INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad-500043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ENGINEERING THERMODYNAMICS				
Course Code	AAEB02				
Programme	B. Tech				
Semester	III AE				
Course Type	Core				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Mr R Sabari Vihar, Assistant professor				
Course Faculty	Mr R Sabari Vihar, Assistant professor Mrs M. Shravani, Assistant professor				

COURSE OBJECTIVES:

The course should enable the students to:	
I	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.
II	Apply knowledge of pure substances, mixtures, usage of steam tables and Mollier chart, psychrometric charts
III	Understand the direction law and concept of increase in entropy of universe.
IV	Understand the working of ideal air standard, vapour cycles and evaluate their performance in open systems like steam power plants, internal combustion engines, gas turbines and refrigeration systems.
V	Understand the basic concepts of heat transfer and working and types of heat exchangers.

COURSE OUTCOMES (COs):

CO 1	Understand basics of thermodynamics along with basic laws of thermodynamics.
CO 2	Understand the limitations of first law of thermodynamics and different forms of second law of thermodynamics.
CO 3	Describe the properties of pure substances with help of phase diagrams and also understand the psychrometric properties.
CO 4	Understand different processes in different standard cycles and calculate efficiencies of each cycle.
CO 5	Understand working of heat exchangers, different types of heat exchangers and working of them.

COURSE LEARNING OUTCOMES (CLOs):

AAEB02.01	Understand the basic terms and terminologies of thermodynamics along with different view point of thermodynamic systems.		
AAEB02.02	Get knowledge about concept of temperature and explain zeroth law of thermodynamics and also about quality of temperature.		
AAEB02.03	Explain about first law of thermodynamics and its various corollaries along with Joules experiment.		
AAEB02.04	Understand the limitations of first law of thermodynamics.		
AAEB02.05	Explain about thermal reservoir, heat pump, heat engine and parameters of performance.		
AAEB02.06	Explain second law of thermodynamics, Kelvin planck and Clausius statement of it.	,	AAEB02.07
:---			
Anderstand the Kelvin planck and Clausius equivalence, corollaries and understand about			
perpetual motion machine one.			

TUTORIAL QUESTION BANK

MODULE- I				
BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS				
Part - A (Short Answer Questions)				
S No	QUESTIONS	$\begin{gathered} \hline \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \end{gathered}$	Course Outcomes	Course Learning Outcomes (CLOs)
1	Explain Zeroth law of Thermodynamics.	Understand	CO 1	AAEB02.01
2	Define System, Surroundings and system boundary?	Remember	CO 1	AAEB02.01
3	Distinguish between macroscopic and microscopic point of view?	Remember	CO 1	AAEB02.01
4	Discuss Quasi Static process, what are its characteristics?	Understand	CO 1	AAEB02.01
5	Distinguish between different types of systems with examples.	Remember	CO 1	AAEB02.01
6	Explain the features of constant volume gas thermometer.	Understand	CO 1	AAEB02.01
7	Define Specific heat capacity at constant pressure.	Remember	CO 1	AAEB02.01
8	State thermodynamic system? How do you classify it?	Understand	CO 1	AAEB02.01
9	State the closed system? Give an example	Remember	CO 1	AAEB02.01
10	Define Intensive and Extensive properties.	Understand	CO 1	AAEB02.01
11	Define equilibrium of a system?	Remember	CO 1	AAEB02.01
12	Explain whether the heat and work are Intensive/Extensive properties.	Remember	CO 1	AAEB02.01
13	Differentiate closed and open system.	Understand	CO 1	AAEB02.01

14	Define Specific heat capacity at constant volume	Remember	CO 1	AAEB02.01
15	Differentiate closed and open system.	Understand	CO 1	AAEB02.01
16	Classify the properties of system?	Understand	CO 1	AAEB02.01
17	Discuss First law of thermodynamics. Explain Joule's experiment.	Understand	CO 1	AAEB02.02
18	Define PMM 1.	Understand	CO 1	AAEB02.02
19	State the causes of irreversibility?	Remember	CO 1	AAEB02.03
20	Derive Steady Flow Energy Equation for an air compressor	Remember	CO 1	AAEB02.03
Part - B (Long Answer Questions)				
1	Differentiate the system, surroundings and boundary. Explain in detail.	Understand	CO 1	AAEB02.01
2	Classify the types of systems; explain the energy exchange in them.	Remember	CO 1	AAEB02.01
3	Explain with an example the macroscopic and microscopic study of thermodynamics?	Remember	CO 1	AAEB02.01
4	Define and Explain the importance of concept of continuum in thermodynamic approach?	Understand	CO 1	AAEB02.01
5	Describe the Isobaric process diagrammatically on P-V?	Understand	CO 1	AAEB02.02
6	Explain thermodynamic equilibrium in detail?	Remember	CO 1	AAEB02.02
7	Differentiate thermal equilibrium and thermodynamic equilibrium with and example.	Understand	CO 1	AAEB02.02
8	Explain, the role of chemical equilibrium in thermodynamic equilibrium	Understand	CO 1	AAEB02.02
9	Describe the Isochoric process and represent on P-V diagram.	Remember	CO 1	AAEB02.02
10	What is displacement work? Explain about displacement work with neat diagram	Understand	CO 1	AAEB02.03
11	State Zeroth law of thermodynamics and explain it with a standard example?	Understand	CO 1	AAEB02.03
12	Explain the Joule's experiment with a neat sketch?	Understand	CO 1	AAEB02.03
13	Describe the isothermal process with P-V and T-S diagram.	Remember	CO 1	AAEB02.03
14	Sketch the constant volume gas thermometer and explain its working in detail?	Remember	CO 1	AAEB02.03
15	List the scales of temperature and explain in detail?	Understand	CO 1	AAEB02.03
16	Indicate the polytropic process on T-S diagram and explain.	Remember	CO 1	AAEB02.03
17	Compare the first law of thermodynamics with its corollaries?	Remember	CO 1	AAEB02.03
18	Explain how the first law of thermodynamics applied to a process?	Understand	CO 1	AAEB02.03
19	Indicate the Isentropic process on P-V diagram and explain about it in detail.	Understand	CO 1	AAEB02.03
20	Explain the Steady flow energy equation? Explain with help of a neat diagram.	Understand	CO 1	AAEB02.03
Part - C (Problem Solving and Critical Thinking Questions)				
1	The pressure of gas in a pipe line is measured with a mercury manometer having one limb open to the atmosphere(as shown in fig.). If the difference in the height of mercury in the two limbs is 562 mm , calculate the gas pressure. The barometer reads 761 mm Hg , the acceleration due to gravity is $9.79 \mathrm{~m} / \mathrm{s}^{2}$, and the density of mercury is $13,640 \mathrm{~kg} / \mathrm{m}^{3}$.	Understand	CO 1	AAEB02.01
2	Two mercury-in-glass thermometers arc made of identical materials and are- accurately calibrated at $0^{\circ} \mathrm{C}$ and $\mathrm{I} 00^{\circ} \mathrm{C}$. One has a	Remember	CO 1	AAEB02.01

	tube of constant diameter, while the other has a tube of conical bore, ten per cent greater in diameter at $100^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$. Both thermometers have the length between 0 and 100 subdivided uniformly. What will be the straight bore thermometer read in a place where the conical bore thermometer reads $50^{\circ} \mathrm{C}$?			
3	A piston and cylinder machine containing a fluid system has a Stirring device in the cylinder (Fig. 2). The piston is frictionless, and it is held down against the fluid due to the atmospheric pressure of 101 .325 kPa . The stirring device is turned 10,000 revolutions with an average torque against the fluid of 1.275 mN . Meanwhile the piston of 0.6 m diameter moves out 0.8 m . Find the net work transfer for the system.	Remember	CO 1	AAEB02.02
4	It is required to melt 5 tonnes $/ \mathrm{h}$ of iron from a charge at $15^{\circ} \mathrm{C}$ to molten metal at $1650^{\circ} \mathrm{C}$. The melting point is $1535^{\circ} \mathrm{C}$, and the latent heat is $270 \mathrm{~kJ} / \mathrm{kg}$. The specific heat in solid state is 0.502 and in liquid state (29.93/atomic weight) $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$. If an electric furnace has 70% efficiency, find the kW rating needed. If the density in molten state is $6900 \mathrm{~kg} / \mathrm{m} 3$ and the bath volume is three times the hourly melting rate, find the dimensions of the cylindrical furnace if the length to diameter ratio is 2 . The atomic weight of iron is 56 .	Understand	CO 1	AAEB02.02
5	If it is desired to melt aluminum with solid state specific heat 0.9 $\mathrm{kJ} / \mathrm{kgK}$, latent heat $390 \mathrm{~kJ} / \mathrm{kg}$, atomic weight 27 , density in molten state $2400 \mathrm{~kg} / \mathrm{m}^{3}$ and final temperature $700^{\circ} \mathrm{C}$, find out how much metal can be melted per hour with the above kW rating. Other data are as in the above example. Also, find the mass of aluminum that the above furnace will bold. The melting point of aluminum is $660^{\circ} \mathrm{C}$.	Remember	CO 1	AAEB02.03
6	A temperature scale of certain thermometer is given by the relation $\mathrm{t}=\mathrm{a} \ln \mathrm{p}+\mathrm{b}$ where a and b are constants and p is the thermometric property of the fluid in the thermometer. If at the ice point and steam point the thermometric properties are found to be 1.5 and 7.5 respectively what will be the temperature corresponding to the thermometric property of 3.5 on Celsius scale.	Remember	CO 1	AAEB02.03
7	The properties of a closed system change following the relation between pressure and volume as $\mathrm{pV}=3.0$ where p is in bar V is in m 3 . Calculate the work done when the pressure increases from 1.5 bar to 7.5 bar.	Understand	CO 1	AAEB02.03
8	To a closed system 150 kJ of work is supplied. If the initial volume is 0.6 m 3 and pressure of the system changes as $p=8-4 \mathrm{~V}$, where p is in bar and V is in m 3 , determine the final volume and pressure of the system.	Remember	CO 1	AAEB02.03
9	A cylinder contains 1 kg of a certain fluid at an initial pressure of 20 bar. The fluid is allowed to expand reversibly behind a piston according to a law $\mathrm{pV}^{2}=$ constant untilthe volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston regains its original position ; heat is then supplied reversibly with the piston firmly locked in position until the pressure rises to the original value of 20 bar. Calculate the net work done by the fluid, for an initial volume of 0.05 m 3 .	Remember	CO 1	AAEB02.03

10
A fluid at a pressure of 3 bar, and with specific volume of $0.18 \mathrm{m3} / \mathrm{kg}$, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law, $\mathrm{p}=\mathrm{C} / \mathrm{v}^{2}$ where C is a constant. Calculate the work done by the fluid on the piston.

Understand
CO 1
AAEB02.03

MODULE-II
SECOND LAW OF THERMODYNAMICS
Part - A (Short Answer Questions)

1	State the limitations of first law of thermodynamics.	Understand	CO 2	AAEB02.04
2	Define second law of thermodynamics.	Remember	CO 2	AAEB02.04
3	State PMM 2.	Remember	CO 2	AAEB02.04
4	State the Carnot Cycle.	Understand	CO 2	AAEB02.04
5	State the Clausius inequality.	Remember	CO 2	AAEB02.04
6	Define the absolute temperature scale.	Remember	CO 2	AAEB02.04
7	State the property of entropy.	Understand	CO 2	AAEB02.04
8	Define an inversion curve.	Remember	CO 2	AAEB02.04
9	Solve one T -dS equation by using Maxwell's relations.	Remember	CO 2	AAEB02.05
10	State the Third law of Thermodynamics.	Understand	CO 2	AAEB02.05
11	Define internal energy of a system.	Remember	CO 2	AAEB02.05
12	Define the change in internal energy of a system.	Remember	CO 2	AAEB02.05
13	Explain the available energy in a system.	Understand	CO 2	AAEB02.04
14	State the unavailable energy in a system.	Remember	CO 2	AAEB02.05
15	Explain the principle of entropy increase.	Knowledge	CO 2	AAEB02.05
16	Explain the energy of a system.	Understand	CO 2	AAEB02.05
17	Explain the Clausius statement.	Understand	CO 2	AAEB02.05
18	State the Kelvin-Plank statement.	Remember	CO 2	AAEB02.05
19	Sketch the PV and TS diagrams of Carnot cycle.	Remember	CO 2	AAEB02.05
20	Classify the processes which constitute the cycle.	Understand	CO 2	AAEB02.05

Part - B (Long Answer Questions)				
1	Explain the limitations of First law of thermodynamics in detail?	Understand	CO 2	AAEB02.06
2	Explain about thermal reservoir with a neat sketch?	Remember	CO 2	AAEB02.07
3	Explain the heat engine with a neat sketch?	Remember	CO 2	AAEB02.06
4	Explain the heat pump with a neat sketch?	Understand	CO 2	AAEB02.07
5	List the performance parameters of a system and explain in detail.	Remember	CO 2	AAEB02.06
6	Compare the first law and second law of thermodynamics with suitable examples.	Remember	CO 2	AAEB02.07
7	Explain the second law of thermodynamics with suitable sketches?	Understand	CO 2	AAEB02.06
8	Write the Kelvin-Plank statement and explain with an example?	Understand	CO 2	AAEB02.07
9	Write the Clausius statement and explain with an example?	Understand	CO 2	AAEB02.06
10	Write the Kelvin-Planck and Clausius statements and explain with sketches?	Understand	CO 2	AAEB02.07
11	State PMM1 and PMM2, are they different? How?	Remember	CO 2	AAEB02.06
12	Compare the relation with process and cycle? Explain.	Remember	CO 2	AAEB02.07
13	State the Carnot's principle? What is the importance of the principle?	Remember	CO 2	AAEB02.06
14	State the Clausius inequality? Explain.	Understand	CO 2	AAEB02.07
15	Explain the influence of entropy on various parameters?	Remember	CO 2	AAEB02.04
16	Define Gibb's and Helmholtz's functions?	Remember	CO 2	AAEB02.05
17	State the irreversibility and explain.	Understand	CO 2	AAEB02.04
18	Explain the Availability in a thermodynamic system with example.	Remember	CO 2	AAEB02.07
19	Discuss the importance of Maxwell relations?	Understand	CO 2	AAEB02.05
20	State the Third law of thermodynamics? Explain the importance.	Remember	CO 2	AAEB02.05
Part - C (Problem Solving and Critical Thinking Questions)				
1	cyclic heat engine operates between a sonrce temperature of	Understand	CO 2	AAEB02.06

	$800^{\circ} \mathrm{C}$ and a sink temperature of $30^{\circ} \mathrm{C}$. What is the least rate of heat rejection per kW net output of the engine?			
2	A reversible heat engine operates between two reservoirs at temperatures of $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of $40^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$. The heat transfer to the heat engine is 2000 kJ and the net work output of the combined engine refrigerator plant is 360 kJ. Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at $40^{\circ} \mathrm{C}$.	Understand	CO 2	AAEB02.07
3	A heat engine receives heat at the rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and gives an output of 8.2 kW . Determine the thermal efficiency and the rate of heat rejection.	Remember	CO 2	AAEB02.06
4	A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$, the ambient air temperature is $30^{\circ} \mathrm{C}$, if heat leaks into the freezer at the continuous rate of $1.75 \mathrm{~kJ} / \mathrm{sec}$. State the least power necessary to pump this heat out continuous?	Remember	CO 2	AAEB02.07
5	Find the co-efficient of performance and heat transfer rate in the condenser of a refrigerator in kJ / h which has a refrigeration capacity of $12000 \mathrm{~kJ} / \mathrm{h}$ when power input is 0.75 kW .	Understand	CO 2	AAEB02.04
6	A cyclic heat engine operates between a source temperature of $1000^{\circ} \mathrm{C}$ and a sink temperature of $40^{\circ} \mathrm{C}$. Find the least rate of heat rejection per kW net output of the engine?	Remember	CO 2	AAEB02.04
7	A fish freezing plant requires 40 tons of refrigeration. The freezing temperature is $-35^{\circ} \mathrm{C}$ while the ambient temperature is $30^{\circ} \mathrm{C}$. If the performance of the plant is 20% of the theoretical reversed Carnot cycle working within the same temperature limits, calculate the power required.	Remember	CO 2	AAEB02.04
8	A reversible heat engine operates between two reservoirs at temperatures $700^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of $50^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. The heat transfer to the engine is 2500 kJ and the net work output of the combined engine refrigerator plant is 400 kJ . Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir at $50^{\circ} \mathrm{C}$.	Understand	CO 2	AAEB02.07
9	An ice plant working on a reversed Carnot cycle heat pump produces 15 tonnes of ice per day. The ice is formed from water at $0^{\circ} \mathrm{C}$ and the formed ice is maintained at $0^{\circ} \mathrm{C}$. The heat is rejected to the atmosphere at $25^{\circ} \mathrm{C}$. The heat pump used to run the ice plant is coupled to a Carnot engine which absorbs heat from a source which is maintained at $220^{\circ} \mathrm{C}$ by burning liquid fuel of $44500 \mathrm{~kJ} / \mathrm{kg}$ calorific value and rejects the heat to the atmosphere. Determine power developed by the engine and fuel consumed per hour. Take enthalpy of fusion of ice $=334.5 \mathrm{~kJ} / \mathrm{kg}$.	Remember	CO 2	AAEB02.04
10	Two Carnot engines work in series between the source and sink temperatures of 550 K and 350 K . If both engines develop equal power determine the intermediate temperature.	Remember	CO 2	AAEB02.04
MODULE -III				
PURE SUBSTANCES AND MIXTURES OF PERFECT GASES				
Part - A (Short Answer Questions)				
1	What is a pure substance?	Remember	CO 3	AAEB02.08
2	What are saturation states?	Remember	CO 3	AAEB02.08
3	What do you understand by triple point'?	Remember	CO 3	AAEB02.08
4	What is the pressure and temperature of water at its triple point.	Remember	CO 3	AAEB02.08
5	What is normal boiling point?	Remember	CO 3	AAEB02.09

6	Why do the isobars on Mollier diagram diverge from one another?	Remember	CO 3	AAEB02.09
7	Draw the phase diagram on p-v diagrams with water as pure substance.	Remember	CO 3	AAEB02.08
8	Explain the concept of p-v-T surface? Represent on p-T coordinates?	Understand	CO 3	AAEB02.09
9	Compare isobar on Mollier diagram diverse from one another?	Understand	CO 3	AAEB02.09
10	Explain the phase transformation process with a diagram?	Understand	CO 3	AAEB02.09
11	Define saturated air.	Remember	CO 3	AAEB02.10
12	Define dry bulb temperature	Remember	CO 3	AAEB02.10
13	Define Dew point temperature	Remember	CO 3	AAEB02.10
14	Define relative humidity	Remember	CO 3	AAEB02.10
15	Define specific humidity	Remember	CO 3	AAEB02.10
16	Describe a psychrometer	Remember	CO 3	AAEB02.10
17	Define psychrometry	Remember	CO 3	AAEB02.11
18	Draw the schematic of a psychrometric chart.	Remember	CO 3	AAEB02.11
19	Write down three other types of psychrometric instruments.	Remember	CO 3	AAEB02.11
20	What is mixture of perfect gases?	Remember	CO 3	AAEB02.10
Part - B (Long Answer Questions)				
1	What is the critical state? Explain the tenns critical pressure, critical temperature and critical volume of water?	Remember	CO 3	AAEB02.08
2	Draw the phase equilibrium diagram on p -v coordinates for a substance which shrinks in volume on melting and then for a substance which expands in volume on melting. Indicate there on the relevant constant property lines.	Remember	CO 3	AAEB02.08
3	Draw the phase equilibrium diagram for a pure substance on p -T coordinates. Why does the fusion line for water have negative slope?	Remember	CO 3	AAEB02.08
4	Draw the phase equilibrium diagram for a pure substance on T-s plot with relevant constant property lines.	Remember	CO 3	AAEB02.08
5	Draw the phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines.	Remember	CO 3	AAEB02.08
6	Why do isotherms on Mollier diagram become horizontal in the superheated region at low pressures?	Remember	CO 3	AAEB02.09
7	Enumerate the Perfect Gas Laws and analyze from thermodynamics point of view?	Understand	CO 3	AAEB02.09
8	Explain, how the heat and work transfer observed in perfect gas?	Understand	CO 3	AAEB02.09
9	Explain the equation of State with variations?	Understand	CO 3	AAEB02.09
10	Write the properties of water at Triple point and what are state properties?	Remember	CO 3	AAEB02.09
11	Explain briefly with a neat sketch a sling psychrometer.	Understand	CO 3	AAEB02.10
12	Write in detail about by pass factor.	Understand	CO 3	AAEB02.10
13	Describe briefly about a) Sensible heating. b) Cooling and dehumidification.	Understand	CO 3	AAEB02.10
14	Explain in detail about terms 'heating and dehumidification' and 'heating and dehumidification.	Understand	CO 3	AAEB02.10
15	A rigid tank contains 10 kg of water at $90^{\circ} \mathrm{C}$. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine the pressure in the tank and the volume of the tank.	Understand	CO 3	AAEB02.10
16	Moist air at 1 atm . pressure has a dry bulb temperature of 32 oC and	Understand	CO 3	AAEB02.11

	a wet bulb temperature of 26 oC . Calculate a) the partial pressure of water vapour, b) humidity ratio, c) relative humidity, d) dew point temperature, e) density of dry air in the mixture, f) density of water vapour in the mixture and g) enthalpy of moist air using perfect gas law model and psychrometric equations.			
17	Explain about different lines and curves that are present in a psychrometric chart.	Understand	CO 3	AAEB02.11
18	Water at $30^{\circ} \mathrm{C}$ flows into a cooling tower at the rate of 1.15 kg per kg of air. Air enters the tower at a dbt of $20^{\circ} \mathrm{C}$ and a relative humidity of 60% and leaves it at a dbt of $28^{\circ} \mathrm{C}$ and 90% relative humidity. Make-up water is supplied at $20^{\circ} \mathrm{C}$. Determine: (i) the temperature of water leaving the tower, (ii) the fraction of water evaporated, and (iii) the approach and range of the cooling tower.	Understand	CO 3	AAEB02.10
19	Water at $30^{\circ} \mathrm{C}$ flows into a cooling tower at the rate of 1.15 kg per kg of air. Air enters the tower at a dbt of $20^{\circ} \mathrm{C}$ and a relative humidity of 60% and leaves it at a dbt of $28^{\circ} \mathrm{C}$ and 90% relative humidity. Make-up water is supplied at $20^{\circ} \mathrm{C}$. Determine: (i) the temperature of water leaving the tower, (ii) the fraction of water evaporated, and (iii) the approach and range of the cooling tower.	Understand	CO 3	AAEB02.10
20	Water from a cooling system is itself to be cooled in a cooling tower at a rate of $2.78 \mathrm{~kg} / \mathrm{s}$. The water enters the tower at $65^{\circ} \mathrm{C}$ and leaves a collecting tank at the base at $38^{\circ} \mathrm{C}$. Air flows through 1 he tower, entering the base at $15^{\circ} \mathrm{C}, 0.1 \mathrm{MPa}, 55 \% \mathrm{RH}$, and leaving the top at $35^{\circ} \mathrm{C}, 0.1 \mathrm{MPa}$, saturated. Make up water enters the collecting tank at $14^{\circ} \mathrm{C}$. Determine the air flow rate into the tower in $\mathrm{m} 3 / \mathrm{s}$ and the make-,up water flow rate in kg / s.	Understand	CO 3	AAEB02.11
Part - C (Problem Solving and Critical Thinking)				
1	A vessel having a volume of 0.6 m 3 contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa . Calculate mass and volume of liquid and also the mass and volume of vapour.	Understand	CO 3	AAEB02.08
2	Vessel having a capacity of 0.05 m 3 contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. The mass of the liquid present is 10 kg . Find the pressure and mass, the specific volume, the specific enthalpy, the specific entropy, and the specific internal energy.	Understand	CO 3	AAEB02.08
3	Determine the amount of heat, which should be supplied to 2 kg of water at $25^{\circ} \mathrm{C}$ to convert it into steam at 5 bar and 0.9 dry.	Understand	CO 3	AAEB02.08
4	What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of $250^{\circ} \mathrm{C}$ from water at $30^{\circ} \mathrm{C}$? Take specific heat for superheated steam as $2.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.	Understand	CO 3	AAEB02.08
5	1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to $380^{\circ} \mathrm{C}$. If the temperature of feed water is $30^{\circ} \mathrm{C}$, determine the total heat supplied to feed water per hour to produce wet steam and the total heat absorbed per hour in the super heater.	Understand	CO 3	AAEB02.11
6	A pressure cooker contains 1.5 kg of saturated steam at 5 bar. Find the quantity of heat which must be rejected so as to reduce the quality to 60% dry. Determine the pressure and temperature of the steam at the new state.	Understand	CO 3	AAEB02.11

7	A spherical vessel of 0.9 m 3 capacity contains steam at 8 bar and 0.9 dryness fraction. Steam is blown off until the pressure drops to 4 bar. The valve is then closed and the steam is allowed to cool until the pressure falls to 3 bar. Assuming that the enthalpy of steam in the vessel remains constant during blowing off periods, determine : (i) The mass of steam blown off ; (ii) The dryness fraction of steam in the vessel after cooling ; (iii) The heat lost by steam per kg during cooling.	Understand	CO 3	AAEB02.11
8	Calculate the internal energy per kg of superheated steam at a pressure of 10 bar and a temperature of $300^{\circ} \mathrm{C}$. Also find the change of internal energy if this steam is expanded to 1.4 bar and dryness fraction 0.8.	Understand	CO 3	AAEB02.11
9	Two boilers one with super heater and other without super heater are delivering equal quantities of steam into a common main. The pressure in the boilers and main is 20 bar. The temperature of steam from a boiler with a super heater is $350^{\circ} \mathrm{C}$ and temperature of the steam in the main is $250^{\circ} \mathrm{C}$. Determine the quality of steam supplied by the other boiler. Take $\mathrm{C}_{\mathrm{ps}}=2.25 \mathrm{~kJ} / \mathrm{kg}$.	Understand	CO 3	AAEB02.11
10	A piston-cylinder contains 3 kg of wet steam at 1.4 bar. The initial volume is $2.25 \mathrm{m3}$. The steam is heated until its temperature reaches $400^{\circ} \mathrm{C}$. The piston is free to move up or down unless it reaches the stops at the top. When the piston is up against the stops the cylinder volume is 4.65 m 3 . Determine the amount of work and heat transfer to or from steam.	Understand	CO 3	AAEB02.11
11	0.004 kg of water vapour per kg of atmospheric air is removed and temperature of air after removing the water vapour becomes $20^{\circ} \mathrm{C}$. Determine relative humidity, dew point temperature. Assume that condition of atmospheric air is $30^{\circ} \mathrm{C}$ and 55% R.H. and pressure is 1.0132 bar.	Understand	CO 3	AAEB02.10
12	The atmospheric conditions are; $20^{\circ} \mathrm{C}$ and specific humidity of $0.0095 \mathrm{~kg} / \mathrm{kg}$ of dry air. Calculate the following partial pressure of vapour, relative humidity and dew point temperature.	Understand	CO 3	AAEB02.10
13	The air supplied to a room of a building in winter is to be at $17^{\circ} \mathrm{C}$ and have a relative humidity of 60%. If the barometric pressure is 1.01325 bar, find the specific humidity the dew point under these conditions.	Understand	CO 3	AAEB02.11
14	One kg of air at $35^{\circ} \mathrm{C}$ DBT and 60% R.H. is mixed with 2 kg of air at $20^{\circ} \mathrm{C}$ DBT and $13^{\circ} \mathrm{C}$ dew point temperature. Calculate the specific humidity of the mixture.	Understand	CO 3	AAEB02.11
15	An air-water vapour mixture enters an air-conditioning unit at a pressure of 1.0 bar. $38^{\circ} \mathrm{C}$ DBT, and a relative humidity of 75%. The mass of dry air entering is $1 \mathrm{~kg} / \mathrm{s}$. The air-vapour mixture leaves the air-conditioning unit at $1.0 \mathrm{bar}, 18^{\circ} \mathrm{C}, 85 \%$ relative humidity. The moisture condensed leaves at $18^{\circ} \mathrm{C}$. Determine the heat transfer rate for the process.	Understand	CO 3	AAEB02.10
16	Saturated air at $3^{\circ} \mathrm{C}$ is required to be supplied to a room where the temperature must be held at $22^{\circ} \mathrm{C}$ with a relative humidity of 55%. The air is heated and then water at $10^{\circ} \mathrm{C}$ is sprayed to give the required humidity. Determine : (i) The mass of spray water required per m 3 of air at room conditions. (ii) The temperature to which the air must be heated. Neglect the fan power. Assume that the total pressure is constant at 1.0132 bar.	Understand	CO 3	AAEB02.10
17	A cooling tower used in power plant consists of 10 big fans, m_{-}	Understand	CO 3	AAEB02.11

	water $=1000 \mathrm{~kg} / \mathrm{min}$. It is cooled from $35^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. Atmospheric conditions are $35^{\circ} \mathrm{C}$ DBT, $25^{\circ} \mathrm{C}$ WBT. Air leaves the tower at $30^{\circ} \mathrm{C}$, 90% RH. Find out the quantity of air handled per fan hour and the quantity of make-up water required per hour.			
18	The following data pertain to an air-conditioning system : Unconditioned space DBT $=30^{\circ} \mathrm{C}$ Unconditioned space WBT $=$ $22^{\circ} \mathrm{C}$ Cold air duct supply surface temperature $=14^{\circ} \mathrm{C}$. Determine dew point temperature and also determine whether or not condensation will form on the duct.	Understand	CO 3	AAEB02.11
19	It is required to design an air-conditioning system for an industrial process for the following hot and wet summer conditions : Outdoor conditions $-32^{\circ} \mathrm{C}$ DBT and 65% R.H. Required air inlet conditions $-25^{\circ} \mathrm{C}$ DBT and 60% R.H. Amount of free air circulated $-250 \mathrm{~m}^{3} / \mathrm{min}$. Coil dew temperature $-13^{\circ} \mathrm{C}$. The required condition is achieved by first cooling and dehumidifying and then by heating. Calculate the following : (i) The cooling capacity of the cooling coil and its by-pass factor. (ii) Heating capacity of the heating coil in kW and surface temperature of the heating coil if the by-pass factor is 0.3 . (iii) The mass of water vapour removed per hour.	Understand	CO 3	AAEB02.11
20	Air at $20^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ is mixed adiabatically with air at $40^{\circ} \mathrm{C}, 40 \%$ RH in the ratio of Ikg of the former with 2 kg of the latter (on dry basis). Find the final condition of air.	Understand	CO 3	AAEB02.11
	MODULE -IV			
	POWER CYCLES			
	Part - A (Short Answer Questions)			
1	Classify the assumptions to be made for the analysis of all air standard cycles?	Understand	CO 4	AAEB02.12
2	State the Processes in Otto cycle and represent on P-V and T-S	Understand	CO 4	AAEB02.12
3	State the Processes in Constant pressure cycle and represent on P-V	Understand	CO 4	AAEB02.12
4	What are the variable factors used for comparison of cycles?	Understand	CO 4	AAEB02.12
5	Draw the modified Otto cycle? How it differs from Otto cycle?	Understand	CO 4	AAEB02.13
6	Derive the air standard efficiency of Diesel cycle?	Understand	CO 4	AAEB02.14
7	Define mean effective pressure?	Understand	CO 4	AAEB02.14
8	List functional parts of simple vapor compression system represent the processes on T-S diagram.	Remember	CO 4	AAEB02.14
9	Represent Dual cycle on P-V and T-S diagram	Remember	CO 4	AAEB02.14
10	Sketch P-V and T-S diagrams of Bell-Coleman cycle while representing the process and hence deduce its COP.	Remember	CO 4	AAEB02.14
11	Discuss limited pressure cycle, represent the processes of it on P-V	Understand	CO 4	AAEB02.14
12	Compare Otto cycle with Diesel cycle?	Understand	CO 4	AAEB02.14
13	Define the unit of refrigeration?	Understand	CO 4	AAEB02.13
14	Define COP of refrigeration?	Understand	CO 4	AAEB02.13
15	Represent Diesel cycle on P-V and T-S diagram	Remember	CO 4	AAEB02.14
16	Write the processes involved in Brayton cycle.	Remember	CO 4	AAEB02.13
17	Evaluate the performance of refrigeration cycle?	Understand	CO 4	AAEB02.13
18	Represent Otto cycle on P-V and T-S diagram	Remember	CO 4	AAEB02.13
19	Draw the PV and TS diagrams of dual combustion cycle?	Understand	CO 4	AAEB02.14
20	Represent Brayton cycle on P-V and T-S diagram	Remember	CO 4	AAEB02.14
Part - B (Long Answer Questions)				
1	Define compression ratio. What is the range for (a) SI engines (b) The CI engine? What factors limit the compression ratio in each	Understand	CO 4	AAEB02.14

	type of engine?			
2	What is an air standard cycle? What are the limitations of air standard cycle? State the assumptions to be taken for its analysis	Understand	CO 4	AAEB02.14
3	Obtain an expression for the air standard efficiency on a volume basis of an engine working on the Otto cycle. And represent the processes on $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{S}$ diagrams.	Understand	CO 4	AAEB02.14
4	State the characteristic of air cycles? And what is the use of air standard cycle analysis	Understand	CO 4	AAEB02.14
5	Define air standard efficiency of an Otto cycle and show that the efficiency of Otto cycle is lower than that of Carnot cycle.	Remember	CO 4	AAEB02.14
6	Derive an expression for mean effective pressure of the Otto cycle?	Remember	CO 4	AAEB02.14
7	Derive an expression for air standard efficiency of diesel cycle	Remember	CO 4	AAEB02.14
8	What is the difference between Otto and Diesel cycle? Show that the efficiency of Diesel cycle is always lower than the efficiency of the Otto cycle for the same compression ratio.	Understand	CO 4	AAEB02.14
9	Show by graphs how the efficiency of Diesel cycle varies with compression ratio and cutoff ratio.	Understand	CO 4	AAEB02.14
10	Explain the dual combustion cycle? Why the cycle is also called limited pressure cycle? Represent on $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{S}$ diagrams.	Understand	CO 4	AAEB02.14
11	What are the processes involved in Otto cycle. Explain their standard efficiency of Otto cycle.	Understand	CO 4	AAEB02.14
12	Compare the Otto and Diesel cycles for same constant maximum pressure and same heat input.	Understand	CO 4	AAEB02.12
13	Compare the thermal efficiency of Otto and dual and diesel cycles on the basis of same compression ratio and same heat input?	Understand	CO 4	AAEB02.12
14	Derive an expression for air standard efficiency of dual cycle	Understand	CO 4	AAEB02.14
15	In an Otto cycle, the pressure at the beginning of the compression is 1 bar and pressure at the end of compression is 15 bar. Calculate the pressure ratio and the air standard efficiency of engine.	Remember	CO 4	AAEB02.14
16	Determine the air standard efficiency of the diesel engine having a cylinder with a bore of 250 mm and a stroke of 375 mm and a clearance volume of 1500 cc . with fuel cutoff occurring at 5% of the stroke.	Remember	CO 4	AAEB02.14
17	Describe the components of vapour compression system with the help of P-V and T-S diagram.	Remember	CO 4	AAEB02.13
18	Explain the following (i)Wet Compression (ii)Dry compression (iii)sub cooling (iv)superheating	Understand	CO 4	AAEB02.13
19	Derive cop of Bell-Coleman cycle with the help of processes representing on $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{S}$ diagram?	Understand	CO 4	AAEB02.13
20	Derive the expression for air standard efficiency of Brayton cycle	Understand	CO 4	AAEB02.14
Part - C (Problem Solving and Critical Thinking)				
1	A R-12 refrigerator works between the temperature limits of $-10^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. The compressor employed is of $20 \mathrm{~cm} \times 15 \mathrm{~cm}$, twin cylinder, single-acting compressor having a volumetric efficiency of 85%. The compressor runs at 500 r.p.m. The refrigerant is subcooled and it enters at $22^{\circ} \mathrm{C}$ in the expansion valve. The vapour is superheated and enters the compressor at $-2^{\circ} \mathrm{C}$. Work out the following:	Understand	CO 4	AAEB02.13

	(i) Show the process on T-s and p-h diagrams ; (ii) The amount of refrigerant circulated perminute ; (iii) The tonnes of refrigeration ; (iv) The C.O.P. of the system.			
2	The evaporator and condenser temperatures of 20 tonnes capacity freezer are $-28^{\circ} \mathrm{C}$ and $23^{\circ} \mathrm{C}$ respectively. The refrigerant -22 is sub cooled by $3^{\circ} \mathrm{C}$ before it enters the expansion valve and is superheated to $8^{\circ} \mathrm{C}$ before leaving the evaporator. The compression is isentropic. A six-cylinder single-acting compressor with stroke equal to bore running at 250 r.p.m.is used. Determine : (i) Refrigerating effect $/ \mathrm{kg}$. (ii) Mass of refrigerant to be circulated per minute. (iii) Theoretical piston displacement per minute. (iv) Theoretical power.	Remember	CO 4	AAEB02.14
3	An engine with 200 mm cylinder diameter and 300 mm stroke working on theoretical diesel cycle. The initial pressure and temperature of air used are 1 bar and 270C. The cut of is 8% of the stroke. Determine air standard efficiency, mean effective pressure and power of the engine if the working cycles per minute are 300 ? Assume the compression ratio is 15 and the working fluid is air.	Remember	CO 4	AAEB02.14
4	a) Determine the Compression ratio, if efficiency of an Otto cycle is 60% and $\mathrm{y}=1.5$? b) An inventor claims that a new heat cycle will develop 0.4 kw for a heat addition of $32.5 \mathrm{~kJ} / \mathrm{min}$. The temperature of heat source is 1990 K and that of sink is 850 K . Is his claim possible?	Understand	CO 4	AAEB02.13
5	A refrigerator operating on standard vapour compression cycle has a co-efficiency performance of 6.5 and is driven by a 50 kW compressor. The enthalpies of saturated liquid and saturated vapour refrigerant at the operating condensing temperature of $35^{\circ} \mathrm{C}$ are $62.55 \mathrm{~kJ} / \mathrm{kg}$ and $201.45 \mathrm{~kJ} / \mathrm{kg}$ respectively. The saturated refrigerant vapour leaving evaporator has an enthalpy of $187.53 \mathrm{~kJ} / \mathrm{kg}$. Find the refrigerant temperature at compressor discharge. The cp of refrigerant vapour may be taken to be $0.6155 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$.	Remember	CO 4	AAEB02.14
6	The stroke and cylinder diameter of Compression Ignition engine are 250 mm and 150 mm respectively. If the clearance volume is 0.0004 m 3 and fuel injection takes place at constant pressure for 5% of the stroke. Determine the efficiency of the engine. Assume the engine working on Diesel cycle?	Remember	CO 4	AAEB02.14
7	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is 0.00263 m 3 . The initial pressure and temperature are 1 bar and $50^{\circ} \mathrm{C}$. The maximum pressure is limited to 25 bar. Find the air standard efficiency and the mean effective pressure of the cycle? Assume ideal conditions?	Remember	CO 4	AAEB02.14
8	A cold storage is to be maintained at -50 C while the surrounding are at 350C.the heat leakage from the surrounding into cold storage is estimated to be 29 kW .the actual C.O.P. of the refrigeration plant used is one third that of an ideal working between the same temperatures. Find the power required to drive the plant.	Remember	CO 4	AAEB02.12
9	A Bell-Coleman refrigerator operates between pressure limits of 1 bar and 8bar. Air is drawn from the cold chamber at 90 C , compressed and then it is cooled to 290 C before entering the expansion cylinder. Expansion and compression follow the law pV1.35=C. Calculate theoretical C.O.P of the system. Take y of air is 1.4.	Remember	CO 4	AAEB02.12
10	The capacity of the refrigerator (working on reversed carnot cycle)is 280 tonnes when operating between -100C and 250C.determine the quantity of ice produced within 24 hours when water is supplied at	Remember	CO 4	AAEB02.14

200C and the minimum power (in kW) required.				
MODULE -V				
ELEMENTS OF HEAT TRANSFER AND GAS COMPRESSORS				
Part - A (Short Answer Questions)				
1	What are the three basic modes in which heat is transferred?	Remember	CO 5	AAEB02.15
2	Why are good electrical conductors also good thermal conductors?	Remember	CO 5	AAEB02.15
3	What is fourier's law of heat conduction?	Remember	CO 5	AAEB02.15
4	How does the slope of the temperature profile in a wall depend on its thermal conductivity?	Remember	CO 5	AAEB02.15
5	How do fins effect the heat transfer rate?	Remember	CO 5	AAEB02.15
6	How is fin efficiency defined?	Remember	CO 5	AAEB02.15
7	What is meant by transient heat conduction?	Remember	CO 5	AAEB02.15
8	What is lumped - capacity analysis?	Remember	CO 5	AAEB02.15
9	What is a heat exchanger?	Remember	CO 5	AAEB02.15
10	Define emissivity.	Remember	CO 5	AAEB02.15
11	What is reflectivity?	Remember	CO 5	AAEB02.15
12	Define transmissivity.	Remember	CO 5	AAEB02.15
13	What is black body?	Remember	CO 5	AAEB02.15
14	What is reciprocity theorem?	Remember	CO 5	AAEB02.15
15	What is gray body?	Remember	CO 5	AAEB02.15
16	What is meant by monochromatic emissive power?	Remember	CO 5	AAEB02.15
17	What is meant by total emissive power?	Remember	CO 5	AAEB02.15
18	What is view factor?	Remember	CO 5	AAEB02.15
19	Define effectiveness.	Remember	CO 5	AAEB02.15
20	Define heat capacity ratio.	Remember	CO 5	AAEB02.15
21	Classify compressors.	Understand	CO 5	AAEB02.16
22	Define isothermal efficiency.	Remember	CO 5	AAEB02.16
23	What do you understand by multi stage compression?	Remember	CO 5	AAEB02.16
24	What do you understand by surging and choking phenomenon?	Remember	CO 5	AAEB02.16
25	What is free air delivery?	Remember	CO 5	AAEB02.16
26	What is volumetric efficiency?	Remember	CO 5	AAEB02.16
27	Write a short notes on air flow rate measurement in reciprocating compresors.	Understand	CO 5	AAEB02.16
Part - B (Long Answer Questions)				
1	Derive an expression for the rate of heat transfer for a surface area normal to heat flow.	Understand	CO 5	AAEB02.15
2	Show that, for estimating radial heat conduction through a cylindrical wall, the log-mean area of the inner and outer surfaces to be considered.	Understand	CO 5	AAEB02.15
3	Show that, for estimating radial heat conduction through a spherical wall, the geometric mean area of the inner and outer surfaces to be considered	Understand	CO 5	AAEB02.15
4	What do you understand by natural convention and forced convention? Give relevant examples.	Remember	CO 5	AAEB02.15
5	What is heat transfer coefficient? How is it defined? What is its dimension?	Understand	CO 5	AAEB02.15
6	What are the three resistances offered to heat transfer from one fluid to another through a clean wall?	Remember	CO 5	AAEB02.15
7	Explain about different types of heat exchangers in detail.	Understand	CO 5	AAEB02.15

8	Why are counter flow heat exchangers superior to parallel flow heat exchangers?	Remember	CO 5	AAEB02.15
9	Find the expression for effectiveness of a balanced heat exchanger with equal heat capacities.	Understand	CO 5	AAEB02.15
10	What is view factor? Why is it significant in radiant heat exchange between two bodies?	Remember	CO 5	AAEB02.16
11	Discuss the applications of compressed air to high light the significance of compressors.	Understand	CO 5	AAEB02.16
12	Describe working of single stage reciprocating compressor.	Remember	CO 5	AAEB02.16
13	Discuss the indicator diagram for reciprocating compressor. Also describe the factors responsible for deviation of hypothetical indicator diagram to actual diagram.	Understand	CO 5	AAEB02.16
14	Obtain volumetric efficiency of single stage reciprocating compressor with clearance volume and without clearance volume.	Understand	CO 5	AAEB02.16
15	Discuss the effects of clearance upon the performance of reciprocating compressor.	Understand	CO 5	AAEB02.16
16	Define is isothermal efficiency. Write in detail about its significance.	Remember	CO 5	AAEB02.16
17	What do you understand by multi stage compression?	Remember	CO 5	AAEB02.15
18	Write down the merits of multi stage compression over single stage compression.	Remember	CO 5	AAEB02.16
19	Write down equation for volumetric efficiency with respect to free air delivery with all the terms of expression explained in detail.	Remember	CO 5	AAEB02.16
20	Discuss the significance of intercooling upon the performance of multi stage compression.	Understand	CO 5	AAEB02.16
21	Discuss the working of positive displacement rotary compressors.	Understand	CO 5	AAEB02.16
22	Describe the working of centrifugal compressors.	Remember	CO 5	AAEB02.16
23	Explain stalling and its effect on the compressor performance.	Understand	CO 5	AAEB02.16
24	Compare the axial flow compressor and centrifugal flow compressor.	Understand	CO 5	AAEB02.16
Part - C (Problem Solving and Critical Thinking)				
1	Three 10 mm dia. Rods A, B and C protrude from a steam path at $100^{\circ} \mathrm{C}$ to a length of 0.25 m into the atmosphere at $20^{\circ} \mathrm{C}$. The temperatures of the other ends are found to be $26.76^{\circ} \mathrm{C}$ for A , $32.00^{\circ} \mathrm{C}$ for B and $36.93^{\circ} \mathrm{C}$ for C . Neglecting the effects of radiation and assuming the surface film coefficient of $23 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, evaluate their thermal conductivities.	Understand	CO 5	AAEB02.15
2	An oil cooler for a lubrication system has to cool I $000 \mathrm{~kg} / \mathrm{h}$ of oil (c,. $=2.09 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$) from $80^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ by using a cooling water flow of $1000 \mathrm{~kg} / \mathrm{h}$ available at $30^{\circ} \mathrm{C}$. Give your choice for a parallel flow or counter flow heat exchanger, with reasons. Estimate the surface area of the heat exchanger. if the overall heat transfer coefficient is $24 \mathrm{~W} / \mathrm{rn}^{2} \mathrm{~K}$ (cl' of water $=4.18 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$).	Understand	CO 5	AAEB02.15
3	An oil fraction at $121^{\circ} \mathrm{C}$ is to be cooled at the rate of $20.15 \mathrm{~kg} / \mathrm{s}$ in a simple counter flow heat exchanger using 5.04 kgs of water initially at $10^{\circ} \mathrm{C}$. The exchanger contains 200 tubes each 4.87 m long and 1.97 cm o.d., with $U_{0}=0.34 \mathrm{~kW} / \mathrm{m} \mathrm{K}$. If the specific heat of oil is $2.094 \mathrm{~kJ} / \mathrm{kgK}$, calculate the exit temperature of the oil and the rate of heat transfer.	Understand	CO 5	AAEB02.15
4	A cold storage room has walls made of 0.23 m of brick on the outside, 0.08 m of plastic foam, and finally 1.5 cm of wood on the inside. The outside and inside air temperatures are $22^{\circ} \mathrm{C}$ and $-2^{\circ} \mathrm{C}$ respectively. If the inside and outside heat transfer coefficients are	Understand	CO 5	AAEB02.15

	respectively 29 and $12 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and the thermal conductivities of brick, foam, and wood are $0.98,0.02$, and $0.17 \mathrm{~W} / \mathrm{mK}$ respectively, determine (a) the rate of heat removed by refrigeration if the total wall area is $90 \mathrm{~m}^{2}$, and (b) the temperature of the inside surface of the brick.			
5	Water flows inside a tube 5 cm in diameter and 3 m long at a velocity $0.8 \mathrm{~m} / \mathrm{s}$. Determine the heat transfer coefficient and the rate of heat 1 ra 11 sfer if the mean water temperature is $50^{\circ} \mathrm{C}$ and the wall i.s isothermal at $70^{\circ} \mathrm{C}$. For water at $60^{\circ} \mathrm{C}$, take $\mathrm{K}=0.66 \mathrm{~W} / \mathrm{mK}$, $\mathrm{v}=$ $0.478 \times \mathrm{t} 0.6 \mathrm{~m} 2 / \mathrm{s}$, and $\operatorname{Pr}=2.98$.	Understand	CO 5	AAEB02.15
6	What is the optimum pressure ratio for perfect inter cooling in between two stages of compression? The inlet and outlet pressures may be taken as P_{1} and P_{2}.	Remember	CO 5	AAEB02.16
7	A reciprocating air compressor has cylinder with 24 cm bore and 36 cm stroke. Compressor admits air at $1 \mathrm{bar}, 17^{\circ} \mathrm{C}$ and compresses it up to 6 bar. Compressor runs at 120 rpm . Considering compressor to be single acting and single stage determine mean effective pressure and the horse power required to run compressor when it compresses following the isothermal process and polytropic process with index of 1.3.	Understand	CO 5	AAEB02.16
8	A single stage single acting reciprocating air compressor has air entering at $1 \mathrm{bar}, 20^{\circ} \mathrm{C}$ and compression occurs following polytropic process with index 1.2 up to the delivery pressure of 12 bar. The compressor runs at the speed of 240 rpm and has L/D ratio of 1.8 . The compressor has mechanical efficiency of 0.88 . Determine the isothermal efficiency and cylinder dimensions. Also find out the rating of drive required to run the compressor which admits $1 \mathrm{~m}^{3}$ of air per minute.	Understand	CO 5	AAEB02.16
9	A reciprocating compressor of single stage, double acting type delivers $20 \mathrm{~m}^{3} / \mathrm{min}$ when measured at free air condition of 1 bar , $27^{\circ} \mathrm{C}$. The compressor has compression ratio of 7 and the conditions at the end of suction are $0.97 \mathrm{bar}, 35^{\circ} \mathrm{C}$. Compressor runs at 240 rpm with clearance volume of 5% of swept volume. The L/D ratio is 1.2 . Determine the volumetric efficiency taking the index of compression and expansion as 1.25 . Also show the cycle on $\mathrm{P}-\mathrm{V}$ diagram.	Understand	CO 5	AAEB02.16
10	A reciprocating compressor of single stage, double acting type delivers $20 \mathrm{~m}^{3} / \mathrm{min}$ when measured at free air condition of 1 bar , $27^{\circ} \mathrm{C}$. The compressor has compression ratio of 7 and the conditions at the end of suction are 0.97 bar, $35^{\circ} \mathrm{C}$. Compressor runs at 240 rpm with clearance volume of 5% of swept volume. The L/D ratio is 1.2 find the dimensions of cylinder and isothermal efficiency taking the index of compression and expansion as 1.25 .	Understand	CO 5	AAEB02.16

Prepared by:

Mr. R Sabari Vihar, Assistant Professor

