

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad - 500 043

# **AERONAUTICAL ENGINEERING**

# **TUTORIAL QUESTION BANK**

| Course Name           | : | AEROSPACE STRUCTURES            |
|-----------------------|---|---------------------------------|
| Course Code           | : | AAEB07                          |
| Regulation            | : | IARE - R18                      |
| Year                  | : | 2019 - 2020                     |
| Class                 | : | B. Tech IV Semester             |
| Branch                | : | Aeronautical Engineering        |
| Course coordinator    | : | Dr Y B.Sudhir Sastry, Professor |
| <b>Course Faculty</b> | : | Dr Y B.Sudhir Sastry, Professor |
|                       |   | Mr. GSD Madhav, Asst. Professor |

### **COURSE OBJECTIVES**

| S. No | Description                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| Ι     | Understand the aircraft structural components and its behavior under different loading conditions                       |
| II    | Obtain Remember in plate buckling and structural instability of stiffened panels for airframe structural analysis       |
| III   | Explain the thin walled section and structural idealization of panels and differentiate from the type of loads carried. |
| IV    | Solve for stresses and deflection in aircraft structures like fuselage, wing and landing gear.                          |

#### **COURSE OUTCOMES (COs)**

| CO 1 | Describe the concept of Structural components, structural joints, Monocoque and semi            |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------|--|--|--|--|
|      | monocoque structures and also energy methods and principles.                                    |  |  |  |  |
| CO 2 | 2 Describe the concept of thin plates subject to different types of loads and also buckling     |  |  |  |  |
|      | phenomena of thin plates, local instability and instability of stiffened panels.                |  |  |  |  |
| CO 3 | Understand the concept of symmetric and un-symmetric bending of beams shear stresses and        |  |  |  |  |
|      | shear flow distribution of thin walled sections and Torsion phenomenon.                         |  |  |  |  |
| CO 4 | Explore the concept of Structural idealization and stress distribution of idealized thin walled |  |  |  |  |
|      | sections.                                                                                       |  |  |  |  |
| CO 5 | Discuss the concept of idealized thin walled sections, fuselage, Wing spar and box beams.       |  |  |  |  |

### COURSE LEARNING OUTCOMES (CLOs)

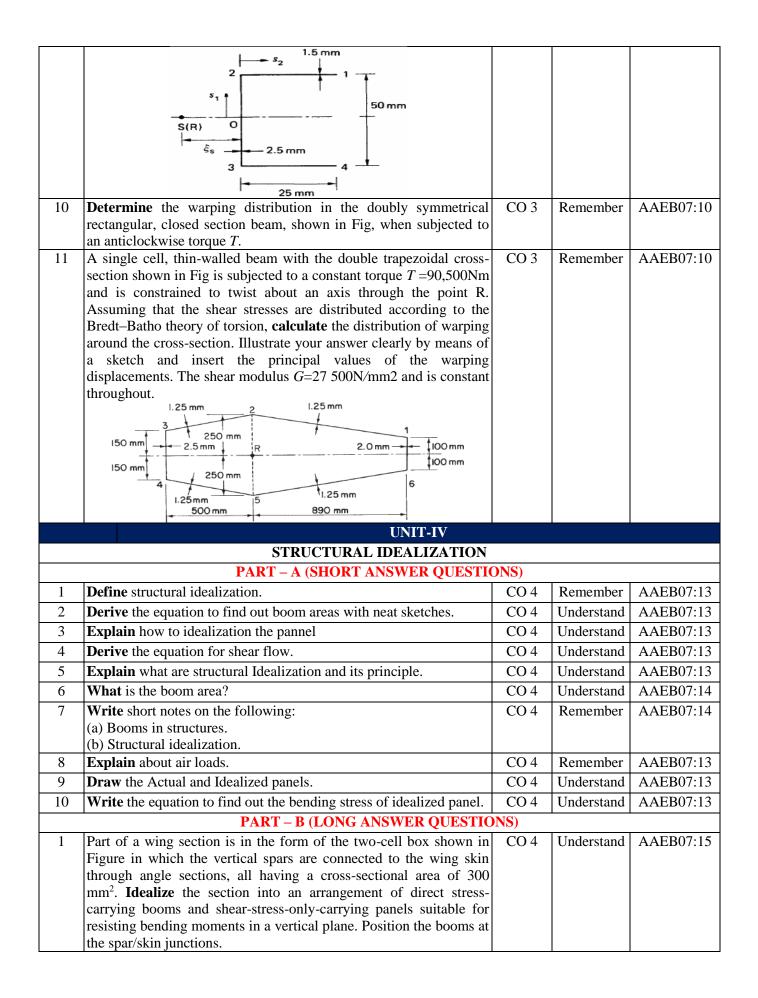
| AAEB07.01 | Discuss the Aircraft Structural components, various functions of the components and    |
|-----------|----------------------------------------------------------------------------------------|
|           | airframe loads acting on it.                                                           |
| AAEB07.02 | Discuss different types of structural joints and the effect of Aircraft inertia loads, |
|           | Symmetric maneuver loads, gust loads on the joints.                                    |
| AAEB07.03 | Differentiate Monocoque and semi monocoque structures and analyze stresses in thin     |
| AAEB07.03 | and thick shells.                                                                      |

| AAEB07.04 | Explain energy principles and its application in the analysis of structural components              |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------|--|--|--|
|           | of Aircraft.                                                                                        |  |  |  |
| AAEB07.05 | Explain the Theory of thin plates and Analyze thin rectangular plates subject to                    |  |  |  |
|           | bending, twisting, distributed transverse load, combined bending and in-plane loading.              |  |  |  |
| AAEB07.06 | Describe Buckling phenomena of thin plates and derive Elastic, inelastic,                           |  |  |  |
|           | experimental determination of critical load for a flat plate.                                       |  |  |  |
| AAEB07.07 | Calculate the local instability, instability of stiffened panels, failure stresses in plates        |  |  |  |
|           | and stiffened panels.                                                                               |  |  |  |
| AAEB07.08 | Discuss critical buckling load for flat plate with various loading and end conditions               |  |  |  |
| AAEB07.09 | Solve for bending and shear stresses of symmetric and un-symmetric beams under                      |  |  |  |
|           | loading conditions                                                                                  |  |  |  |
| AAEB07.10 | Solve for deflections of beams under loading with various approaches                                |  |  |  |
| AAEB07.11 | Calculate the shear stresses and shear flow distribution of thin walled sections                    |  |  |  |
| AAEDU7.11 | subjected to shear loads.                                                                           |  |  |  |
| AAEB07.12 | Explain Torsion phenomenon, Displacements and Warping associated with Bredt-                        |  |  |  |
| AALD07.12 | Batho shear flow theory of beams.                                                                   |  |  |  |
| AAEB07.13 | Explain the theory of Structural idealization                                                       |  |  |  |
| AAEB07.14 | Principal assumptions in the analysis of thin walled beams under bending, shear,                    |  |  |  |
| AAEDU/.14 | torsion.                                                                                            |  |  |  |
| AAEB07.15 | Solve for stress distribution of idealized thin walled sections subjected to bending.               |  |  |  |
|           | Solve for stress distribution of idealized thin walled sections subjected to, shear and             |  |  |  |
| AAEB07.16 | torsion.                                                                                            |  |  |  |
| AAEB07.17 | Calculate and analysis of idealized thin walled sections subjected to bending                       |  |  |  |
| AAEB07.18 | Calculate and analysis of idealized thin walled sections subjected to shear and torsion.            |  |  |  |
| AAEB07.19 | Analyze fuselage of variable stringer areas subjected to transverse and shear loads.                |  |  |  |
| AAEB07.20 | Analyze Wing spar and box beams of variable stringer areas subjected to transverse and shear loads. |  |  |  |
|           |                                                                                                     |  |  |  |

|      | UNIT - I                                         |      |                             |                                |  |  |
|------|--------------------------------------------------|------|-----------------------------|--------------------------------|--|--|
|      | AIRCRAFT STRUCTURAL COMPONENTS                   |      |                             |                                |  |  |
|      | PART - A (SHORT ANSWER QUESTION                  | ONS) |                             |                                |  |  |
| S No | QUESTIONS                                        | СО   | Blooms<br>taxonomy<br>level | Course<br>Learning<br>Outcomes |  |  |
| 1    | What is Structural load?                         | CO 1 | Remember                    | AAEB07:02                      |  |  |
| 2    | What is basic function of structural components? | CO 1 | Remember                    | AAEB07:02                      |  |  |
| 3    | What are the types of structural joints?         | CO 1 | Remember                    | AAEB07:02                      |  |  |
| 4    | What is Aircraft inertia loads?                  | CO 1 | Understand                  | AAEB07:02                      |  |  |
| 5    | What is Monocoque structure?                     | CO 1 | Understand                  | AAEB07:02                      |  |  |
| 6    | What is semi monocoque structures?               | CO 1 | Remember                    | AAEB07:02                      |  |  |

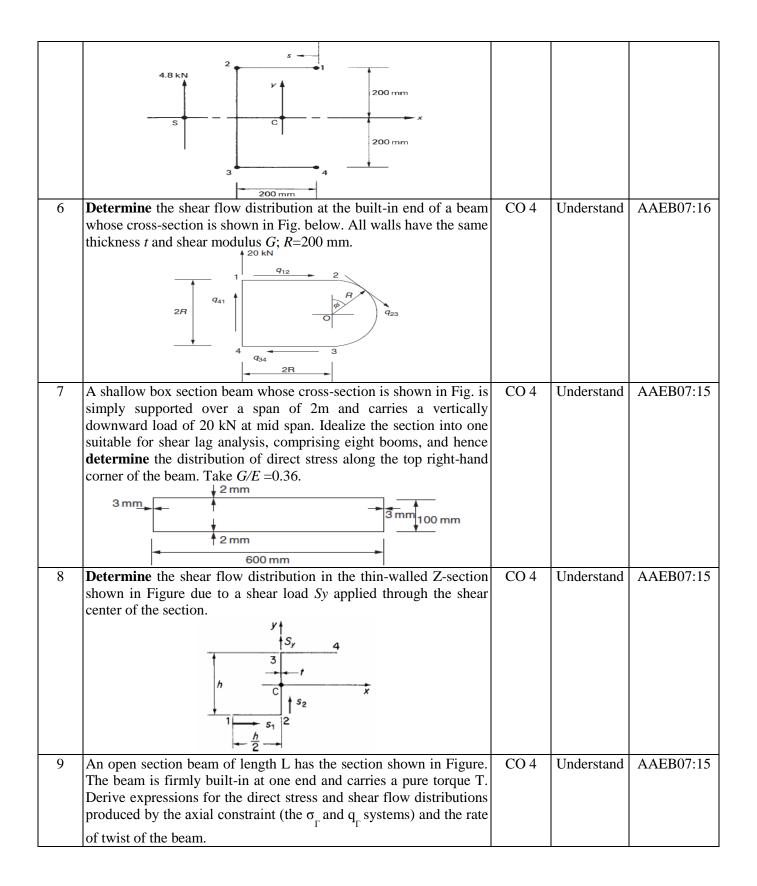
| 7  | Define castiglianos theorem-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 1           | Understand | AAEB07:04 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------|
| 8  | Define castiglianos theorem-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 1           | Remember   | AAEB07:04 |
| 9  | Define maxiwells reciprocal theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO 1           | Remember   | AAEB07:04 |
| 10 | Write the equation to find out Hoop stress in thin shells                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO 1           | Remember   | AAEB07:04 |
|    | PART - B (LONG ANSWER QUESTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS)            | •          |           |
| 1  | Explain what are different loads acting on aircraft structural components with figures                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 1           | Remember   | AAEB07:02 |
| 2  | Explain the functions of aircraft structural components                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 1           | Remember   | AAEB07:02 |
| 3  | Design a simple lap joint by considering Rivet shear, Bearing pressure, Plate failure in tension and Shear failure in a plate                                                                                                                                                                                                                                                                                                                                                                                     | CO 1           | Remember   | AAEB07:01 |
| 4  | Derive castiglianos theorem-I with proof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO 1           | Understand | AAEB07:01 |
| 5  | Derive castiglianos theorem-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 1           | Understand | AAEB07:02 |
| 6  | Derive the basic equation $\delta = \Sigma$ udl in Unit load method                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO 1           | Remember   | AAEB07:02 |
| 7  | Derive the equation to find out deflection and slope of cantilever<br>beam with udl by using castiglianos theorem                                                                                                                                                                                                                                                                                                                                                                                                 | CO 1           | Remember   | AAEB07:04 |
| 8  | What is Rayleigh Ritz method, Explain in detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO 1           | Remember   | AAEB07:04 |
| 9  | Find out the vertical displacement of simply supported beam with point load at mid-point by using total potential energy method                                                                                                                                                                                                                                                                                                                                                                                   | CO 1           | Remember   | AAEB07:04 |
| 10 | With figure, give a proof of maxiwells reciprocal theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO 1           | Remember   | AAEB07:04 |
|    | PART - C (PROBLEM SOLVING AND CRITICAL THIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>IKING Q</b> | UESTIONS)  |           |
| 1  | A joint in a fuselage skin is constructed by riveting the abutting<br>skins between two straps as shown in Fig. below. The fuselage skins<br>are 2.5mm thick and the straps are each1.2mmthick; the rivets have<br>a diameter of 4 mm. If the tensile stress in the fuselage skin must<br>not exceed 125 N/mm <sup>2</sup> and the shear stress in the rivets is limited to<br>120 N/mm <sup>2</sup> determine the maximum allowable rivet spacing such<br>that the joint is equally strong in shear and tension. | CO 1           | Understand | AAEB07:01 |
| 2  | The double riveted butt joint shown in Fig. below connects two plates which are each 2.5mm thick, the rivets have a diameter of 3 mm. If the failure strength of the rivets in shear is 370 N/mm <sup>2</sup> and the ultimate tensile strength of the plate is 465 N/mm <sup>2</sup> determine the necessary rivet pitch if the joint is to be designed so that failure due to shear in the rivets and failure due to tension in the plate occur simultaneously. Calculate also the joint efficiency.            | CO 1           | Understand | AAEB07:01 |

|   | ← ← ↓ 2.5 mm<br>→ ↓ 2.5 mm<br>→ ↓ 2.5 mm<br>→ ↓ 2.5 mm<br>→ ↓ 2.5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |            |           |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----------|
| 3 | An aircraft of all up weight 145 000N has wings of area $50m^2$ and<br>mean chord 2.5 m. For the whole aircraft $C_D=0.021+0.041C^2L$ , for<br>the wings $dC_L/d\alpha=4.8$ , for the tail plane of area 9.0m2, $dC_L$ ,<br>$T/d\alpha=2.2$ allowing for the effects of downwash and the pitching<br>moment coefficient about the aerodynamic centre (of complete<br>aircraft less tail plane) based on wing area is $C_M, 0=-0.032$ .<br>Geometric data are given in below Fig. During a steady glide with<br>zero thrust at 250 m/s EAS in which $C_L=0.08$ , the aircraft meets a<br>down gust of equivalent 'sharp-edged' speed 6 m/s. Calculate the<br>tail load, the gust load factor and the forward inertia force, $\rho_0=1.223$<br>kg/m <sup>3</sup> . | CO 1 | Understand | AAEB07:01 |
| 4 | Find the magnitude and the direction of the movement of the joint C of theplane pin-jointed frame loaded as shown in Fig. below. The value of L/AE for eachmember is $1/20 \text{ mm/N}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 1 | Remember   | AAEB07:01 |
| 5 | A rigid triangular plate is suspended from a horizontal plane by<br>three vertical wires attached to its corners. The wires are each 1mm<br>diameter, 1440mm long, with a modulus of elasticity of 196 000<br>N/mm <sup>2</sup> . The ratio of the lengths of the sides of the plate is 3:4:5.<br>Calculate the deflection at the point of application due to a 100 N<br>load placed at a point equidistant from the three sides of the plate.                                                                                                                                                                                                                                                                                                                   | CO 1 | Understand | AAEB07:03 |
| 6 | The tubular steel post shown in Fig. below supports a load of 250N at the freeend C. The outside diameter of the tube is 100mm and the wall thickness is 3 mm. Neglecting the weight of the tube find the horizontal deflection at C. The modulus of elasticity is 206 000 N/mm <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO 1 | Remember   | AAEB07:02 |
|   | $4R \qquad R = 1500 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |            |           |

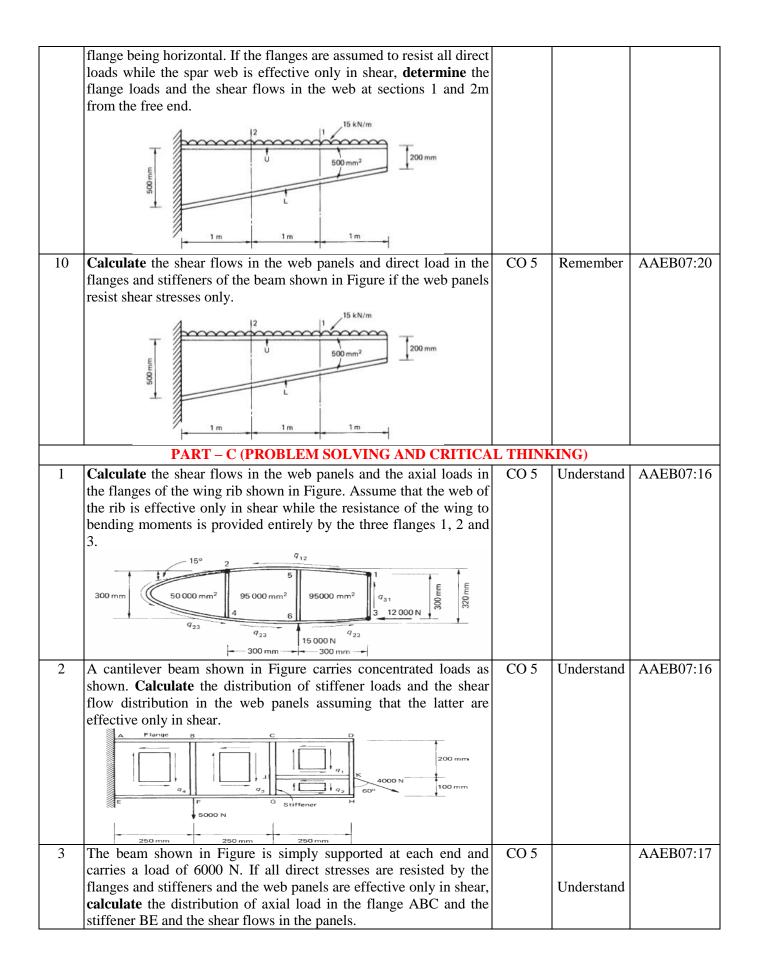

| 7  | The plane frame ABCD of Fig. consists of three straight members<br>with rigid joints at B and C, freely hinged to rigid supports at A and<br>D. The flexural rigidity of AB and CD is twice that of BC.A<br>distributed load is applied to AB, varying linearly in intensity from<br>zero at A to 'w' per unit length at B. Determine the distribution of<br>bending moment in the frame, illustrating your results with a sketch<br>showing the principal values.                                                 | CO 1 | Remember   | AAEB07:04 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----------|
| 8  | Figure below shows a plan view of two beams, AB 9150mm long<br>and DE 6100mm long. The simply supported beam AB carries a<br>vertical load of 100 000Napplied at F, a distance one-third of the<br>span from B. This beam is supported at C on the encastré beam DE.<br>The beams are of uniform cross-section and have the same second<br>moment of area $83.5 \times 106 \text{ mm}^4$ . E =200 000 N/mm <sup>2</sup> . Calculate the<br>deflection of C.                                                        | CO 1 | Remember   | AAEB07:04 |
| 9  | Abeam 2400mmlong is supported at two points A and B which are 1440mmapart; point A is 360 mm from the left-hand end of the beam and point B is 600mmfrom the right-hand end; the value of EI for the beam is 240×108Nmm <sup>2</sup> . Find the slope at the supports due to a load of 2000N applied at the mid-point of AB. Use the reciprocal theorem in conjunction with the above result, to find the deflection at the mid-point of AB due to loads of 3000N applied at each of the extreme ends of the beam. | CO 1 | Remember   | AAEB07:04 |
| 10 | Figure below shows a frame pinned to its support at A and B. The frame Centre-line is a circular arc and the section is uniform, of bending stiffness EI and depth d. Find an expression for the maximum stress produced by a uniform temperature gradient through the depth, the temperatures on the outer and inner surfaces being respectively raised and lowered by amount T. The points A and B are unaltered in position.                                                                                    | CO 1 | Understand | AAEB07:04 |

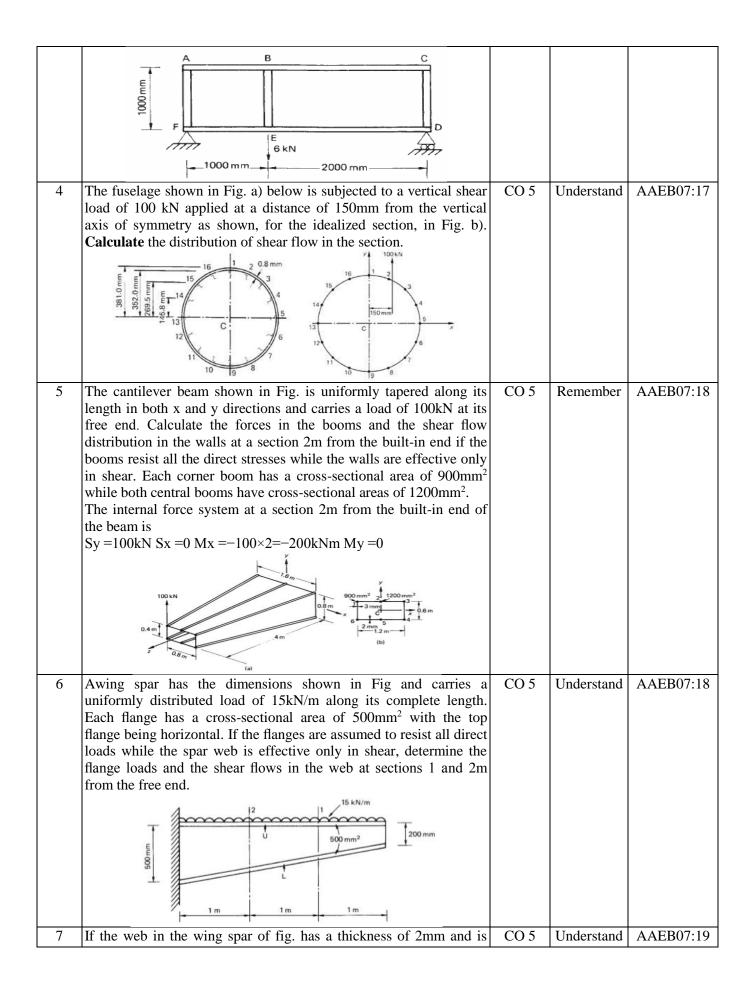
|                                   | UNIT – II                                                                                                                                                                                                                                                                                                                      |      |            |           |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----------|--|
| THIN PLATE THEORY                 |                                                                                                                                                                                                                                                                                                                                |      |            |           |  |
| PART - A (SHORT ANSWER QUESTIONS) |                                                                                                                                                                                                                                                                                                                                |      |            |           |  |
| 1                                 | Differentiate between thin plate and thick plate.                                                                                                                                                                                                                                                                              | CO 2 | Remember   | AAEB07:04 |  |
| 2                                 | What is $\rho_x and \rho_y$ from below diagram?                                                                                                                                                                                                                                                                                | CO 2 | Understand | AAEB07:04 |  |
|                                   | Py Px                                                                                                                                                                                                                                                                                                                          |      |            |           |  |
| 3                                 | Write the formula Flexural rigidity of thin plate.                                                                                                                                                                                                                                                                             | CO 2 | Understand | AAEB07:04 |  |
| 4                                 | Give the formula for deflection of plate in the terms of infinite series.                                                                                                                                                                                                                                                      | CO 2 | Understand | AAEB07:04 |  |
| 5                                 | Write the differential equation for strain energy.                                                                                                                                                                                                                                                                             | CO 2 | Remember   | AAEB07:04 |  |
| 6                                 | Differentiate between Synclastic and Anticlastic.                                                                                                                                                                                                                                                                              | CO 2 | Remember   | AAEB07:04 |  |
| 7                                 | Write the Built-in edge condition for a plate.                                                                                                                                                                                                                                                                                 | CO 2 | Remember   | AAEB07:04 |  |
| 8                                 | What is " $N_x$ " in this equation $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{1}{D} \left( q + N_x \frac{\partial^2 w}{\partial x^2} + N_y \frac{\partial^2 w}{\partial y^2} + N_{xy} \frac{\partial^2 w}{\partial x \partial y} \right)$ | CO 2 | Remember   | AAEB07:04 |  |
| 9                                 | The application of transverse and in-plane loads will cause the plate to deflect a further amount w1 so that the total deflection is.                                                                                                                                                                                          | CO 2 | Remember   | AAEB07:04 |  |
| 10                                | Critical load is also called as                                                                                                                                                                                                                                                                                                | CO 2 | Remember   | AAEB07:04 |  |
|                                   | PART - B (LONG ANSWER QUESTIO                                                                                                                                                                                                                                                                                                  | NS)  |            |           |  |
| 1                                 | Explain the basic theory of thin plates?                                                                                                                                                                                                                                                                                       | CO 2 | Remember   | AAEB07:06 |  |
| 2                                 | <b>Derive</b> the expression for direct/bending stress of a pure bending of thin plates?                                                                                                                                                                                                                                       | CO 2 | Remember   | AAEB07:05 |  |
| 3                                 | <b>What</b> is the term flexural rigidity called in bending of thin plates and explain?                                                                                                                                                                                                                                        | CO 2 | Remember   | AAEB07:05 |  |
| 4                                 | Clearly explain the difference between synclastic and anticlastic surface of thin plates?                                                                                                                                                                                                                                      | CO 2 | Remember   | AAEB07:05 |  |
| 5                                 | <b>Clearly</b> draw the figure for plate element subjected to bending, twisting and transverse loads?                                                                                                                                                                                                                          | CO 2 | Remember   | AAEB07:00 |  |
| 6                                 | <b>Write</b> the conditions for a plate which simply supported all edges?<br>And write the assumed deflected form of the plate which satisfies<br>the boundary conditions for this plate?                                                                                                                                      | CO 2 | Remember   | AAEB07:06 |  |
| 7                                 | <b>Write</b> the conditions for a plate which clamped at all edges? And write the assumed deflected form of the plate which satisfies the boundary conditions for this plate?                                                                                                                                                  | CO 2 | Remember   | AAEB07:05 |  |
| 8                                 | Write the conditions for a plate which simply supported all two<br>edges and the other two edges are free? And write the assumed<br>deflected form of the plate which satisfies the boundary conditions<br>for this plate?                                                                                                     | CO 2 | Remember   | AAEB07:0: |  |
| 9                                 | Write the conditions for free                                                                                                                                                                                                                                                                                                  | CO 2 | Remember   | AAEB07:05 |  |
| 10                                | Explain the basic theory of thin plates?                                                                                                                                                                                                                                                                                       | CO 2 | Understand | AAEB07:05 |  |
| ART                               | - C (PROBLEM SOLVING AND CRITICAL THINKING)                                                                                                                                                                                                                                                                                    |      |            |           |  |
| 1                                 | <b>Derive</b> the equation $(1/\rho) = M / [D (1+ v)]$ of thin plate subjected to pure bending.                                                                                                                                                                                                                                | CO 2 | Remember   | AAEB07:0  |  |

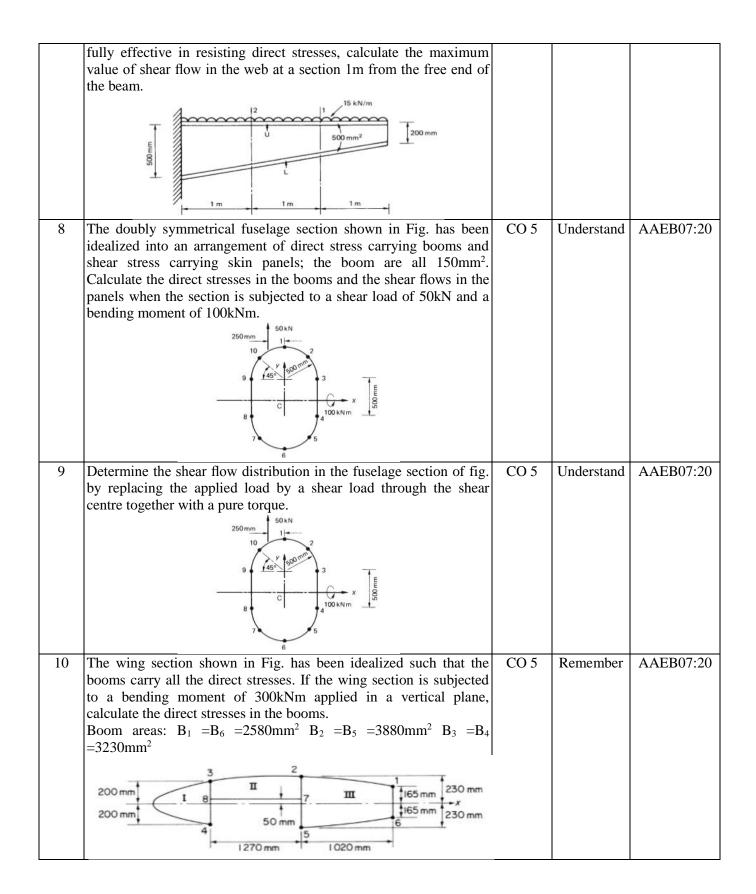
| 2  | <b>Derive</b> the equation $M_{\mu\nu} = D (1-\nu) \partial^2 w/\partial x \partial y$ for a thin plate                                                 | CO 2     | Understand | AAEB07:06     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|
|    | subjected to bending and twisting                                                                                                                       |          |            |               |
| 3  | A plate 10mmthick is subjected to bending moments Mx equal to 10                                                                                        | CO 2     | Understand | AAEB07:06     |
|    | Nm/mm and My equal to 5 Nm/mm. find the maximum twisting                                                                                                |          |            |               |
|    | moment per unit length in the plate and the direction of the planes                                                                                     |          |            |               |
|    | on which this occurs.                                                                                                                                   |          |            |               |
| 4  | A thin rectangular plate a×b is simply supported along its edges and                                                                                    | CO 2     | Understand | AAEB07:05     |
|    | carries a uniformly distributed load of intensity q0. Determine the                                                                                     |          |            |               |
|    | deflected form of the plate and the distribution of bending moment.                                                                                     | <u> </u> |            | A A E D 07 05 |
| 5  | A rectangular plate $a \times b$ , is simply supported along each edge and carries a uniformly distributed load of intensity q0. <b>Determine</b> using | CO 2     | Remember   | AAEB07:05     |
|    | the energy method, the value of the coefficient A11 and hence find                                                                                      |          |            |               |
|    | the maximum value of deflection.                                                                                                                        |          |            |               |
| 6  | A thin rectangular plate $a \times b$ is simply supported along its edges and                                                                           | CO 2     | Understand | AAEB07:05     |
|    | carries a uniformly distributed load of intensity $q0$ and supports an                                                                                  |          |            |               |
|    | in-plane tensile force $Nx$ per unit length. Determine the deflected                                                                                    |          |            |               |
|    | form of the plate.                                                                                                                                      |          |            |               |
| 7  | A rectangular plate $a \times b$ , simply supported along each edge,                                                                                    | CO 2     | Remember   | AAEB07:05     |
|    | possesses a small initial curvature Determine, using the energy                                                                                         |          |            |               |
|    | method, its final deflected shape when it is subjected to a                                                                                             |          |            |               |
| 8  | compressive load <i>Nx</i> per unit length along the edges $x = 0$ , $x = a$ .<br>Explain Instability of Stiffened panels.                              | CO 2     | Understand | AAEB07:06     |
| 9  | The beam shown in is assumed to have a complete tension field                                                                                           | CO 2     | Understand | AAEB07:00     |
| 7  | web. If the cross-sectional areas of the flanges and stiffeners are,                                                                                    | 02       | Understand | AALD07.03     |
|    | respectively, 350mm2 and 300mm2 and the elastic section modulus                                                                                         |          |            |               |
|    | of each flange is 750mm3, determine the maximum stress in a                                                                                             |          |            |               |
|    | flange and also whether or not the stiffeners will buckle. The                                                                                          |          |            |               |
|    | thickness of the web is 2mm and the second moment of area of a                                                                                          |          |            |               |
|    | stiffener about an axis in the plane of the web is 2000mm4; $E = 70$                                                                                    |          |            |               |
|    | 000 N/mm2.                                                                                                                                              |          |            |               |
|    |                                                                                                                                                         |          |            |               |
|    |                                                                                                                                                         |          |            |               |
|    | 400 mm                                                                                                                                                  |          |            |               |
|    |                                                                                                                                                         |          |            |               |
|    | 300 mm                                                                                                                                                  |          |            |               |
|    | 1200 mm                                                                                                                                                 |          |            |               |
| 10 | <b>Derive</b> the equation for critical stress ( $\sigma$ CR) = [ $k\pi 2E/12(1-v2)$ ]                                                                  | CO 2     | Remember   | AAEB07:05     |
|    | (t/b)2 for plate subjected to the compressive load.                                                                                                     |          |            |               |
|    | UNIT-III                                                                                                                                                |          |            |               |
|    | <b>BENDING SHEAR AND TORSION OF THIN WA</b>                                                                                                             | LLED B   | EAMS       |               |
|    | PART - A (SHORT ANSWER QUESTIC                                                                                                                          |          |            |               |
| 1  | What is flexural rigidity?                                                                                                                              | CO 3     | Remember   | AAEB07:09     |
| 2  | What is neutral plane?                                                                                                                                  | CO 3     | Remember   | AAEB07:09     |
| 3  | The term $\int y^2 dA$ is known as the                                                                                                                  | CO 3     | Understand | AAEB07:09     |
| 4  | Write the expression for $\sigma_z$ interms of $M_x$ , $M_{y_z}$ & $I_{xx}$ , $I_{yy}$ , $I_{XY}$ is                                                    | CO 3     | Remember   | AAEB07:09     |
| 5  | Write the relation between shear force and intensity of load                                                                                            | CO 3     | Remember   | AAEB07:09     |
|    |                                                                                                                                                         |          |            |               |
| 6  | Singularity function is also known as                                                                                                                   | CO 3     | Remember   | AAEB07:09     |
| 7  | The strain produced by a temperature change $\Delta T$ is given by                                                                                      | CO 3     | Remember   | AAEB07:09     |
| i  |                                                                                                                                                         |          |            |               |


| 8  | What is shear flow distribution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO 3     | Understand | AAEB07:11 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|
| 9  | What is Warping distribution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3     | Remember   | AAEB07:11 |
| 10 | Write the value of $I_{XY}$ for unsymmetrical section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO 3     | Remember   | AAEB07:11 |
| 11 | Give the definition for Warping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 3     | Remember   | AAEB07:11 |
| 11 | PART – B (LONG ANSWER QUESTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Remember   | AALD07.11 |
| 1  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 3     | Understand | AAEB07:09 |
| 1  | Write short notes on the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 005      | Understand | AAEDU/:09 |
|    | Symmetrical bending<br>Unsymmetrical bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |           |
| 2  | Explain the following terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO 3     | Understand | AAEB07:09 |
| 2  | Shear center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 005      | Understand | AALD07.09 |
|    | Shear flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |           |
|    | Centre of twist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |           |
| 3  | <b>Derive</b> the equations to find out the primary and secondary warping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO 3     | Understand | AAEB07:09 |
| e  | of an open cross section subjected to torsion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000      | Chiefbung  |           |
| 4  | <b>Derive</b> the Bredt-Batho formula for thin walled closed section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 3     | Understand | AAEB07:09 |
|    | beams with the help of neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
| 5  | Explain the condition for Zero warping at a section, and derive the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO 3     | Understand | AAEB07:09 |
|    | warping of cross section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |           |
| 6  | What do mean by shear centre? Explain with the help of figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 3     | Understand | AAEB07:09 |
| 7  | In order to understand open sections, one has to be clear about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 3     | Understand | AAEB07:10 |
|    | centroid, neutral point and shear centre. Explain them with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |           |
|    | mathematical expression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |            |           |
| 8  | <b>Derive</b> the expression for the ripple factor of $\pi$ -Section filter when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO 3     | Remember   | AAEB07:09 |
|    | used with a Full-wave-rectifier. Make necessary approximations?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |           |
| 9  | a) Explain about torsion bending phenomena.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 3     | Remember   | AAEB07:11 |
|    | b) An open section beam of length $L$ has the section shown in Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
|    | The beam is firmly built-in at one end and carries a pure torque $T$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |            |           |
|    | Derive expressions for the direct stress and shear flow distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |           |
|    | produced by the axial constraint (the $\sigma_{-}$ and $q_{-}$ systems) and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |           |
|    | rate of twist of the beam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |           |
|    | + <i>a</i> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |           |
|    | 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |           |
|    | Ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
|    | (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
|    | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |           |
|    | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
|    | d t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |           |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> | <b>.</b>   |           |
| 10 | Derive the total torque equation for arbitrary section beam subjected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 3     | Understand | AAEB07:11 |
|    | to torsion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |           |
|    | Part – C (Problem Solving and Critical Thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> | 1          |           |
| 1  | <b>Derive</b> $(\sigma_{z}) = [(M_{y xx} - M_{x xy}) / (I_{xx yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy})] x + [(M_{x yy} - M_{y xy}) / (I_{xy yy} - I_{xy})] x + [(M_{x yy} - M_{y xy}) ] x + [(M_{x yy} - $ | CO 3     | Understand | AAEB07:10 |
|    | $(I_{xx} Y_{yy} - I_{xy}^{2})] y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |           |
| 2  | Figure in pg 495 problem P.16.10f Megson shows the section of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO 3     | Understand | AAEB07:09 |
|    | angle purlin. A bending moment of 3000 Nm is applied to the purlin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |           |
|    | in a plane at an angle of $30^{\circ}$ to the vertical y axis. If the sense of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |           |
|    | bending moment is such that its components $Mx$ and $My$ both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            |           |

|     | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |            |                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------------------------|
| l   | produce tension in the positive xy quadrant, <b>calculate</b> the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |            |                        |
|     | direct stress in the purlin, stating clearly the point at which it acts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |            |                        |
| 3   | Explain the i) shear flow, ii) shear centre, iii) centre of twist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 3 | Remember   | AAEB07:09              |
| 4   | The cross-section of a beam has the dimensions shown in figure. If<br>the beam is subjected to a negative bending moment of 100 kNm<br>applied in a vertical plane, <b>determine</b> the distribution of direct<br>stress through the depth of the section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO 3 | Understand | AAEB07:09              |
| 5   | Derive the equation to find out the shear center of figure shown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 3 | Remember   | AAEB07:10              |
|     | betwee the equation to find out the shear center of figure shown:<br>$\begin{array}{c} & & & \\ \hline \\ \hline$ |      |            |                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |            |                        |
| 6   | The beam section of problem 1 above, is subjected to a bending<br>moment of 100 kNm applied in a plane parallel to the longitudinal<br>axis of the beam but inclined at $30^{\circ}$ to the left of vertical. The sense<br>of the bending moment is clockwise when viewed from the left-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 3 | Remember   | AAEB07:10              |
|     | hand edge of the beam section. <b>Determine</b> the distribution of direct stress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |            |                        |
| 7   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 3 | Remember   | AAEB07:10              |
| 7 8 | stress.<br>A beam having the cross section shown in Figure is subjected to a<br>bending moment of 1500 Nm in a vertical plane. <b>Calculate</b> the<br>maximum direct stress due to bending stating the point at which it<br>acts.<br>Bomm Bomm Bomm Bomm Bomm Bomm Bomm Bomm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO 3 | Remember   | AAEB07:10<br>AAEB07:10 |
|     | stress.<br>A beam having the cross section shown in Figure is subjected to a bending moment of 1500 Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which it acts.<br>$ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |            |                        |





|    | $ \begin{array}{c}       600 \text{ mm} \\       600 \text{ mm} \\       2 \\       3 \text{ mm} 2 \text{ mm} \\       2.5 \text{ mm} \\       2.00 \text{ mm} \\       2.00 \text{ mm} \\       2.00 \text{ mm} \\       2.5 \text{ mm} \\       2.00 \text{ mm} \\       2.00 \text{ mm} \\       2.00 \text{ mm} \\       2.00 \text{ mm} \\       2.5 \text{ mm} \\       2.00 \text{ mm}$ | 60.4 | Demonstration | AAED07.16 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|-----------|
| 2  | The thin-walled single cell beam shown in Figure has been idealized<br>into a combination of direct stress-carrying booms and shear-stress-<br>only-carrying walls. If the section supports a vertical shear load of<br>10 kN acting in a vertical plane through booms 3 and 6, <b>calculate</b><br>the distribution of shear flow around the section. Boom areas:<br>$B_1=B_8=200 \text{ mm}^2$ , $B_2=B_7=250 \text{ mm}^2$ $B_3=B_6=400 \text{ mm}^2$ , $B_4=B_5=100 \text{ mm}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 4 | Remember      | AAEB07:16 |
| 3  | The fuselage section shown in Fig. is subjected to a bending<br>moment of 100 kNm applied in the vertical plane of symmetry. If<br>the section has been completely idealized into a combination of<br>direct stress carrying booms and shear stress only carrying panels,<br><b>determine</b> the direct stress in each boom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 4 | Understand    | AAEB07:16 |
| 4  | <b>Calculate</b> the shear flow distribution in the c-channel section.<br>produced by a vertical shear load of 4.8 kN acting through its shear<br>centre. Assume that the walls of the section are only effective in<br>resisting shear stresses while the booms, each of area 300mm2,<br>carry all the direct stresses. Web length is 200m and flange length is<br>100mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO 4 | Understand    | AAEB07:14 |
| 5  | <b>Derive</b> the equation to find out the bending stress of idealized panel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 4 | Remember      | AAEB07:15 |
| 6  | <b>Derive</b> the equation to find out the bending stress of idealized panel, if $M_x$ equal to zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO 4 | Remember      | AAEB07:15 |
| 7  | <b>Derive</b> the equation to find out the bending stress of idealized panelif $M_y$ equal to zero with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 4 | Remember      | AAEB07:15 |
| 8  | <b>Calculate</b> the bending stress developed in the boom of fuselage subjected to a bending moment of 100 kNm applied in the vertical plane of symmetry, the distance between boom and axis is 660mm and moment of Inertia $278 \times 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 4 | Remember      | AAEB07:16 |
| 9  | <b>Draw</b> the neat sketches of idealized simple wing section. Derive bending stress and shear flow distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO 4 | Remember      | AAEB07:16 |
| 10 | <b>Draw</b> the neat sketches of idealized simple fuselage section. Derive bending stress and shear flow distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 4 | Remember      | AAEB07:16 |


|   | PART – C (PROBLEM SOLVING AND CRITICA                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L THINK | (ING)      |           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----------|
| 1 | Calculate the bending stress developed in the boom of fuselage subjected to a bending moment of 50 kNm applied in the horizontal plane of symmetry, the distance between boom and axis is 204mm and moment of Inertia $27 \times 10^6 \text{ mm}^4$ .                                                                                                                                                                                                                                   | CO 4    | Remember   | AAEB07:14 |
| 2 | Part of a wing section is in the form of the two-cell box shown in<br>Figure in which the vertical spars are connected to the wing skin<br>through angle sections, all having a cross-sectional area of 300<br>mm <sup>2</sup> . <b>Idealize</b> the section into an arrangement of direct stress-<br>carrying booms and shear-stress-only-carrying panels suitable for<br>resisting bending moments in a vertical plane. Position the booms at<br>the spar/skin junctions.             | CO 4    | Understand | AAEB07:14 |
| 3 | The thin-walled single cell beam shown in Figure has been idealized<br>into a combination of direct stress-carrying booms and shear-stress-<br>only-carrying walls. If the section supports a vertical shear load of<br>25 kN acting in a vertical plane through booms 3 and 6, <b>calculate</b><br>the distribution of shear flow around the section. Boom areas:<br>$B_1=B_8=300 \text{ mm}^2$ , $B_2=B_7=450 \text{ mm}^2$ $B_3=B_6=400 \text{ mm}^2$ , $B_4=B_5=100 \text{ mm}^2$ . | CO 4    | Understand | AAEB07:15 |
| 4 | The fuselage section shown in Fig. 20.5 is subjected to a bending<br>moment of 100 kNm applied in the vertical plane of symmetry. If<br>the section has been completely idealized into a combination of<br>direct stress carrying booms and shear stress only carrying panels,<br><b>determine</b> the direct stress in each boom.                                                                                                                                                      | CO 4    | Understand | AAEB07:15 |
| 5 | <b>Calculate</b> the shear flow distribution in the channel section shown in Fig. produced by a vertical shear load of 4.8 kN acting through its shear centre. Assume that the walls of the section are only effective in resisting shear stresses while the booms, each of area 300mm2, carry all the direct stresses.                                                                                                                                                                 | CO 4    | Understand | AAEB07:16 |



|    | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$                                                                                                                                                                                                           |         |            |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----------|
|    |                                                                                                                                                                                                                                                                                                                                     |         | <b>D</b> 1 |           |
| 10 | Write the equation to find out the bending stress of idealized panel, if $M_x$ equal to zero.                                                                                                                                                                                                                                       | CO 4    | Remember   | AAEB07:16 |
|    | UNIT-V                                                                                                                                                                                                                                                                                                                              |         |            |           |
|    | STRESS ANALYSIS OF AIRCRAFT COMPONENTS-                                                                                                                                                                                                                                                                                             | WING, F | USELAGE    |           |
|    | PART - A (SHORT ANSWER QUESTIC                                                                                                                                                                                                                                                                                                      | DNS)    |            |           |
| 1  | The fuselage shell section has been idealized such that the fuselage skin is effective only in                                                                                                                                                                                                                                      | CO 5    | Remember   | AAEB07:17 |
| 2  | Wings and fuselages are usually tapered along their lengths for greater                                                                                                                                                                                                                                                             | CO 5    | Remember   | AAEB07:17 |
| 3  | Wing ribs perform functions similar to those performed by                                                                                                                                                                                                                                                                           | CO 5    | Remember   | AAEB07:17 |
| 4  | A thin rectangular strip suffers warping across its thickness when subjected to                                                                                                                                                                                                                                                     | CO 5    | Remember   | AAEB07:17 |
| 5  | The theory of the torsion of closed section beams is known as                                                                                                                                                                                                                                                                       | CO 5    | Remember   | AAEB07:17 |
| 6  | A section does not remain rectangular but distorts; the effect is known as                                                                                                                                                                                                                                                          | CO 5    | Understand | AAEB07:17 |
| 7  | If the shear force is 400 N over the length of the 200 mm stiffener, the shear flow is                                                                                                                                                                                                                                              | CO 5    | Remember   | AAEB07:18 |
| 8  | A bending moment M applied in any longitudinal plane parallel to<br>the z-axis may be resolved into components                                                                                                                                                                                                                      | CO 5    | Remember   | AAEB07:18 |
| 9  | For a symmetric section about both axes, the shear centre lies at                                                                                                                                                                                                                                                                   | CO 5    | Understand | AAEB07:19 |
| 10 | In many aircrafts, structural beams, such as wings, have stringers<br>whose cross-sectional areas vary in the direction.                                                                                                                                                                                                            | CO 5    | Remember   | AAEB07:20 |
|    | PART - B (LONG ANSWER QUESTIO                                                                                                                                                                                                                                                                                                       |         |            |           |
| 1  | Explain direct stress distribution on wing section with neat sketch.                                                                                                                                                                                                                                                                | CO 5    | Remember   | AAEB07:16 |
| 2  | Derive shear flow distribution on wing section with neat sketch.                                                                                                                                                                                                                                                                    | CO 5    | Understand | AAEB07:16 |
| 3  | Derive shear flow distribution on fuselage section.                                                                                                                                                                                                                                                                                 | CO 5    | Remember   | AAEB07:16 |
| 4  | Explain the functions of fuselage frames and wing ribs.                                                                                                                                                                                                                                                                             | CO 5    | Remember   | AAEB07:17 |
| 5  | Explain torsion on three boom shell with neat sketch.                                                                                                                                                                                                                                                                               | CO 5    | Understand | AAEB07:17 |
| 6  | Write a detailed note on the following<br>Fuselage frames<br>Wing ribs                                                                                                                                                                                                                                                              | CO 5    | Understand | AAEB07:18 |
| 7  | The beam shown in Figure is simply supported at each end and carries a load of 6000N. if all direct stresses are resisted by the flanges and stiffeners and the web panels are effective only in shear, <b>calculate</b> the distribution of axial load in the flanges ABC and the stiffeners BE and the Shear flows in the panels. | CO 5    | Understand | AAEB07:18 |
| 8  | <b>Derive</b> the equation to find out shear flow in a tapered wing.                                                                                                                                                                                                                                                                | CO 5    | Remember   | AAEB07:18 |
| 9  | A wing spar has the dimensions shown in Fig. and carries a uniformly distributed load of 15 kN/m along its complete length. Each flange has a cross-sectional area of $500$ mm <sup>2</sup> with the top                                                                                                                            | CO 5    | Remember   | AAEB07:20 |





