

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ENGIN	EF	CRING THER	MODYNAM	ICS		
Course Code	AAEB02	,					
Programme	B.Tech						
Semester	III A	٩E					
Course Type	Core						
Regulation	IARE - R18						
	Theory				Practical		
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Mr R Sabari Vihar, Assistant professor						
Course Faculty	Mr R Sal Mrs M. S	Aculty Mr R Sabari Vihar, Assistant professor Mrs M. Shravani, Assistant professor					

COURSE OBJECTIVES:

The cou	rrse should enable the students to:
Ι	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.
II	Apply knowledge of pure substances, mixtures, usage of steam tables and Mollier chart, psychrometric charts
III	Understand the direction law and concept of increase in entropy of universe.
IV	Understand the working of ideal air standard, vapour cycles and evaluate their performance in open systems like steam power plants, internal combustion engines, gas turbines and refrigeration systems.
V	Understand the basic concepts of heat transfer and working and types of heat exchangers.

COURSE OUTCOMES (COs):

CO 1	Understand basics of thermodynamics along with basic laws of thermodynamics.
CO 2	Understand the limitations of first law of thermodynamics and different forms of second law of thermodynamics.
CO 3	Describe the properties of pure substances with help of phase diagrams and also understand the psychrometric properties.
CO 4	Understand different processes in different standard cycles and calculate efficiencies of each cycle.
CO 5	Understand working of heat exchangers, different types of heat exchangers and working of them.

COURSE LEARNING OUTCOMES (CLOs):

AAEB02.01	Understand the basic terms and terminologies of thermodynamics along with different view point of thermodynamic systems.
AAEB02.02	Get knowledge about concept of temperature and explain zeroth law of thermodynamics and also about quality of temperature.
AAEB02.03	Explain about first law of thermodynamics and its various corollaries along with Joules experiment.
AAEB02.04	Understand the limitations of first law of thermodynamics.
AAEB02.05	Explain about thermal reservoir, heat pump, heat engine and parameters of performance.
AAEB02.06	Explain second law of thermodynamics, Kelvin planck and Clausius statement of it.
AAEB02.07	Understand the Kelvin planck and Clausius equivalence, corollaries and understand about perpetual motion machine one.
AAEB02.08	Understand the term entropy, its principle and how it influences the availability and irreversibility of thermodynamic potentials.
AAEB02.09	Understand pure substances and phase diagrams and about terms triple point and critical point.
AAEB02.10	Understand how properties like wet bulb temperature, dry bulb temperature, dew bulb temperature help in building mollier chart and psychrometric chart.
AAEB02.11	Determine the equilibrium states of a wide range of systems, ranging from mixtures of gases, liquids, solids and pure condensed phases that can each include multiple components.
AAEB02.12	Introduction to concepts of power and refrigeration cycles. Their efficiency and coefficients of performance.
AAEB02.13	Ability to use modern engineering tools, software and equipment to analyze energy transfer in required air-condition application.
AAEB02.14	Explore the use of modern engineering tools, software and equipment to prepare for competitive exams, higher studies etc.
AAEB02.15	Understand about working of heat exchangers and different types of heat exchangers.
AAEB02.16	Understand the working of gas compressors and air compressors and different types of air compressors.

TUTORIAL QUESTION BANK

	MODULE- I					
BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS						
Part - A (Short Answer Questions)						
S No	QUESTIONS	Blooms Taxonomy	Course Outcomes	Course Learning		
		Level		Outcomes (CLOs)		
1	Explain Zeroth law of Thermodynamics.	Understand	CO 1	AAEB02.01		
2	Define System, Surroundings and system boundary?	Remember	CO 1	AAEB02.01		
3	Distinguish between macroscopic and microscopic point of view?	Remember	CO 1	AAEB02.01		
4	Discuss Quasi Static process, what are its characteristics?	Understand	CO 1	AAEB02.01		
5	Distinguish between different types of systems with examples.	Remember	CO 1	AAEB02.01		
6	Explain the features of constant volume gas thermometer.	Understand	CO 1	AAEB02.01		
7	Define Specific heat capacity at constant pressure.	Remember	CO 1	AAEB02.01		
8	State thermodynamic system? How do you classify it?	Understand	CO 1	AAEB02.01		
9	State the closed system? Give an example	Remember	CO 1	AAEB02.01		
10	Define Intensive and Extensive properties.	Understand	CO 1	AAEB02.01		
11	Define equilibrium of a system?	Remember	CO 1	AAEB02.01		
12	Explain whether the heat and work are Intensive/Extensive properties.	Remember	CO 1	AAEB02.01		
13	Differentiate closed and open system.	Understand	CO 1	AAEB02.01		

14	Define Specific heat capacity at constant volume	Remember	CO 1	AAEB02.01
15	Differentiate closed and open system.	Understand	CO 1	AAEB02.01
16	Classify the properties of system?	Understand	CO 1	AAEB02.01
17	Discuss First law of thermodynamics. Explain Joule's experiment.	Understand	CO 1	AAEB02.02
18	Define PMM 1.	Understand	CO 1	AAEB02.02
19	State the causes of irreversibility?	Remember	CO 1	AAEB02.03
20	Derive Steady Flow Energy Equation for an air compressor	Remember	CO 1	AAEB02.03
	Part - B (Long Answer Questions)			
1	Differentiate the system, surroundings and boundary. Explain in detail.	Understand	CO 1	AAEB02.01
2	Classify the types of systems; explain the energy exchange in them.	Remember	CO 1	AAEB02.01
3	Explain with an example the macroscopic and microscopic study of thermodynamics?	Remember	CO 1	AAEB02.01
4	Define and Explain the importance of concept of continuum in thermodynamic approach?	Understand	CO 1	AAEB02.01
5	Describe the Isobaric process diagrammatically on P-V?	Understand	CO 1	AAEB02.02
6	Explain thermodynamic equilibrium in detail?	Remember	CO 1	AAEB02.02
7	Differentiate thermal equilibrium and thermodynamic equilibrium with and example.	Understand	CO 1	AAEB02.02
8	Explain, the role of chemical equilibrium in thermodynamic equilibrium	Understand	CO 1	AAEB02.02
9	Describe the Isochoric process and represent on P-V diagram.	Remember	CO 1	AAEB02.02
10	What is displacement work? Explain about displacement work with neat diagram	Understand	CO 1	AAEB02.03
11	State Zeroth law of thermodynamics and explain it with a standard example?	Understand	CO 1	AAEB02.03
12	Explain the Joule's experiment with a neat sketch?	Understand	CO 1	AAEB02.03
13	Describe the isothermal process with P-V and T-S diagram.	Remember	CO 1	AAEB02.03
14	Sketch the constant volume gas thermometer and explain its working in detail?	Remember	CO 1	AAEB02.03
15	List the scales of temperature and explain in detail?	Understand	CO 1	AAEB02.03
16	Indicate the polytropic process on T-S diagram and explain.	Remember	CO 1	AAEB02.03
17	Compare the first law of thermodynamics with its corollaries?	Remember	CO 1	AAEB02.03
18	Explain how the first law of thermodynamics applied to a process?	Understand	CO 1	AAEB02.03
19	Indicate the Isentropic process on P-V diagram and explain about it in detail.	Understand	CO 1	AAEB02.03
20	Explain the Steady flow energy equation? Explain with help of a neat diagram.	Understand	CO 1	AAEB02.03
	Part - C (Problem Solving and Critical Thinking	Questions)		
1	The pressure of gas in a pipe line is measured with a mercury	Understand	CO 1	AAEB02.01
	manometer having one limb open to the atmosphere(as shown in fig.).			
	If the difference in the height of mercury in the two limbs is 562 mm,			
	acceleration due to gravity is 9.79 m/s ² and the density of mercury is			
	$13,640 \text{ kg/m}^3$.			
	ρ			
2	Two mercury-in-glass thermometers arc made of identical	Remember	CO 1	AAEB02.01
	materials and are- accurately calibrated at 0° C and 100° C. One has a			1

-				
	tube of constant diameter, while the other has a tube of conical bore, ten per cent greater in diameter at I00°C than at 0°C. Both thermometers have the length between 0 and 100 subdivided uniformly. What will be the straight bore thermometer read in a place where the conical hore thermometer reads $50^{\circ}C^{2}$			
2	A niston and avlinder machine containing a fluid system has a	Domombor	CO 1	
5	A piston and cynnoer machine containing a nurd system has a Stiming device in the cylinder (Fig. 2). The niston is frictionless, and it	Kennennber	COT	AAED02.02
	Suffing device in the cylinder (Fig. 2). The piston is incliness, and it			
	is held down against the fluid due to the atmospheric pressure of 101			
	.325 kPa. The stirring device is turned 10,000 revolutions with an			
	average torque against the fluid of 1.2/5 mN. Meanwhile the piston of			
	0.6 m diameter moves out 0.8 m. Find the net work transfer for the			
	system.			
	W ₁ + W ₂			
4	It is required to melt 5 tonnes/h of iron from a charge at 15% to	Understand	CO 1	ΔΔ F B02.02
+	molten metal at 1650°C. The melting point is 1535°C, and the latent	Charistana	0.01	11111002.02
	heat is 270 kJ/kg . The specific heat in solid state is 0.502 and in liquid			
	state (29.93/atomic weight) kI/kg K. If an electric furnace has 70%			
	efficiency find the kW rating needed. If the density in molten state is			
	6900 kg/m^3 and the bath volume is three times the hourly melting			
	rate find the dimensions of the cylindrical furnace if the length to			
	diameter ratio is 2. The atomic weight of iron is 56			
5	If it is desired to melt aluminum with solid state specific heat 0.9	Remember	CO 1	AAEB02.03
5	kJ/kgK latent heat 390 kJ/kg, atomic weight 27, density in molten			
	state 2400 kg/m ³ and final temperature 700°C find out how much			
	metal can be melted per hour with the above kW rating. Other data are			
	as in the above example. Also, find the mass of aluminum that the			
	above furnace will bold. The melting point of aluminum is 660°C.			
6	A temperature scale of certain thermometer is given by the relation	Remember	CO 1	AAEB02.03
	$t = a \ln p + b$			
	where a and b are constants and p is the thermometric property of the			
	fluid in the thermometer. If at the ice point and steam point the			
	thermometric properties are found to be 1.5 and 7.5 respectively what			
	will be the temperature corresponding to the thermometric property of			
	3.5 on Celsius scale.			
7	The properties of a closed system change following the relation	Understand	CO 1	AAEB02.03
	between pressure and volume as $pV = 3.0$ where p is in bar V is in			
	m3. Calculate the work done when the pressure increases from 1.5 bar			
	to 7.5 bar.			
8	To a closed system 150 kJ of work is supplied. If the initial volume is	Remember	CO 1	AAEB02.03
	0.6 m3 and pressure of the system changes as $p = 8 - 4V$, where p is			
	in bar and V is in m3, determine the final volume and pressure of the			
	system.			
9	A cylinder contains 1 kg of a certain fluid at an initial pressure of 20	Remember	CO 1	AAEB02.03
	bar. The fluid is allowed to expand reversibly behind a piston			
	according to a law pV^2 = constant until the volume is doubled. The			
	fluid is then cooled reversibly at constant pressure until the piston			
	regains its original position ; heat is then supplied reversibly with the			
	piston firmly locked in position until the pressure rises to the original			
	value of 20 bar. Calculate the net work done by the fluid, for an initial			
	volume of 0.05 m3			

10	A fluid at a pressure of 3 bar, and with specific volume of 0.18 m3/kg,	Understand	CO 1	AAEB02.03
	contained in a cylinder behind a piston expands reversibly to a			
	pressure of 0.6 bar according to a law, $p = C/v^2$ where C is a constant.			
	Calculate the work done by the fluid on the piston.			
	MODULE-II SECOND LAW OF THERMORYNAM	CG		
	SECOND LAW OF THERMODYNAMI	CS		
1	State the limitations of first law of thermodynamics.	Understand	CO 2	AAEB02.04
2	Define second law of thermodynamics.	Remember	CO 2	AAEB02.04
3	State PMM 2.	Remember	CO 2	AAEB02.04
4	State the Carnot Cycle.	Understand	CO 2	AAEB02.04
5	State the Clausius inequality.	Remember	CO 2	AAEB02.04
6	Define the absolute temperature scale.	Remember	CO 2	AAEB02.04
7	State the property of entropy.	Understand	CO 2	AAEB02.04
8	Define an inversion curve.	Remember	CO 2	AAEB02.04
9	Solve one T -dS equation by using Maxwell's relations.	Remember	CO 2	AAEB02.05
10	State the Third law of Thermodynamics.	Understand	CO 2	AAEB02.05
11	Define internal energy of a system.	Remember	CO 2	AAEB02.05
12	Define the change in internal energy of a system.	Remember	CO 2	AAEB02.05
13	Explain the available energy in a system.	Understand	CO 2	AAEB02.04
14	State the unavailable energy in a system.	Remember	CO 2	AAEB02.05
15	Explain the principle of entropy increase.	Knowledge	CO 2	AAEB02.05
16	Explain the energy of a system.	Understand	CO 2	AAEB02.05
17	Explain the Clausius statement.	Understand	CO 2	AAEB02.05
18	State the Kelvin-Plank statement.	Remember	CO 2	AAEB02.05
19	Sketch the PV and TS diagrams of Carnot cycle.	Remember	CO 2	AAEB02.05
20	Classify the processes which constitute the cycle.	Understand	CO 2	AAEB02.05
	Part - B (Long Answer Questions)			
1	Explain the limitations of First law of thermodynamics in detail?	Understand	CO 2	AAEB02.06
2	Explain about thermal reservoir with a neat sketch?	Remember	CO 2	AAEB02.07
3	Explain the heat engine with a neat sketch?	Remember	CO 2	AAEB02.06
4	Explain the heat pump with a neat sketch?	Understand	CO 2	AAEB02.07
5	List the performance parameters of a system and explain in detail.	Remember	CO 2	AAEB02.06
6	Compare the first law and second law of thermodynamics with	Remember	CO 2	AAEB02.07
	suitable examples.			
7	Explain the second law of thermodynamics with suitable sketches?	Understand	CO 2	AAEB02.06
8	Write the Kelvin-Plank statement and explain with an example?	Understand	<u>CO 2</u>	AAEB02.07
9	Write the Clausius statement and explain with an example?	Understand	<u>CO 2</u>	AAEB02.06
10	write the Kelvin-Planck and Clausius statements and explain with	Understand	002	AAEB02.07
11	Sketches?	Domomhor	CO 2	A A E D 0 2 0 6
11	Compare the relation with process and cycle? Evelain	Remember	$\frac{0.02}{0.02}$	ΔΔER02.00
12	State the Carnot's principle? What is the importance of the principle?	Remember	$\frac{0.02}{0.02}$	
13	State the Clausius inequality? Evaluin	Understand	$\frac{0.02}{0.02}$	AAED02.00
14	State the Clausius inequality (Explain.	Remember	$\frac{0.02}{0.02}$	ΔΔEB02.07
13	Define Gibb's and Helmholtz's functions?	Remember	$\frac{102}{102}$	ΔΔFR02.04
10	State the irreversibility and explain	Understand	$\frac{0.02}{0.02}$	ΔΔFR02.03
1/	Fundain the Availability in a thermodynamic system with avample	Remember	$\frac{0.02}{0.02}$	ΔΔFR02.04
10	Discuss the importance of Maxwell relations?	Understand	$\frac{0.02}{0.02}$	AAFR02.07
20	State the Third law of thermodynamics? Explain the importance	Remember	$\frac{002}{002}$	AAEB02.05
20	Part - C (Problem Solving and Critical Thinking	Questions)	002	11111102.05
1	cyclic heat engine operates between a sonrce temperature of	Understand	CO 2	AAEB02.06

	800°C and a sink temperature of 30°C. What is the least rate of heat			
	rejection per kW net output of the engine?			
2	A reversible heat engine operates between two reservoirs at	Understand	CO 2	AAEB02.07
	temperatures of 600°C and 40°C. The engine drives a reversible			
	refrigerator which operates between reservoirs at temperatures of			
	40°C and - 20°C. The heat transfer to the neat engine is 2000 kJ and			
	LI Evaluate the best transfer to the refrigerator plant is 500			
	KJ. Evaluate the heat transfer to the refingerant and the net heat transfer to the reservoir at 40° C			
3	A heat engine receives heat at the rate of 1500 kJ/min and gives an	Remember	CO 2	AAEB02.06
	output of 8.2 kW. Determine the thermal efficiency and the rate of		001	111111111111111111
	heat rejection.			
4	A domestic food freezer maintains a temperature of -15° C, the	Remember	CO 2	AAEB02.07
	ambient air temperature is 30°C, if heat leaks into the freezer at the			
	continuous rate of 1.75kJ/sec. State the least power necessary to			
	pump this heat out continuous?			
5	Find the co-efficient of performance and heat transfer rate in the	Understand	CO 2	AAEB02.04
	condenser of a refrigerator in kJ/h which has a refrigeration			
	capacity of 12000 kJ/h when power input is 0.75 kW.			
6	A cyclic heat engine operates between a source temperature of	Remember	CO 2	AAEB02.04
	1000°C and a sink temperature of 40°C. Find the least rate of heat			
7	rejection per kw net output of the engine?	Damaruhan	CO 2	
/	A fish freezing plant requires 40 tons of refrigeration. The freezing temperature is 35° C while the ambient temperature is 30° C. If the	Kemember	02	AAED02.04
	reinperature is -55 C while the ambient temperature is 50 C. If the performance of the plant is 20% of the theoretical reversed Carpot			
	cycle working within the same temperature limits calculate the			
	power required			
8	A reversible heat engine operates between two reservoirs at	Understand	CO 2	AAEB02.07
	temperatures 700°C and 50°C. The engine drives a reversible			
	refrigerator which operates between reservoirs at temperatures of			
	50° C and -25° C. The heat transfer to the engine is 2500 kJ and the			
	net work output of the combined engine refrigerator plant is 400 kJ.			
	Determine the heat transfer to the refrigerant and the net heat			
	transfer to the reservoir at 50°C.			
9	An ice plant working on a reversed Carnot cycle heat pump	Remember	CO 2	AAEB02.04
	produces 15 tonnes of ice per day. The ice is formed from water at 0° C and the formed ice is maintained at 0° C. The heat is maintained to			
	0° C and the formed ice is maintained at 0° C. The heat is rejected to the etmosphere at 25°C. The heat nump used to run the ice plant is			
	coupled to a Carnot engine which absorbs heat from a source which			
	is maintained at 220° C by burning liquid fuel of 44500 kJ/kg			
	calorific value and rejects the heat to the atmosphere. Determine			
	power developed by the engine and fuel consumed per hour. Take			
	enthalpy of fusion of ice = 334.5 kJ/kg.			
10	Two Carnot engines work in series between the source and sink	Remember	CO 2	AAEB02.04
	temperatures of 550 K and 350 K. If both engines develop equal			
	power determine the intermediate temperature.			
	DIDE SUDSTANCES AND MUTUDES OF DEDU			
	Part - A (Short Answer Questions)	ECT GASES		
1	What is a pure substance?	Remember	CO 3	AAEB02.08
2	What are saturation states?	Remember	CO 3	AAEB02.08
3	What do you understand by triple point'?	Remember	CO 3	AAEB02.08
4	What is the pressure and temperature of water at its triple point	Remember	CO 3	AAEB02.08
5	What is normal boiling point?	Remember	CO 3	AAEB02.09
5	what is normal bound point:	itementoei	203	11111002.07

6	Why do the isobars on Mollier diagram diverge from one another?	Remember	CO 3	AAEB02.09
7	Draw the phase diagram on p-v diagrams with water as pure	Remember	CO 3	AAEB02.08
	substance.			
8	Explain the concept of p-v-T surface? Represent on p-T	Understand	CO 3	AAEB02.09
0	coordinates?		<u> </u>	
9	Compare isobar on Mollier diagram diverse from one another?	Understand	CO 3	AAEB02.09
10	Explain the phase transformation process with a diagram?	Understand	CO 3	AAEB02.09
11	Define external data	Domonthan	CO 2	
11	Define saturated air.	Remember	CO 3	AAEB02.10
12	Define dry bulb temperature	Remember	<u> </u>	AAEB02.10
13	Define Dew point temperature	Remember	$\frac{003}{002}$	AAEB02.10
14	Define relative humidity	Remember	$\frac{003}{003}$	AAEB02.10
15	Define specific numbers	Demember	CO 3	AAED02.10
10	Describe a psychrometer	Remember	CO 3	AAED02.10
1/	Draw the schematic of a neuchromatric short	Remember	CO 3	AAED02.11
10	Write down three other types of psychrometric instruments	Remember	<u> </u>	AAEB02.11
20	What is mixture of perfect gases?	Remember	<u> </u>	AAEB02.11
20	$\mathbf{Part} = \mathbf{B} \left(\mathbf{L} \text{ ong Answer Questions} \right)$	Kennennber	05	AAED02.10
1	What is the critical state? Explain the tenns critical pressure critical	Remember	CO 3	AAEB02.08
-	temperature and critical volume of water?			
2	Draw the phase equilibrium diagram on p-v coordinates for a	Remember	CO 3	AAEB02.08
	substance which shrinks in volume on melting and then for a			
	substance which expands in volume on melting. Indicate there on			
	the relevant constant property lines.			
3	Draw the phase equilibrium diagram for a pure substance on p-T	Remember	CO 3	AAEB02.08
	coordinates. Why does the fusion line for water have negative			
4	Stope?	Remember	CO 3	A A E B 02 08
4	plaw the phase equilibrium diagram for a pure substance on 1-s	Remember	05	AAED02.00
5	Draw the phase equilibrium diagram for a pure substance on h-s plot	Remember	CO 3	AAEB02.08
5	with relevant constant property lines.			
6	Why do isotherms on Mollier diagram become horizontal in the	Remember	CO 3	AAEB02.09
	superheated region at low pressures?			
7	Enumerate the Perfect Gas Laws and analyze from thermodynamics	Understand	CO 3	AAEB02.09
	point of view?			
8	Explain, how the heat and work transfer observed in perfect gas?	Understand	CO 3	AAEB02.09
9	Explain the equation of State with variations?	Understand	CO 3	AAEB02.09
10	Write the properties of water at Triple point and what are state	Remember	CO 3	AAEB02.09
	properties?			
11	Freehing heidfler with a most chotal a sline area harmadan	Understand	CO 2	A A E D 02 10
11	Explain briefly with a near sketch a sling psychrometer.		CO 3	AAEB02.10
12	Write in detail about by pass factor.	Understand	CO 3	AAEB02.10
13	Describe briefly about a) Sensible heating. b) Cooling and	Understand	CO 3	AAEB02.10
	dehumidification.			
14	Explain in detail about terms 'heating and dehumidification' and	Understand	CO 3	AAEB02.10
	'heating and dehumidification.			
15	A rigid tank contains 10 kg of water at 90°C. If 8 kg of the water is	Understand	CO 3	AAEB02.10
	in the liquid form and the rest is in the vapor form, determine the			
	pressure in the tank and the volume of the tank.			
16	Moist air at 1 atm. pressure has a dry bulb temperature of 320 C and	Understand	CO 3	AAEB02.11

	a wet bulb temperature of 260 C. Calculate a) the partial pressure of			
	water vapour, b) humidity ratio, c) relative humidity, d) dew point			
	temperature e) density of dry air in the mixture f) density of water			
	vapour in the mixture and α) enthalpy of moist air using perfect gas			
	law model and neuroheremetric equations			
17	Taw model and psychiometric equations.	I In denotor d	CO 2	
1/	Explain about different lines and curves that are present in a	Understand	03	AAEB02.11
	psychrometric chart.			
18	Water at 30°C flows into a cooling tower at the rate of 1.15 kg	Understand	CO 3	AAEB02.10
	per kg of air. Air enters the tower at a dbt of 20°C and a relative			
	humidity of 60% and leaves it at a dbt of 28°C and 90% relative			
	humidity. Make-up water is supplied at 20°C. Determine: (i) the			
	temperature of water leaving the tower, (ii) the fraction of water			
	evaporated, and (iii) the approach and range of the cooling tower.			
19	Water at 30°C flows into a cooling tower at the rate of 1.15 kg	Understand	CO 3	AAEB02.10
	per kg of air. Air enters the tower at a dbt of 20°C and a relative			
	humidity of 60% and leaves it at a dbt of 28°C and 90% relative			
	humidity Make-up water is supplied at 20°C. Determine: (i) the			
	temperature of water leaving the tower (ii) the fraction of water			
	evenerated and (iii) the approach and range of the cooling tower			
20	Weter from a cooling system is itself to be cooled in a cooling	Understand	CO 3	
20	water from a cooling system is used to be cooled in a cooling 4×10^{-10} m s	Understand	05	AALD02.11
	tower at a rate of 2.78 kg/s. The water enters the tower at 65°C and			
	leaves a collecting tank at the base at 38°C. Air flows through The			
	tower, entering the base at 15°C, 0.1 MPa, 55% RH, and leaving the			
	top at 35°C, 0.1 MPa, saturated. Make up water enters the collecting			
	tank at 14°C. Determine the air flow rate into the tower in m3/s and			
	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s.			
	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thinks)	nking)		
1	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water	nking) Understand	CO 3	AAEB02.08
1	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa.	<mark>nking)</mark> Understand	CO 3	AAEB02.08
1	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of uppour	<mark>nking)</mark> Understand	CO 3	AAEB02.08
1	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour.	nking) Understand	CO 3	AAEB02.08
1	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of	nking) Understand Understand	CO 3	AAEB02.08 AAEB02.08
1	tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part – C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific	nking) Understand Understand	CO 3	AAEB02.08 AAEB02.08
1	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific 	nking) Understand Understand	CO 3	AAEB02.08 AAEB02.08
1 2	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. 	nking) Understand Understand	CO 3	AAEB02.08 AAEB02.08
1 2 3	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of 	nking) Understand Understand Understand	CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08
1 2 3	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. 	nking) Understand Understand Understand	CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08
1 2 3 4	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam 	nking) Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08
1 2 3 4	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? 	nking) Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08
1 2 3 4	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 	nking) Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08
1 2 3 4 5	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11
1 2 3 4 5	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11
1 2 3 4 5	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to 380°C. If the temperature of food water are and water is 20°C. 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11
1 2 3 4 5	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to 380°C. If the temperature of feed water is 30°C, determine the total heat supplied to a total heat supplied to produce water per hour. 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11
1 2 3 4 5	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to 380°C. If the temperature of feed water is 30°C, determine the total heat supplied to feed water per hour to produce wet steam and the total heat absorbed per hour in the super heater 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11
1 2 3 4 5	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to 380°C. If the temperature of feed water is 30°C, determine the total heat supplied to feed water per hour to produce wet steam and the total heat absorbed per hour in the super heater. 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11
1 2 3 4 5 6	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thi A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to 380°C. If the temperature of feed water is 30°C, determine the total heat supplied to feed water per hour to produce wet steam and the total heat absorbed per hour in the super heater. 	nking) Understand Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11 AAEB02.11
1 2 3 4 5 6	 tank at 14°C. Determine the air flow rate into the tower in m3/s and the make-,up water flow rate in kg/s. Part - C (Problem Solving and Critical Thin A vessel having a volume of 0.6 m3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate mass and volume of liquid and also the mass and volume of vapour. Vessel having a capacity of 0.05 m3 contains a mixture of saturated water and saturated steam at a temperature of 245°C. The mass of the liquid present is 10 kg. Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy. Determine the amount of heat, which should be supplied to 2 kg of water at 25°C to convert it into steam at 5 bar and 0.9 dry. What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of 250°C from water at 30°C? Take specific heat for superheated steam as 2.2 kJ/kg K. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to 380°C. If the temperature of feed water is 30°C, determine the total heat supplied to feed water per hour to produce wet steam and the total heat absorbed per hour in the super heater. 	nking) Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.08 AAEB02.11 AAEB02.11

7	A spherical vessel of 0.9 m3 capacity contains steam at 8 bar and 0.9 dryness fraction. Steam is blown off until the pressure drops to 4 bar. The valve is then closed and the steam is allowed to cool until the pressure falls to 3 bar. Assuming that the enthalpy of steam in the vessel remains constant during blowing off periods, determine : (i) The mass of steam blown off ; (ii) The dryness fraction of steam in the vessel after cooling ; (iii) The heat lost by steam per kg during cooling.	Understand	CO 3	AAEB02.11
8	Calculate the internal energy per kg of superheated steam at a pressure of 10 bar and a temperature of 300°C. Also find the change of internal energy if this steam is expanded to 1.4 bar and dryness fraction 0.8.	Understand	CO 3	AAEB02.11
9	Two boilers one with super heater and other without super heater are delivering equal quantities of steam into a common main. The pressure in the boilers and main is 20 bar. The temperature of steam from a boiler with a super heater is 350°C and temperature of the steam in the main is 250°C. Determine the quality of steam supplied by the other boiler. Take $C_{ps} = 2.25 \text{ kJ/kg}$.	Understand	CO 3	AAEB02.11
10	A piston-cylinder contains 3 kg of wet steam at 1.4 bar. The initial volume is 2.25 m3. The steam is heated until its temperature reaches 400° C. The piston is free to move up or down unless it reaches the stops at the top. When the piston is up against the stops the cylinder volume is 4.65 m3. Determine the amount of work and heat transfer to or from steam.	Understand	CO 3	AAEB02.11
11	0.004 kg of water vapour per kg of atmospheric air is removed and temperature of air after removing the water vapour becomes 20°C. Determine relative humidity, dew point temperature. Assume that condition of atmospheric air is 30°C and 55% R.H. and pressure is 1.0132 bar.	Understand	CO 3	AAEB02.10
12	The atmospheric conditions are; 20°C and specific humidity of 0.0095 kg/kg of dry air. Calculate the following partial pressure of vapour, relative humidity and dew point temperature.	Understand	CO 3	AAEB02.10
13	The air supplied to a room of a building in winter is to be at 17°C and have a relative humidity of 60%. If the barometric pressure is 1.01325 bar, find the specific humidity the dew point under these conditions.	Understand	CO 3	AAEB02.11
14	One kg of air at 35°C DBT and 60% R.H. is mixed with 2 kg of air at 20°C DBT and 13°C dew point temperature. Calculate the specific humidity of the mixture.	Understand	CO 3	AAEB02.11
15	An air-water vapour mixture enters an air-conditioning unit at a pressure of 1.0 bar. 38°C DBT, and a relative humidity of 75%. The mass of dry air entering is 1 kg/s. The air-vapour mixture leaves the air-conditioning unit at 1.0 bar, 18°C, 85% relative humidity. The moisture condensed leaves at 18°C. Determine the heat transfer rate for the process.	Understand	CO 3	AAEB02.10
16	Saturated air at 3°C is required to be supplied to a room where the temperature must be held at 22°C with a relative humidity of 55%. The air is heated and then water at 10°C is sprayed to give the required humidity. Determine : (i) The mass of spray water required per m3 of air at room conditions. (ii) The temperature to which the air must be heated. Neglect the fan power. Assume that the total pressure is constant at 1.0132 bar.	Understand	CO 3	AAEB02.10

	water = 1000 kg/min. It is cooled from 35° C to 30° C. Atmospheric			
	conditions are 35°C DBT, 25°C WBT. Air leaves the tower at 30°C,			
	90% RH. Find out the quantity of air handled per fan hour and the			
	quantity of make-up water required per hour.			
18	The following data pertain to an air-conditioning system :	Understand	CO 3	AAEB02.11
10	Unconditioned space $DBT = 30^{\circ}C$ Unconditioned space $WBT =$			
	22°C Cold air duct supply surface temperature = 14° C. Determine			
	dew point temperature and also determine whether or not			
	condensation will form on the duct.			
19	It is required to design an air-conditioning system for an industrial	Understand	CO 3	AAEB02.11
	process for the following hot and wet summer conditions :			
	Outdoor conditions - 32°C DBT and 65% R.H.			
	Required air inlet conditions - 25°C DBT and 60% R.H.			
	Amount of free air circulated - 250 m ³ /min.			
	Coil dew temperature - 13°C.			
	The required condition is achieved by first cooling and			
	dehumidifying and then by heating. Calculate the following :			
	(i) The cooling capacity of the cooling coil and its by-pass factor.			
	(ii) Heating capacity of the heating coil in kW and surface			
	temperature of the heating coil if the by-pass factor is 0.3.			
	(iii) The mass of water vapour removed per hour.			
20	Air at 20°C, 40% RH is mixed adiabatically with air at 40°C, 40%	Understand	CO 3	AAEB02.11
	RH in the ratio of I kg of the former with 2 kg of the latter (on dry			
	basis) .Find the final condition of air.			
	MODULE -IV			
	POWER CYCLES			
1	Classify the assumptions to be made for the analysis of all air	Understand	CO 4	AAEB02.12
1	standard cycles?	Understand	04	AAED02.12
2	State the Processes in Otto cycle and represent on P-V and T-S	Understand	CO 4	AAEB02.12
3	State the Processes in Constant pressure cycle and represent on P-V	Understand	CO 4	AAFB02.12
4	State the Freesses in Constant pressure cycle and represent on r	onaorotana		
5	What are the variable factors used for comparison of cycles 7	Understand	CO 4	AAEB02.12
)	What are the variable factors used for comparison of cycles?	Understand Understand	CO 4	AAEB02.12 AAEB02.12
5	What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle?	Understand Understand Understand	CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14
5 6 7	What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure?	Understand Understand Understand	CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14
5 6 7	What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? List functional meta of simple super comparison system represent	Understand Understand Understand Demember	CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14
5 6 7 8	What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? List functional parts of simple vapor compression system represent	Understand Understand Understand Understand Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14 AAEB02.14
5 6 7 8	What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? List functional parts of simple vapor compression system represent the processes on T-S diagram.	Understand Understand Understand Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14 AAEB02.14
5 6 7 8 9	What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? List functional parts of simple vapor compression system represent the processes on T-S diagram. Represent Dual cycle on P-V and T-S diagram	Understand Understand Understand Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14
3 6 7 8 9 10	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle while	Understand Understand Understand Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14
5 6 7 8 9 10	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.	Understand Understand Understand Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14 AAEB02.14
3 6 7 8 9 10 11	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system represent the processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle while representing the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-V	Understand Understand Understand Remember Remember Remember Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14
3 6 7 8 9 10 11 12	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?	Understand Understand Understand Remember Remember Remember Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14
3 6 7 8 9 10 11 12 13	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?	Understand Understand Understand Remember Remember Remember Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14
3 6 7 8 9 10 11 12 13 14	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system represent the processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle while representing the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-V Compare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?	Understand Understand Understand Remember Remember Remember Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13
$ \begin{array}{r} 3 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagram	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.14
$ \begin{array}{c} 3 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.14 AAEB02.13
3 6 7 8 9 10 11 12 13 14 15 16 17	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.Evaluate the performance of refrigeration cycle?	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Remember Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13
$ \begin{array}{c} 3 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.Evaluate the performance of refrigeration cycle?Represent Otto cycle on P-V and T-S diagram	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13
$ \begin{array}{c} 3 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.Evaluate the performance of refrigeration cycle?Represent Otto cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Understand Remember Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13
$ \begin{array}{c} 3 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.Evaluate the performance of refrigeration cycle?Represent Otto cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagram	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Understand Remember Understand Remember Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.14
$ \begin{array}{c} 3 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system represent the processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle while representing the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.Evaluate the performance of refrigeration cycle?Represent Otto cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagram	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Understand Remember Understand Remember	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.14
$ \begin{array}{c} 3 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 1 \end{array} $	What are the variable factors used for comparison of cycles?Draw the modified Otto cycle? How it differs from Otto cycle?Derive the air standard efficiency of Diesel cycle?Define mean effective pressure?List functional parts of simple vapor compression system representthe processes on T-S diagram.Represent Dual cycle on P-V and T-S diagramSketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting the process and hence deduce its COP.Discuss limited pressure cycle, represent the processes of it on P-VCompare Otto cycle with Diesel cycle?Define the unit of refrigeration?Define COP of refrigeration?Represent Diesel cycle on P-V and T-S diagramWrite the processes involved in Brayton cycle.Evaluate the performance of refrigeration cycle?Represent Otto cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagramDraw the PV and TS diagrams of dual combustion cycle?Represent Brayton cycle on P-V and T-S diagram <td>Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Understand Remember Understand Remember Understand</td> <td>CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4</td> <td>AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.14</td>	Understand Understand Understand Remember Remember Remember Understand Understand Understand Remember Remember Remember Understand Remember Understand Remember Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AAEB02.12 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.14 AAEB02.13 AAEB02.14

	type of engine?			
2	What is an air standard cycle? What are the limitations of air	Understand	CO 4	AAEB02.14
	standard cycle? State the assumptions to be taken for its analysis			
3	Obtain an expression for the air standard efficiency on a volume	Understand	CO 4	AAEB02.14
	basis of an engine working on the Otto cycle. And represent the			
	processes on p-V and T-S diagrams.			
4	State the characteristic of air cycles? And what is the use of air	Understand	CO 4	AAEB02.14
	standard cycle analysis			
5	Define air standard efficiency of an Otto cycle and show that the	Remember	CO 4	AAEB02.14
	efficiency of Otto cycle is lower than that of Carnot cycle.			
6	Derive an expression for mean effective pressure of the Otto cycle?	Remember	CO 4	AAEB02.14
7	Derive an expression for air standard efficiency of diesel cycle	Remember	CO 4	AAEB02.14
8	What is the difference between Otto and Diesel cycle? Show that	Understand	CO 4	AAEB02.14
	the efficiency of Diesel cycle is always lower than the efficiency of			
	the Otto cycle for the same compression ratio.			
9	Show by graphs how the efficiency of Diesel cycle varies with	Understand	CO 4	AAEB02.14
	compression ratio and cutoff ratio.			
10	Explain the dual combustion cycle? Why the cycle is also called	Understand	CO 4	AAEB02.14
	limited pressure cycle? Represent on p-V and T-S diagrams.			
11	What are the processes involved in Otto cycle. Explain their standard	Understand	CO 4	AAEB02.14
	efficiency of Otto cycle.			
12	Compare the Otto and Diesel cycles for same constant maximum	Understand	CO 4	AAEB02.12
	pressure and same heat input.			
13	Compare the thermal efficiency of Otto and dual and diesel cycles	Understand	CO 4	AAEB02.12
	on the basis of same compression ratio and same heat input?			
14	Derive an expression for air standard efficiency of dual cycle	Understand	CO 4	AAEB02.14
15	In an Otto cycle, the pressure at the beginning of the compression is	Remember	CO 4	AAEB02.14
	1 bar and pressure at the end of compression is 15 bar. Calculate the			
	pressure ratio and the air standard efficiency of engine.			
16	Determine the air standard efficiency of the diesel engine having a	Remember	CO 4	AAEB02.14
	cylinder with a bore of 250 mm and a stroke of 375mm and a			
	clearance volume of 1500 cc. with fuel cutoff occurring at 5% of the			
	stroke.			
17	Describe the components of vapour compression system with the	Remember	CO 4	AAEB02.13
	help of P-V and T-S diagram.			
18	Explain the following (i)Wet Compression (ii)Dry compression	Understand	CO 4	AAEB02.13
	(iii)sub cooling (iv)superheating			
19	Derive cop of Bell-Coleman cycle with the help of processes	Understand	CO 4	AAEB02.13
	representing on p-V and T-S diagram?			
20	Derive the expression for air standard efficiency of Brayton cycle	Understand	CO 4	AAEB02.14
1	Part – C (Problem Solving and Critical Thin	nking) Understand	CO 4	A A E DOO 12
1	A K-12 reinigerator works between the temperature limits of -10° C and $\pm 30^{\circ}$ C. The compressor employed is of 20 cm \times 15 cm twin	Understand	CU 4	AAEBU2.13
	cylinder single-acting compressor having a volumetric efficiency of			
	85%. The compressor runs at 500 r.p.m. The refrigerant is sub-			
	cooled and it enters at 22°C in the expansion valve. The vapour is			
	superheated and enters the compressor at $-2^{\circ}C$. Work out the			
	following :			

	(i) Show the process on T a and n h diagrams.			
	(i) Show the process on 1-s and p-n diagrams; (ii) The amount of refinement simulated remainstance			
	(ii) The amount of refrigerant circulated perminute;			
	(iii) The connes of retrigeration;			
	(iv) The C.O.P. of the system.		<u> </u>	
2	The evaporator and condenser temperatures of 20 tonnes capacity	Remember	CO 4	AAEB02.14
	freezer are -28° C and 23° C respectively. The refrigerant -22 is sub			
	cooled by 3°C before it enters the expansion valve and is			
	superheated to 8°C before leaving the evaporator. The compression			
	is isentropic. A six-cylinder single-acting compressor with stroke			
	equal to bore running at 250 r.p.m.is used. Determine : (i)			
	Refrigerating effect/kg. (ii) Mass of refrigerant to be circulated per			
	minute. (iii) Theoretical piston displacement per minute. (iv)			
	Theoretical power.			
3	An engine with 200mm cylinder diameter and 300mm stroke	Remember	CO 4	AAEB02.14
	working on theoretical diesel cycle. The initial pressure and			
	temperature of air used are 1bar and 270C. The cut of is 8% of the			
	stroke. Determine air standard efficiency, mean effective pressure			
	and power of the engine if the working cycles per minute are 300?			
	Assume the compression ratio is 15 and the working fluid is air.			
4	a) Determine the Compression ratio, if efficiency of an Otto cycle is	Understand	CO 4	AAEB02.13
	60% and $\gamma = 1.5$? b) An inventor claims that a new heat cycle will			
	develop 0.4kw for a heat addition of 32.5kJ/min. The temperature of			
	heat source is 1990K and that of sink is 850K. Is his claim possible?			
5	A refrigerator operating on standard vapour compression cycle has a	Remember	CO 4	AAEB02.14
	co-efficiency performance of 6.5 and is driven by a 50 kW			
	compressor. The enthalpies of saturated liquid and saturated vapour			
	refrigerant at the operating condensing temperature of 35°C are			
	62.55 kJ/kg and 201.45 kJ/kg respectively. The saturated refrigerant			
	vapour leaving evaporator has an enthalpy of 187.53 kJ/kg. Find the			
	refrigerant temperature at compressor discharge. The cp of			
	refrigerant vapour may be taken to be 0.6155 kJ/kg°C.			
6	The stroke and cylinder diameter of Compression Ignition engine are	Remember	CO 4	AAEB02.14
	250mm and 150mm respectively. If the clearance volume is			
	0.0004m3 and fuel injection takes place at constant pressure for 5%			
	of the stroke. Determine the efficiency of the engine. Assume the			
	engine working on Diesel cycle?			
7	An engine of 250mm bore and 375mm stroke works on Otto cycle.	Remember	CO 4	AAEB02.14
	The clearance volume is 0.00263m3. The initial pressure and			
	temperature are 1bar and 50° C. The maximum pressure is limited to			
	25 bar. Find the air standard efficiency and the mean effective			
	pressure of the cycle? Assume ideal conditions?			
8	A cold storage is to be maintained at -50C while the surrounding are	Remember	CO 4	AAEB02.12
	at 350C.the heat leakage from the surrounding into cold storage is			
	estimated to be 29kW.the actual C.O.P. of the refrigeration plant			
	used is one third that of an ideal working between the same			
	temperatures. Find the power required to drive the plant.			
9	A Bell-Coleman refrigerator operates between pressure limits of	Remember	CO 4	AAEB02.12
	1bar and 8bar. Air is drawn from the cold chamber at 90C,			
	compressed and then it is cooled to 290C before entering the			
	expansion cylinder. Expansion and compression follow the law			
	pV1.35=C. Calculate theoretical C.O.P of the system. Take γ of air			
	is 1.4.			
10	The capacity of the refrigerator (working on reversed carnot cycle)is	Remember	CO 4	AAEB02.14
	280 tonnes when operating between -100C and 250C.determine the			
	quantity of ice produced within 24 hours when water is supplied at			

	200C and the minimum power (in kW) required.				
	MODULE -V				
ELEMENTS OF HEAT TRANSFER AND GAS COMPRESSORS					
	Part - A (Short Answer Questions)		~~ ~		
1	What are the three basic modes in which heat is transferred?	Remember	CO 5	AAEB02.15	
2	Why are good electrical conductors also good thermal conductors?	Remember	CO 5	AAEB02.15	
3	What is fourier's law of heat conduction?	Remember	CO 5	AAEB02.15	
4	How does the slope of the temperature profile in a wall depend on	Remember	CO 5	AAEB02.15	
	its thermal conductivity?	Demonstration	CO 5	A A E D 02 15	
5	How do fins effect the heat transfer rate?	Remember	CO 5	AAEB02.15	
0	How is fin efficiency defined?	Remember	CO 5	AAEB02.15	
/	what is meant by transient neat conduction?	Remember	CO 5	AAED02.13	
8	What is lumped – capacity analysis?	Remember	05	AAEB02.15	
9	What is a heat exchanger?	Remember	CO 5	AAEB02.15	
10	Define emissivity.	Remember	CO 5	AAEB02.15	
11	What is reflectivity?	Remember	CO 5	AAEB02.15	
12	Define transmissivity.	Remember	CO 5	AAEB02.15	
13	What is black body?	Remember	CO 5	AAEB02.15	
14	What is reciprocity theorem?	Remember	CO 5	AAEB02.15	
15	What is gray body?	Remember	CO 5	AAEB02.15	
16	What is meant by monochromatic emissive power?	Remember	CO 5	AAEB02.15	
17	What is meant by total emissive power?	Remember	CO 5	AAEB02.15	
18	What is view factor?	Remember	CO 5	AAEB02.15	
19	Define effectiveness.	Remember	CO 5	AAEB02.15	
20	Define heat capacity ratio.	Remember	CO 5	AAEB02.15	
21	Classify compressors.	Understand	CO 5	AAEB02.16	
22	Define isothermal efficiency.	Remember	CO 5	AAEB02.16	
23	What do you understand by multi stage compression?	Remember	CO 5	AAEB02.16	
24	What do you understand by surging and choking phenomenon?	Remember	CO 5	AAEB02.16	
25	What is free air delivery?	Remember	CO 5	AAEB02.16	
26	What is volumetric efficiency?	Remember	CO 5	AAEB02.16	
27	Write a short notes on air flow rate measurement in reciprocating	Understand	CO 5	AAEB02.16	
	compresors.				
	Part - B (Long Answer Questions)	11			
1	Derive an expression for the rate of heat transfer for a surface area	Understand	CO 5	AAEB02.15	
	normal to heat flow.				
2	Show that, for estimating radial heat conduction through a	Understand	CO 5	AAEB02.15	
	cylindrical wall, the log- mean area of the inner and outer surfaces				
	to be considered.				
3	Show that for estimating radial heat conduction through a spherical	Understand	CO 5	AAEB02.15	
5	wall the geometric mean area of the inner and outer surfaces to be	Chieffornie	000	11111110-1110	
	considered				
4	What do you understand by natural convention and forced	Pomombor	CO 5	A AEB02 15	
4	what do you understand by natural convention and forced	Kennennber	05	AALDU2.13	
	convention? Give relevant examples.		00.5		
5	what is neat transfer coefficient? How is it defined? What is its	Understand	05	AAEB02.15	
	dimension?				
6	What are the three resistances offered to heat transfer from one	Remember	CO 5	AAEB02.15	
	fluid to another through a clean wall?				
7	Explain about different types of heat exchangers in detail.	Understand	CO 5	AAEB02.15	

8	Why are counter flow heat exchangers superior to parallel flow heat	Remember	CO 5	AAEB02.15
	exchangers?			
9	Find the expression for effectiveness of a balanced heat exchanger	Understand	CO 5	AAEB02.15
	with equal heat capacities.			
10	What is view factor? Why is it significant in radiant heat exchange	Remember	CO 5	AAEB02.16
	between two bodies?			
11	Discuss the applications of compressed air to high light the	Understand	CO 5	AAEB02.16
	significance of compressors.			
12	Describe working of single stage reciprocating compressor.	Remember	CO 5	AAEB02.16
13	Discuss the indicator diagram for reciprocating compressor. Also	Understand	CO 5	AAEB02.16
	describe the factors responsible for deviation of hypothetical			
	indicator diagram to actual diagram.			
14	Obtain volumetric efficiency of single stage reciprocating	Understand	CO 5	AAEB02.16
	compressor with clearance volume and without clearance volume.			
15	Discuss the effects of clearance upon the performance of	Understand	CO 5	AAEB02.16
	reciprocating compressor.			
16	Define is isothermal efficiency. Write in detail about its significance.	Remember	CO 5	AAEB02.16
17	What do you understand by multi stage compression?	Remember	CO 5	AAEB02.15
18	Write down the merits of multi stage compression over single stage	Remember	CO 5	AAEB02.16
	compression.			
19	Write down equation for volumetric efficiency with respect to free	Remember	CO 5	AAEB02.16
	air delivery with all the terms of expression explained in detail.			
20	Discuss the significance of intercooling upon the performance of	Understand	CO 5	AAEB02.16
	multi stage compression.			
21	Discuss the working of positive displacement rotary compressors.	Understand	CO 5	AAEB02.16
22	Describe the working of centrifugal compressors.	Remember	CO 5	AAEB02.16
23	Explain stalling and its effect on the compressor performance.	Understand	CO 5	AAEB02.16
24	Compare the axial flow compressor and centrifugal flow compressor.	Understand	CO 5	AAEB02.16
	Part – C (Problem Solving and Critical Thi	nking)		
1	Three 10 mm dia. Rods A, B and C protrude from a steam path at	Understand	CO 5	AAEB02.15
	100°C to a length of 0.25 m into the atmosphere at 20°C. The temperatures of the other ends are found to be 26.76 °C for A			
	$32\ 00^{\circ}$ C for B and $36\ 93^{\circ}$ C for C. Neglecting the effects of radiation			
	and assuming the surface film coefficient of 23 W/m^2K , evaluate			
	their thermal conductivities.			
2	An oil cooler for a lubrication system has to cool I 000 kg/h of	Understand	CO 5	AAEB02.15
	oil (c, $= 2.09 \text{ kJ/kg K}$) from 80°C to 40°C by using a cooling water			
	flow of 1000 kg/h available at 30°C. Give your choice for a parallel			
	surface area of the heat exchanger if the overall heat transfer			
	coefficient is 24 W/rn^2 K (cl' of water= 4.18 kJ/kg K).			
3	An oil fraction at 121 °C is to be cooled at the rate of 20.15 kg/s in a	Understand	CO 5	AAEB02.15
	simple counter flow heat exchanger using 5.04 kgs of water initially			
	at 10°C. The exchanger contains 200 tubes each 4.87 m long and			
	1.97 cm o.d., with $U_0 = 0.34$ kW/m K. If the specific heat of oil is 2.004 kU/kgK, calculate the axit temperature of the ail and the axit of			
	2.094 kJ/kgK, calculate the exit temperature of the oil and the rate of heat transfer			
4	A cold storage room has walls made of 0.23 m of brick on the	Understand	CO 5	AAEB02.15
-	outside, 0.08 m of plastic foam, and finally 1.5 cm of wood on the		-	
	inside. The outside and inside air temperatures are 22°C and - 2°C			
	respectively. If the inside and outside heat transfer coefficients are			

	respectively 29 and 12 W/m ² K, and the thermal conductivities of brick, foam, and wood are 0.98, 0.02, and 0.17 W /mK respectively, determine (a) the rate of heat removed by refrigeration if the total wall area is 90 m ² , and (b) the temperature of the inside surface of the brick.			
5	Water flows inside a tube 5 cm in diameter and 3 m long at a velocity 0.8 m/s. Determine the heat transfer coefficient and the rate of heat 1ra11sfer if the mean water temperature is 50°C and the wall i.s isothermal at 70°C. For water at 60°C, take K = 0.66 W/mK, v= 0.478 x t0.6m2/s, and Pr= 2.98.	Understand	CO 5	AAEB02.15
6	What is the optimum pressure ratio for perfect inter cooling in between two stages of compression? The inlet and outlet pressures may be taken as P_1 and P_2 .	Remember	CO 5	AAEB02.16
7	A reciprocating air compressor has cylinder with 24 cm bore and 36 cm stroke. Compressor admits air at 1 bar, 17°C and compresses it up to 6 bar. Compressor runs at 120 rpm. Considering compressor to be single acting and single stage determine mean effective pressure and the horse power required to run compressor when it compresses following the isothermal process and polytropic process with index of 1.3.	Understand	CO 5	AAEB02.16
8	A single stage single acting reciprocating air compressor has air entering at 1 bar, 20°C and compression occurs following polytropic process with index 1.2 up to the delivery pressure of 12 bar. The compressor runs at the speed of 240 rpm and has L/D ratio of 1.8. The compressor has mechanical efficiency of 0.88. Determine the isothermal efficiency and cylinder dimensions. Also find out the rating of drive required to run the compressor which admits 1 m ³ of air per minute.	Understand	CO 5	AAEB02.16
9	A reciprocating compressor of single stage, double acting type delivers 20 m ³ /min when measured at free air condition of 1 bar, 27°C. The compressor has compression ratio of 7 and the conditions at the end of suction are 0.97 bar, 35°C. Compressor runs at 240 rpm with clearance volume of 5% of swept volume. The L/D ratio is 1.2. Determine the volumetric efficiency taking the index of compression and expansion as 1.25. Also show the cycle on P-V diagram.	Understand	CO 5	AAEB02.16
10	A reciprocating compressor of single stage, double acting type delivers 20 m ³ /min when measured at free air condition of 1 bar, 27°C. The compressor has compression ratio of 7 and the conditions at the end of suction are 0.97 bar, 35°C. Compressor runs at 240 rpm with clearance volume of 5% of swept volume. The L/D ratio is 1.2 find the dimensions of cylinder and isothermal efficiency taking the index of compression and expansion as 1.25.	Understand	CO 5	AAEB02.16