Overlaps must be considered.	Remember	CO 5	AECB07.15
3	Write a VHDL code for 3-bit ripple up counter employing JK flip-flops using structural style of modeling.	Understand	CO 5	AECB07.15
4	Write a VHDL code for positive edge triggered D flip flop with active high reset asynchronous input using guarded block statement.	Apply	CO 5	AECB07.15
5	Write about libraries and packages in VHDL	Remember	CO 5	AECB07.15
1	programming.			(m. 1
6	Explain static RAM memory. Write simple memory model in VHDL.	Understand	CO 5	AECB07.15
7	Write a VHDL program to generate the contents of a 256x8 rom that converts from 8-bit gray to 8-bit binary code.	Understand	CO 5	AECB07.15
8	Using VHDL process, model the SR flip flop having set and reset pins.	Remember	CO 5	AECB07.15
9	Write a VHDL code for a 4 bit ripple counter, built using JK flip-flops.	Understand	CO 5	AECB07.15
10	Give the VHDL code that models 4-bit up-down asynchronous counter.	Remember	CO 5	AECB07.16
11	With the help of case construct, write VHDL code for SM chart for binary multiplier.	Understand	CO 5	AECB07.15
12	Write the VHDL code using structural description for the 4-bit adder.	Remember	CO 5	AECB07.15
13	Develop a VHDL code for the 4x1 multiplexer, using three state logic.	Understand	CO 5	AECB07.15
14	Write a VHDL code for a 4 bit adder and briefly explain it. Use component declaration for the program.	Remember	CO 5	AECB07.16
15	Write a VHDL program to model a 4 bit comparator and explain the same briefly.	Understand	CO 5	AECB07.15

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
16	Model 8:3 encoder using VHDL and explain the same briefly.	Remember	CO 5	AECB07.15
17	Write a VHDL code to implement a 2:4 decoder with an active low enable line using, i) conditional signal assignment. ii) Selected signal assignment statement. Use '&' operator as required.	Understand	CO 5	AECB07.15
18	Model a 3-8 decoder with enable input using VHDL.	Remember	CO 5	AECB07.16
19	Using VHDL process, model the JK flip flop having set and reset pins.	Understand	CO 5	AECB07.15
20	Write a VHDL code for a 4 bit ripple counter, built using D flip-flops.	Remember	CO 5	AECB07.15
	PART-C (PROBLEM SOLVING AND CRITICAL			
1.	Describe the following with a suitable example. i. Symbol Vs Entity ii. Configuration iii. Event Scheduling and Gaurderd block statement.	Remember	CO 5	AECB07.15
2.	Explain transport and inertial delay model in VHDL using an inverter with a delay of 20 nsecs. Develop a VHDL code for above two models. Assume delay of wire = 10 nsecs.	Understand	CO 5	AECB07.15
3.	List the three styles of modeling a digital system in	Understand	CO 5	AECB07.15
1	VHDL. Give the VHDL code for each of them, with reference to half adder.		0	
4.	List the seven classes of VHDL operators according to their precedence and indicate the order of evaluation of the expression, A & not B or C nor D	Understand	CO 5	AECB07.15
5.	Explain the following giving requisite statements of VHDL: i) Transport delay ii) Inertial delay.	Understand	CO 5	AECB07.16
6.	What are VHDL functions? Where do they appear? Give the complete VHDL code to find 2's complement of a N- bit number.	Understand	CO 5	AECB07.16
7.	Write a VHDL code to model the Boolean expression, $F(A, B, C) = \sum m(0,3,5,6,7)$. Using process statement.	Understand	CO 5	AECB07.16
8.	Discuss various datatypes in VHDL with examples.	Understand	CO 5	AECB07.17
9.	What is meant by variables, signals and constants in VHDL? Compare signals with variables, give an example for each.	Understand	CO 5	AECB07.17

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course learning Outcome
10.	Write a VHDL code for a full subtractor using logic equation.	Remember	CO 5	AECB07.17

