

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

FRESHMAN ENGINEERING

TUTORIAL QUESTION BANK

Course Title		LINEAR ALGEBRA AND CALCULUS (COMMON FOR AE / CSE / IT / ECE / EEE / ME / CE)			
Course Code	BSC103				
Programme	B.Tech				
Semester	Ι				
Course Type	Core				
Regulation	IARE - R18				
Course Structure	Lectures	Tutorials	Practical	Credits	
	3	1	-	4	
Course Coordinator	Ms. L Indira, Asso	ociate Professor			
Course Faculty	Dr. M Anita, Profe	essor			
	Dr. S Jagadha, Pro	fessor			
	Mr. Ch Somasheka	ar, Associate Profes	sor		
	Mr. V Subba Laxr	ni, Associate Profes	ssor		
	Mr. J Suresh Goud	l, Associate Profess	or		
	Ms. P Srilatha, As	sistant Professor			
	Ms. C Rachana, A	ssistant Professor			
	Ms. P Rajani, Assi	stant Professor			
	Ms. B Praveena, A	Assistant Professor			

I. COURSE OBJECTIVES (COs):

The course should enable the students to:

Ι	Analyze and solve linear system of equations by using elementary transformations.	
II	Determine the maxima and minima of functions of several variables by using partial	
11	differential coefficients.	
III	Apply second and higher order linear differential equations to solve electrical circuits.	
IV	Apply multiple integration to evaluate mass, area and volume of the plane.	
V	Analyze gradient, divergence and curl to evaluate the integration over a vector field.	

II. COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the following:

CBSC103.01	Demonstrate knowledge of matrix calculation as an elegant and powerful mathematical language in connection with rank of a matrix.		
CBSC103.02	CBSC103.02 Determine rank by reducing the matrix to Echelon and Normal forms.		
CBSC103.03	CBSC103.03 Determine inverse of the matrix by Gauss Jordon Method.		

CBSC103.04Interpret the Eigen values and Eigen vectors of matrix for a linear transformation and use properties of Eigen valuesCBSC103.05Understand the concept of Eigen values in real-world problems of control field where they are pole of closed loop system.CBSC103.06Apply the concept of Eigen values in real-world problems of mechanical systems where Eigen values are natural frequency and mode shape.CBSC103.07Use the system of linear equations and matrix to determine the dependency and independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21 </th <th></th> <th></th>		
CBSC103.05 Understand the concept of Eigen values in real-world problems of control field where they are pole of closed loop system. CBSC103.06 Apply the concept of Eigen values in real-world problems of mechanical systems where Eigen values are natural frequency and mode shape. CBSC103.07 Use the system of linear equations and matrix to determine the dependency and independency. CBSC103.08 Determine a modal matrix, and reducing a matrix to diagonal form. CBSC103.09 Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem. CBSC103.10 Apply the Mean value theorems for the single variable functions. CBSC103.11 Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. CBSC103.12 Find partial derivatives of and apply chain rule derivative techniques to multivariable functions. CBSC103.13 Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation. CBSC103.13 Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solution CBSC103.16 Solving Second and higher order differential equations with constant coefficients CBSC103.17 Find the complete solution of a non-homogeneous differential equation as a linear combination of the compl	CBSC103.04	
CBSC103.05where they are pole of closed loop system.CBSC103.06Apply the concept of Eigen values in real-world problems of mechanical systems where Eigen values are natural frequency and mode shape.CBSC103.07Use the system of linear equations and matrix to determine the dependency and independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.15Solving Second and higher order differential equations with constant coefficientsCBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.14Apply maxima and minima for functions.CBSC103.15Eind the complete solution of a non-homogeneous differential eq		
CBSC103.06Where they are pole of closed loop system.CBSC103.07Apply the concept of Eigen values in real-world problems of mechanical systems where Eigen values are natural frequency and mode shape.CBSC103.07Use the system of linear equations and matrix to determine the dependency and independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.12Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.13Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand nitegration of vector function.<	CBSC103.05	
CBSC103.06where Eigen values are natural frequency and mode shape.CBSC103.07Use the system of linear equations and matrix to determine the dependency and independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solution.CBSC103.15Solving Second and higher order differential equations with constant coefficientsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23 <td< td=""><td>0250105.05</td><td></td></td<>	0250105.05	
CBSC103.06where Eigen values are natural frequency and mode shape.CBSC103.07Use the system of linear equations and matrix to determine the dependency and independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solution.CBSC103.15Solving Second and higher order differential equations with constant coefficientsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23 <td< td=""><td>CD0C102.0C</td><td>Apply the concept of Eigen values in real-world problems of mechanical systems</td></td<>	CD0C102.0C	Apply the concept of Eigen values in real-world problems of mechanical systems
CBSC103.07Use the system of linear equations and matrix to determine the dependency and independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.12Find partial derivatives of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.17Apply the second and higher order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand nitegration of vector function.	CBSC103.06	
CBSC103.07independency.CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.12Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.17Apply the second order differential equations with constant coefficientsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand nitegration of vector function.		
CBSC103.08Determine a modal matrix, and reducing a matrix to diagonal form.CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand nitegration of vector function.		
CBSC103.09Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.		Independency.
CBSC103.10Apply the Mean value theorems for the single variable functions.CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.08	Determine a modal matrix, and reducing a matrix to diagonal form.
CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.	CBSC103.09	Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.
CBSC103.11Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.	CBSC103.10	Apply the Mean value theorems for the single variable functions.
CBSC103.11interpret the way a function varies.CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.12Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.13Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.14Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations for real world problems of electrical circuitsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.		
CBSC103.12Find partial derivatives of and apply chain rule derivative techniques to multivariable functions.CBSC103.13Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.11	
CBSC103.12functions.CBSC103.13Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.		
Tunctions.CBSC103.13Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.12	
CBSC103.13the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.		
transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.		
transformation.CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.13	the coordinates by utilizing the Jacobian. Determine Jacobian for the coordinate
CBSC103.14Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.		
CBSC103.14method of multipliers.CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.		Apply maxima and minima for functions of several variable's and Lagrange's
CBSC103.15Find the complete solution of a non-homogeneous differential equation as a linear combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.14	
CBSC103.15combination of the complementary function and a particular solutionCBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.23Evaluate line, surface and volume integral of vectors.		
CBSC103.16Solving Second and higher order differential equations with constant coefficientsCBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103 15	
CBSC103.17Apply the second order differential equations for real world problems of electrical circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.		
CBSC103.17circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.16	Solving Second and higher order differential equations with constant coefficients
CBSC103.17circuitsCBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	GD G G 100 17	Apply the second order differential equations for real world problems of electrical
CBSC103.18Evaluate double integral and triple integrals.CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.17	
CBSC103.19Utilize the concept of change order of integration and change of variables to evaluate double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.18	
CBSC103.19double integrals.CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.		
CBSC103.20Determine the area and volume of a given curve.CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CBSC103.19	
CBSC103.21Analyze scalar and vector fields and compute the gradient, divergence and curl.CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.	CD00102.00	Ŭ
CBSC103.22Understand integration of vector function.CBSC103.23Evaluate line, surface and volume integral of vectors.		
CBSC103.23 Evaluate line, surface and volume integral of vectors.		
	CBSC103.22	Understand integration of vector function.
	CBSC103.23	Evaluate line, surface and volume integral of vectors.
	CBSC103.24	

TUTORIAL QUESTION BANK

	UNIT - I					
	THEORY OF MATRICES AND LINEAR TRANSFORMATIONS					
	Part - A (Short Answer Questions)					
S No	QUESTIONS	Blooms Taxonomy Level	Course Learning Outcomes (CLOs)			
1	Define Orthogonal matrix.	Remember	CBSC103.01			
2	State Cayley- Hamilton theorem.	Remember	CBSC103.09			
3	Prove that $\frac{1}{2}\begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is a unitary matrix.	Understand	CBSC103.01			
4	Find the value of k such that rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2	Understand	CBSC103.02			
5	Find the Skew-symmetric part of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix}$.	Understand	CBSC103.01			
6	Define Rank of a matrix.	Remember	CBSC103.02			
7	If $A = \begin{bmatrix} 3 & a & b \\ -2 & 2 & 4 \\ 7 & 4 & 5 \end{bmatrix}$ is symmetric, then find the values of a and b.	Understand	CBSC103.01			
8	Prove that $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.	Understand	CBSC103.01			
9	Define Unitary matrix.	Remember	CBSC103.01			
10	Find the sum of Eigen values of the matrix $ \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} $	Understand	CBSC103.04			
11	Determine the values of a, b, c when the matrix $\begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal.	Understand	CBSC103.01			
12	Show that the vectors $X_1=(1,1,2)$, $X_2=(1,2,5)$ and $X_3=(5,3,4)$ are linearly	Understand	CBSC103.07			
	dependent.					
13	Express the matrix A as sum of symmetric and Skew-symmetric matrices. where $A = \begin{bmatrix} 3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$	Understand	CBSC103.01			
14	Define Skew-Hermitian matrix.	Remember	CBSC103.01			

15	$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$	Understand	CBSC103.02
_	Find the rank of the matrix 5 6 7 8		
16		Understond	CBSC103.07
10		Understand	CBSC105.07
	Find the characteristic equation of the matrix $A = \begin{vmatrix} -2 & 3 & -1 \end{vmatrix}$		
17		Understand	CBSC103.07
1/		Understand	CBSC103.07
	Find the Eigen values of the matrix $\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$		
18		Understand	CBSC103.02
	Find the value of k such that the rank of $\begin{vmatrix} 1 & -1 & k & -1 \end{vmatrix}$ is 2.		
	Find the value of k such that the rank of $\begin{bmatrix} 1 & -1 & k & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$ is 2.		
19	Show that the vectors $X_1 = (1,1,1) X_2 = (3,1,2)$ and $X_3 = (2,1,4)$ are linearly	Understand	CBSC103.07
20	independent. Define Modal and Spectral matrices.	Remember	CBSC103.08
	Part - B (Long Answer Questions)		0250105.00
1		Understand	CBSC103.02
	By reducing the matrix 3 7 1 into normal form, find its rank.		
2	Find the values of a and b such that rank of the matrix	Understand	CBSC103.02
	$\begin{bmatrix} 1 & -2 & 3 & 1 \end{bmatrix}$	onderstand	CD5C105.02
	$\begin{vmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b \end{vmatrix}$ is 3.		
	$\begin{vmatrix} -2 & -2 & -2 \\ -2 & -2 & -2 \\ -2 & -2 &$		
3	$\begin{bmatrix} 0 & 2 & u & b \end{bmatrix}$	Understand	CBSC103.02
	i i		
	Find the rank of the matrix $A = \begin{vmatrix} 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \end{vmatrix}$ by reducing to echelon		
	$\begin{vmatrix} 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{vmatrix}$		
	$\begin{bmatrix} 8 & 4 & -3 & -1 \end{bmatrix}$ form.		
4	Find the inverse of a matrix by using Gauss-Jordan method	Apply	CBSC103.03
	$ \begin{vmatrix} 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{vmatrix} $		
5	$\begin{bmatrix} 1 & -2 & 0 & 1 \end{bmatrix}$	Understand	CBSC103.02
	Reduce the matrix to its normal form where $A = \begin{bmatrix} 3 & -3 & 1 & 1 \end{bmatrix}$		
	Reduce the matrix to its normal form where $A = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 3 & -3 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$.		
<u> </u>			

6	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	Understand	CBSC103.08
	Diagonalize the matrix $A = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$ by linear transformation and		
	hence find A ⁴ .		
7	$\begin{pmatrix} 4 & 4 & -3 & 1 \end{pmatrix}$	Understand	CBSC103.02
	For what value of K such that the matrix $\begin{vmatrix} 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \end{vmatrix}$ has rank 3		
	$\left(\begin{array}{ccc}9 & 9 & k & 3\end{array}\right)$		CD C C L C C C C
8		Apply	CBSC103.09
	Verify Cayley-Hamilton theorem for $A = \begin{vmatrix} 2 & 1 & -2 \end{vmatrix}$		
	$\left[\begin{array}{ccc} 2 & -2 & 1 \end{array} \right]$ and find A ⁻¹ & A ⁴ .		
9	$\begin{bmatrix} 0 & 1 & 2 & -2 \end{bmatrix}$	Understand	CBSC103.02
	Reduce the matrix A to its normal form where $A = \begin{bmatrix} 0 & 1 & 2 & -2 \end{bmatrix}$ and		
	hence find the rank		
10	Express $A^5-4A^4-7A^3+11A^2-A-10I$ as a linear polynomial in A, where	Understand	CBSC103.09
	$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$		
11		I in denote a d	CBSC103.04
11		Understand	CD5C105.04
	Find the characteristic roots of the matrix $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$ and the corresponding		
	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ characteristic vectors.		
12	$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$	Understand	CBSC103.03
	Find the inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ by elementary row operation.		
13	Find a matrix P such that $P^{-1}AP$ is a diagonal matrix, where A=	Understand	CBSC103.09
	$\begin{bmatrix} -2 & 2 & -3 \end{bmatrix}$		
14	Find the Eigen values and Eigen vectors of the matrix A and its inverse,	Understand	CBSC103.04
	where $A = \begin{bmatrix} 0 & 2 & 5 \end{bmatrix}$		
4 -			
15		Understand	CBSC103.02
	Find the rank of the matrix $\begin{vmatrix} 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \end{vmatrix}$ by reducing to normal form		

16		Understand	CBSC103.04
	Find Eigen values and Eigen vectors of the matrix 1 0 0		
17	$\begin{bmatrix} -1 & 2 & -2 \end{bmatrix}$	Understand	CBSC103.08
	Diagonalize the matrix $\begin{vmatrix} 1 & 2 & -2 \\ 1 & 2 & 1 \end{vmatrix}$		
18	Verify Cayley-Hamilton theorem and find the inverse of the matrix	Understand	CBSC103.09
	$A = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$		
	$\begin{bmatrix} -2 & -4 & -4 \end{bmatrix}$		
19	[−2 1 3]	Understand	CBSC103.03
	Find the inverse of the matrix $A = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$ using elementary row		
	operations.		
20	Find the rank of the matrix, by reducing it to the canonical form $\begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$	Understand	CBSC103.02
	$\begin{bmatrix} 2 & -4 & 3 & -1 & 0 \\ 1 & -2 & -1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{bmatrix}$		
	Part - C (Problem Solving and Critical Thinking Ouest	ions)	
1	Part - C (Problem Solving and Critical Thinking Quest		CBSC103.09
1	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$	ions) Apply	CBSC103.09
1	Part - C (Problem Solving and Critical Thinking QuestUse Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method	Apply	CBSC103.09 CBSC103.03
	Part - C (Problem Solving and Critical Thinking QuestUse Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$		
	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \end{bmatrix}$	Apply	
2	Part - C (Problem Solving and Critical Thinking QuestUse Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$	Apply Understand	CBSC103.03
	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 & 2 & 1 \end{bmatrix}$	Apply	
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 & 2 & 1 \end{bmatrix}$	Apply Understand	CBSC103.03
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \end{bmatrix}$ by Echelon form.	Apply Understand	CBSC103.03
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 & 2 & 1 \end{bmatrix}$	Apply Understand Understand	CBSC103.03 CBSC103.02
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \end{bmatrix}$ by Echelon form.	Apply Understand	CBSC103.03
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ by Echelon form.	Apply Understand Understand	CBSC103.03 CBSC103.02
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ by Echelon form. $\begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix}$	Apply Understand Understand	CBSC103.03 CBSC103.02
2	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ by Echelon form. Is the matrix $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \end{bmatrix}$ diagonalizable? Justify your answer.	Apply Understand Understand	CBSC103.03 CBSC103.02
2 3 4	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ By Echelon form. Is the matrix $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalizable? Justify your answer. Verify that the Eigen values of A^2 and A^{-1} are respectively the squares	Apply Understand Understand Understand Understand	CBSC103.03 CBSC103.02 CBSC103.08
2 3 4	Part - C (Problem Solving and Critical Thinking QuestUse Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ by Echelon form.Is the matrix $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalizable? Justify your answer.Verify that the Eigen values of A^2 and A^{-1} are respectively the squares	Apply Understand Understand Understand Understand	CBSC103.03 CBSC103.02 CBSC103.08
2 3 4	Part - C (Problem Solving and Critical Thinking Quest Use Cayley-Hamilton theorem to find A^3 and A^{-3} if $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Find the Inverse of a matrix by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ By Echelon form. Is the matrix $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalizable? Justify your answer. Verify that the Eigen values of A^2 and A^{-1} are respectively the squares	Apply Understand Understand Understand Understand	CBSC103.03 CBSC103.02 CBSC103.08

6		Understand	CBSC103.09
	Verify Cayley Hamilton theorem and find A^{-1} where $A = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$		
7	Examine whether the vectors [2,-1,3,2], [1,3,4,2], [3,5,2,2] is linearly independent or dependent?	Understand	CBSC103.07
8	Find Eigen values and corresponding Eigen vectors of the matrix	Understand	CBSC103.04
	$\begin{vmatrix} -1 & 5 & -1 \\ 1 & -1 & 3 \end{vmatrix}$		
9		Understand	CBSC103.09
2	If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ Find the value of the matrix		
	$\begin{vmatrix} \mathbf{n} & \mathbf{A} = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix} $ Find the value of the matrix $\begin{vmatrix} 1 & 1 & 2 \end{vmatrix}$		
10	$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I.$ Find the inverse of the matrix A using elementary operation (i.e., using	Understand	CBSC103.03
10	$\begin{bmatrix} -1 & -3 & 3 & -1 \end{bmatrix}$	Understand	CBSC105.05
	Gauss-Jordan method).where A= $\begin{vmatrix} 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \end{vmatrix}$.		
	UNIT-III		
	FUNCTIONS OF SINGLE AND SEVERAL VARIABI	LES	
	Part – A (Short Answer Questions)		~~~~
1	Discuss the applicability of Rolle's theorem for any function f(x) in interval [a,b].	Apply	CBSC103.10
2	Discuss the applicability of Lagrange's mean value theorem for any function $f(x)$ in interval [a,b].	Apply	CBSC103.10
3	Discuss the applicability of Cauchy's mean value theorem for any function $f(x)$ in interval [a,b].	Apply	CBSC103.10
4	Interpret Rolle's theorem geometrically.	Remember	CBSC103.10
5	Interpret Lagrange's mean value theorem geometrically.	Understand	CBSC103.10
6	Given an example of function that is continuous on [-1, 1] and for which	Understand	CBSC103.10
	mean value theorem does not hold.		
7		Apply	CBSC103.10
-	mean value theorem does not hold. Using Lagrange's mean value theorem, find the value of C for $f(x) = \log x$ in (1, e).	Apply	
8	mean value theorem does not hold. Using Lagrange's mean value theorem, find the value of C for $f(x) = \log x$ in (1, e). Explain why mean value theorem does not hold for $f(x) = x^{2/3}$ in [-1,1]	Apply Understand	CBSC103.10
-	mean value theorem does not hold.Using Lagrange's mean value theorem, find the value of C for $f(x) = \log x$ in $(1, e)$.Explain why mean value theorem does not hold for $f(x) = x^{2/3}$ in [-1,1]Find the region in which $f(x) = 1 - 4x - x^2$ is increasing using mean value	Apply	
8	mean value theorem does not hold. Using Lagrange's mean value theorem, find the value of C for $f(x) = \log x$ in (1, e). Explain why mean value theorem does not hold for $f(x) = x^{2/3}$ in [-1,1] Find the region in which $f(x) = 1 - 4x - x^2$ is increasing using mean value theorem.	Apply Understand Understand	CBSC103.10 CBSC103.10
8	mean value theorem does not hold.Using Lagrange's mean value theorem, find the value of C for $f(x) = \log x$ in $(1, e)$.Explain why mean value theorem does not hold for $f(x) = x^{2/3}$ in [-1,1]Find the region in which $f(x) = 1 - 4x - x^2$ is increasing using mean value theorem.If $f'(x) = 0$ throughout an interval [a, b], using mean value theorem show	Apply Understand	CBSC103.10
8	mean value theorem does not hold. Using Lagrange's mean value theorem, find the value of C for $f(x) = \log x$ in (1, e). Explain why mean value theorem does not hold for $f(x) = x^{2/3}$ in [-1,1] Find the region in which $f(x) = 1 - 4x - x^2$ is increasing using mean value theorem.	Apply Understand Understand	CBSC103.10 CBSC103.10

12		Understand	CBSC103.12
12	Given $u = \sin\left(\frac{x}{y}\right)$, $x = e^t$ and $y = t^2$. Find $\frac{du}{dt}$ as a function of t.	Onderstand	CBSC105.12
13		Understand	CBSC103.13
	If $x = \frac{u^2}{v}$, $y = \frac{v^2}{v}$, find the value of $\frac{\partial(u, v)}{\partial(x, y)}$		
14	Analyze the value of c in the interval [3, 7] for the function	Understand	CBSC103.10
	$f(x) = e^{x}, g(x) = e^{-x}$		
15	If $x = u(1 - v)$, $y = uv$, find the value of J' .	Understand	CBSC103.13
16	Explain the sufficient condition for the function $f(x, y)$.	Remember	CBSC103.13
17	If $x = u(1 + v)$, $y = v(1 + u)$ then find the value of $\frac{\partial(x, y)}{\partial(u, v)}$	Understand	CBSC103.13
18	Write the condition for the function $f(x,y)$ to be functionally dependent.	Understand	CBSC103.13
19	Discuss whether the Rolle's theorem can be applied for $f(x) = \tan x$ in	Understand	CBSC103.10
	$\begin{bmatrix} 0, \pi \end{bmatrix}$		
20	Define a saddle point for the function of $f(x, y)$.	Remember	CBSC103.14
	Part - B (Long Answer Questions)		
1	Verify Rolle's theorem for the function $f(x) = e^{-x} \sin x$ in the interval	Understand	CBSC103.10
	$[0,\pi].$		
2	Verify Rolle's theorem for the functions in $\log\left(\frac{x^2 + ab}{x(a+b)}\right)$ in the interval	Understand	CBSC103.10
	[a,b], a > 0, b > 0.		
3	Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in the	Understand	CBSC103.10
	interval [0,4].		
4	If a <b, <math="" prove="" that="">\frac{b-a}{1+b^2} < Tan^{-1}b - Tan^{-1}a < \frac{b-a}{1+a^2} using Lagrange's</b,>	Understand	CBSC103.10
	Mean value theorem and hence deduce the following.		
	$(i)\frac{\pi}{4} + \frac{3}{25} < Tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$		
	$\frac{5\pi + 4}{2} < Tan^{-1}2 < \frac{\pi + 2}{2}$		
	(ii) 20 4		
5	Using mean value theorem prove that $\tan x > x$ in $0 < x < \pi / 2$.	Understand	CBSC103.10
6	Find value of the C using Cauchy's mean value theorem for	Understand	CBSC103.10
	$f(x) = \sqrt{x} \& g(x) = \frac{1}{\sqrt{x}}$ in [a,b] where 0 < a < b		
7	Verify Cauchy's mean value theorem for $f(x) = x^2 \& g(x) = x^3$ in [1,2] and find the value of c.	Understand	CBSC103.10
8	Find the maximum value of the function xyz when $x + y + z = a$.	Understand	CBSC103.14
9	If $u = x^2 - y^2$, $v = 2xy$ where $x = r \cos \theta$, $y = r \sin \theta$ then show that	Understand	CBSC103.13
	$\frac{\partial(u,v)}{\partial(u,v)} = 4r^3$		
	$\frac{1}{\partial(r,\theta)} = 47$		

10	If $x = e^r \sec \theta$, $y = e^r \tan \theta$ Prove that $\frac{\partial(x, y)}{\partial(r, \theta)} \frac{\partial(r, \theta)}{\partial(x, y)} = 1$.	Understand	CBSC103.13
11	Find the maxima and minima of the function $f(x, y) = x^3y^2$ (1-x-y).	Understand	CBSC103.14
12	If $x = \frac{u^2}{v}$, $y = \frac{v^2}{u}$ then find the Jacobian of the function u and v with respect to x and y .	Understand	CBSC103.1
13	i) If $x = u(1 - v)$, $y = uv$ then prove that $JJ'=1$. ii) If $x + y^2 = u$, $y + z^2 = v$, $z + x^2 = w$ find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	Understand	CBSC103.13
14	Show that the functions $u = x + y + z, v = x^{2} + y^{2} + z^{2} - 2xy - 2yz - 2xz$ and $w = x^{3} + y^{3} + z^{3} - 3xyz$ are functionally related.	Understand	CBSC103.13
15	If $x = u$, $y = tanv$, $z = w$, then prove that $\frac{\partial (x, y, z)}{\partial (u, v, w)} = u \sec^2 v$	Understand	CBSC103.13
16	Show that the functions $u = e^x \sin y$, $v = e^x \cos y$ are not functionally related.	Understand	CBSC103.13
17	Find the maximum and minimum of the function $f(x, y) = \sin x + \sin y + \sin (x + y)$	Understand	CBSC103.14
18	Find the maximum and minimum values of $f(x, y) = x^{3} + 3xy^{2} - 3x^{2} - 3y^{2} + 4$	Understand	CBSC103.14
19	Prove that $u = x + y + z$, $v = xy + yz + zx$, $w = x^2 + y^2 + z^2$ are functionally dependent.	Understand	CBSC103.13
20	Examine the function $\sin x + \sin y + \sin(x + y)$ for extreme values for $0 \le x \le \pi$, $0 \le y \le \pi$.	Understand	CBSC103.13
	Part - C (Problem Solving and Critical Thinking Questi	ions)	<u> </u>
1	Verify Rolle's theorem for the function $f(x) = (x - a)^m (x - b)^n$ where m, n are positive integers in [a, b].	Understand	CBSC103.10
2	Using mean value theorem, for $0 < a < b$, prove that $1 - \frac{a}{b} < \log \frac{b}{a} < \frac{b}{a} - 1$ and hence show that $\frac{1}{a} < \log \frac{6}{a} < \frac{1}{a}$.	Understand	CBSC103.10
3	$\frac{6}{5} \frac{5}{5}$ Find the maxima value of $u = x^2 y^3 z^4$ with the constrain condition	Understand	CBSC103.14
	2x + 3y + 4z = a		
4	Find the point of the plane $x + 2y + 3z = 4$ that is closed to the origin.	Understand	CBSC103.14
5	Find three positive numbers whose sum is 100 and whose product is maximum.	Apply	CBSC103.14
6	A rectangular box open at the top is to have volume of 32 cubic ft . Find the dimensions of the box requiring least material for its construction.	Apply	CBSC103.14
7	Find the value of the largest rectangular parallelepiped that can be inscribed	Understand	CBSC103.14

		1	
	in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.		
	Find the stationary points of $U(x, y) = \sin x \sin y \sin (x + y)$ where	Understand	CBSC103.14
8	$0 < x < \pi, 0 < y < \pi$ and find the maximum value of the function U.		
9	Divide 24 into three parts such that the continued product of the first, square of the second and cube of the third is maximum.	Apply	CBSC103.14
10	If $u = x + 3y^{2} + z^{3}$, $v = 4x^{2}yz$, $w = 2z^{2} - xy$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at	Understand	CBSC103.13
	(1,-1,0). UNIT-III		
	HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS AND THE		TIONS
	Part - A (Short Answer Questions)		
1		Understand	CBSC103.15
1	Write the solution of the $\frac{d^3 y}{dx^3} - 3 \frac{dy}{dx} + 2 y = 0$ Write the solution of the $(4D^2-4D+1)y=100$	Understand	СБЗС103.15
2	Write the solution of the $(4D^2-4D+1)y=100$	Understand	CBSC103.16
3	Fine the particular integral of $\frac{1}{(D^2 - 1)}x$	Understand	CBSC103.16
4	Solve the differential equation $\frac{d^3 y}{dx^3} + y = 0$	Understand	CBSC103.15
5	Solve the differential equation $(D^2 + a^2)y = 0$	Remember	CBSC103.15
6	Find the particular value of $\frac{1}{(D-3)}x$	Understand	CBSC103.16
7	Find the particular value of $\frac{1}{(D-2)(D-3)}e^{2x}$	Understand	CBSC103.16
8	Solve the differential equation $(D^4 - 2D^3 - 3D^2 + 4D + 4)y = 0$	Understand	CBSC103.15
9	Write the particular values of $\frac{1}{D^2 + a^2} \cos ax$ and $\frac{1}{D^2 + a^2} \sin ax$	Understand	CBSC103.16
10	Find the particular integral of $(D^2 - 3D + 2)y = \cos 3x$	Understand	CBSC103.16
11	Write the particular values of $\frac{1}{D^2 + 4} x \sin 2x$	Understand	CBSC103.16
12	Find the particular integral of $(1+D)y=xe^x$	Understand	CBSC103.16
13	Find the Wronskian of the differential equation $y'' + \omega y = 0$	Understand	CBSC103.16
14	Explain the method of variation of parameter.	Understand	CBSC103.16
15	Express the general solution of the differential equation $(D^2 + 16)y = \sin 4x$ without solving.	Understand	CBSC103.16
16	Find the particular integral of $(D^2 + 2D)y = x \cos x$	Understand	CBSC103.16

17	The general solution of the differential equation $y'' + y' - 2y = 0$ is	Understand	CBSC103.16
	$y = c_1 e^x + c_2 e^{-2x}$. Then determine the solution by applying the conditions		
	y(0) = 4, y'(0) = 1		
18	Define Wronskian of the functions.	Understand	CBSC103.16
19	Write the differential equation of LR and LCR circuits.	Apply	CBSC103.17
20	Mention two applications of higher order differential equations.	Understand	CBSC103.17
	Part – B (Long Answer Questions)		
1	Solve the differential equation $(D^2 + 3D + 2)y = 2\cos(2x + 3) + 2e^x + x^2$	Understand	CBSC103.16
2	Solve the differential equation $D^2 (D^2 + 4)y = 96x^2 + \sin 2x - k$	Understand	CBSC103.16
3	Solve the differential equation $(D^2 - 2D + 1)y = x^2 - \sin 2x + 3$	Understand	CBSC103.16
4	Solve the differential equation $(D^2 + 2D^2 + 1)y = x^2$	Understand	CBSC103.16
5	Solve the differential equation $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$	Understand	CBSC103.16
6	Solve the differential equation $(D^2 + 1)y = \sin x \sin 2x + e^x x^2$	Understand	CBSC103.16
7	Solve the differential equation $(D^3 + 1)y = 3 + 5e^x$	Understand	CBSC103.16
8	Solve the differential equation $(D^2 - 3D + 2)y = \cos hx$	Understand	CBSC103.16
9	Solve the differential equation $(D^2 - 4)y = 2\cos^2 x$	Understand	CBSC103.16
10	Solve the differential equation $(D^2 + 9)y = \cos 3x + \sin 2x$	Understand	CBSC103.16
I		<u> </u>	
11	By using method of variation of parameters solve $y'' + y = x \cos x$.	Understand	CBSC103.16
12	By using method of variation of parameters solve $(D^2 + 4)y = \sec 2x$	Understand	CBSC103.16
13			
	Solve the differential equation $(D^3 - 4D^2 - D + 4)y = e^{3x}cos2x$	Understand	CBSC103.16
	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of	Understand Understand	CBSC103.16 CBSC103.16
	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters.	Understand	CBSC103.16
15	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of	Understand Understand	CBSC103.16 CBSC103.16
15	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters.	Understand	CBSC103.16
15	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$	Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16
15 16	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$	Understand Understand	CBSC103.16 CBSC103.16
15 16 17	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$ Solve the differential equation $(D^2 + 4)y = x sin x$	Understand Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16
15 16 17	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$ Solve the differential equation $(D^2 + 4)y = x sin x$ Apply the method of variation parameters to solve $(D^2 - 2D)y = e^x sin x$	Understand Understand Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16
15 16 17 18 19	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$ Solve the differential equation $(D^2 + 4)y = x sin x$ Apply the method of variation parameters to solve $(D^2 - 2D)y = e^x sin x$ Solve the differential equation $(D^2 + 3D + 2)y = e^{e^x}$	Understand Understand Understand Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16
15 16 17 18 19	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$ Solve the differential equation $(D^2 + 4)y = x sin x$ Apply the method of variation parameters to solve $(D^2 - 2D)y = e^x sin x$ Solve the differential equation $(D^2 + 3D + 2)y = e^{e^x}$ Solve the differential equation $(D^2 - 5D + 6)y = x cos x cos 2x$ Solve the differential equation $(D^2 + 1)y = \frac{1}{1 + sin x}$ by method variation of parameters.	Understand Understand Understand Understand Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16
15 16 17 18 19	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$ Solve the differential equation $(D^2 + 4)y = x sin x$ Apply the method of variation parameters to solve $(D^2 - 2D)y = e^x sin x$ Solve the differential equation $(D^2 + 3D + 2)y = e^{e^x}$ Solve the differential equation $(D^2 - 5D + 6)y = x cos x cos 2x$ Solve the differential equation $(D^2 + 1)y = \frac{1}{1 + sin x}$ by method variation of	Understand Understand Understand Understand Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16
15 16 17 18 19 20	Solve the differential equation $(D^2 + 3D + 2)y = e^x$ by the method of variation of parameters. Solve the differential equation $(D^2 - 4D + 4)y = x^2 sinx + e^{2x} + 3$ Solve the differential equation $(D^2 + 4)y = x sin x$ Apply the method of variation parameters to solve $(D^2 - 2D)y = e^x sin x$ Solve the differential equation $(D^2 + 3D + 2)y = e^{e^x}$ Solve the differential equation $(D^2 - 5D + 6)y = x cos x cos 2x$ Solve the differential equation $(D^2 + 1)y = \frac{1}{1 + sin x}$ by method variation of parameters.	Understand Understand Understand Understand Understand Understand	CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16 CBSC103.16

3	Solve the differential equation $(D^2 + 9) y = cos3x$	Understand	CBSC103.16
4	Solve the differential equation $(D-1)^2 (D^2 + 1)y = e^x$	Understand	CBSC103.16
5		Understand	CBSC103.16
	Solve the differential equation $(D^4 + 1)y = \sin x$	ondorstand	0250105.110
06	Apply the method of variation parameters to solve $(D^2 + a^2)y = \tan ax$	Apply	CBSC103.16
07	If a voltage of 20 cos5t is applied to a series circuit consisting of 10 ohm	Apply	CBSC103.17
0.0	resister and 2 Henry inductor, determine the current at any time t.	A 1	CD0C102.17
08	An inductor of 2 henries, resistor of 16 ohms and capacitor of 0.02m, farads are connected in series with a battery of e.m.f $E = 100 \text{ sin}3t$. At $t = 0$, the charge on the capacitor and current in the circuit are zero. Find the charge and current at $t > 0$.	Apply	CBSC103.17
09	A Circuit consists of an inductance of 2 henrys, a resistance of 4 ohms and Capacitance of 0.05 farads. If $q = i = 0$ at $t = 0$, (a) find q(i) and i(t) when there is a constant e.m.f of 100 volts (b) find state solutions.	Apply	CBSC103.17
10	A circuit consist of inductance of 0.05 henries, a resistance of 20 ohms, a	Apply	CBSC103.17
	condenser of capacitance 100 microfarads and an e.m.f of $E = 100$ volts. Find I and Q, given the initial conditions $Q = 0$, $I = 0$ when $t = 0$.		
	UNIT-IV		
	MULTIPLE INTEGRALS		
	Part – A (Short Answer Questions)		
1	Evaluate the double integral $\int_0^2 \int_0^x y dy dx$.	Understand	CBSC103.18
2	Evaluate the double integral $\int_0^{\pi} \int_0^{a \sin \theta} d\theta$.	Understand	CBSC103.18
3	Evaluate the double integral $\int_0^3 \int_0^1 xy (x + y) dx dy$.	Understand	CBSC103.18
4	Find the value of double integral $\int_{1}^{2} \int_{1}^{3} xy^2 dx dy$.	Understand	CBSC103.18
5	Find the value of triple integral $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx dy dz$.	Understand	CBSC103.18
6	Evaluate the double integral $\int_{0}^{2} \int_{0}^{x} y dy dx$.	Understand	CBSC103.18
7	Evaluate the double integral $\int_{0}^{\frac{\pi}{2}} \int_{-1}^{1} x^2 y^2 dx dy.$	Understand	CBSC103.18
8	Evaluate the double integral $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$.	Understand	CBSC103.18
9	Evaluate the double integral $\int_0^{\infty} \int_0^{\frac{\pi}{2}} e^{-r^2} r d\theta dr$.	Understand	CBSC103.18
10	Evaluate the double integral $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r dr d\theta$.	Understand	CBSC103.18
11	State the formula to find area of the region using double integration in Cartesian form.	Understand	CBSC103.20
12	Find the volume of the tetrahedron bounded by the coordinate planes and	Understand	CBSC103.20

	the plane $x+y+z=1$.		
13	State the formula to find volume of the region using triple integration in Cartesian form.	Understand	CBSC103.18
14	Find area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using double integration.	Understand	CBSC103.20
15	State the formula to find area of the region using double integration in polar form.	Understand	CBSC103.20
16	Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.	Apply	CBSC103.20
17	Find the area of the curve $r=2a\cos\theta$ using double integration in polar coordinates.	Apply	CBSC103.20
18	Find the area enclosed between the parabola $y=x^2$ and the line $y=x$.	Apply	CBSC103.20
19	Find the area of the curve $r=2asin\theta$.	Apply	CBSC103.20
20	Find area of the circle $x^2+y^2=a^2$.	Apply	CBSC103.20
	Part – B (Long Answer Questions)		
1	Evaluate the triple integral $\int_{0}^{1} \int_{0}^{1-z^{1-y-z}} \int_{0}^{xyzdxdydz} xyzdxdydz.$	Understand	CBSC103.18
2	Evaluate the double integral $\int \int r^2 \cos \theta dr d\theta$.	Understand	CBSC103.18
3	Evaluate the double integral $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^{2} + y^{2}) dx dy.$	Understand	CBSC103.18
4	Evaluate the double integral $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy.$	Understand	CBSC103.18
5	Evaluate the double integral $\int_{0}^{1} \int_{0}^{\pi/2} r \sin \theta d\theta dr$.	Understand	CBSC103.18
	By changing the order of integration evaluate the double integral $\int_0^1 \int_{x^2}^{2-x} xy dx dy$.	Understand	CBSC103.19
7	Evaluate the double integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2} + y^{2}) dy dx.$	Understand	CBSC103.18
	Evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dx dy dz.$	Understand	CBSC103.18
9	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$.	Understand	CBSC103.18
10	Find the value of $\iint xy dx dy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$	Understand	CBSC103.18
11	Evaluate the double integral using change of variables $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy.$	Understand	CBSC103.19

12		Understand	CBSC103.20
	Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and		
12	the coordinate planes by triple integration.	I I a de met e a d	CDSC102.20
13	By transforming into polar coordinates Evaluate $\iint \frac{x^2 y^2}{x^2 + y^2} dx dy$ over the	Understand	CBSC103.20
	annular region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ with		
	b > a.		
14	Find the area of the region bounded by the parabola $y^2 = 4ax$ and $x^2 = 4ay$.	Understand	CBSC103.20
15	Evaluate $\iint r^3 dr d \theta$ over the area included between the circles $r = 2 \sin \theta$	Understand	CBSC103.18
16	and $r = 4 \sin \theta$. Using triple integration find the volume of the sphere $x^2+y^2+z^2=a^2$.	Apply	CBSC103.18
		11.2	
17	Find the area of the cardioid $r = a(1+\cos\theta)$.	Understand	CBSC103.20
18	Find the area of the region bounded by the curves $y = x^3$ and $y = x$.	Understand	CBSC103.20
19	Evaluate $\iiint_{y} dxdydz$ where v is the finite region of space formed by the	Understand	CBSC103.20
	planes $x=0, y=0, z=0$ and $2x+3y+4z=12$.		
20	Find the area bounded by curves $xy=2,4y=x^2$ and the line $y=4$.	Understand	CBSC103.20
	Part – C (Problem Solving and Critical Thinking)		
1	Evaluate $\int_0^a \int_{\frac{x}{a}}^{\frac{x}{a}} (x^2 + y^2) dy dx$ by changing to polar coordinates.	Understand	CBSC103.18
2	Evaluate $\iiint_{R} (x + y + z) dz dy dx$ where R is the region bounded by the plane	Understand	CBSC103.18
	x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.		
3	Evaluate $\iint x^2 dx dy$ over the region bounded by hyperbola	Understand	CBSC103.20
	xy = 4, y = 0, x = 1, x = 4.		
4	Find the area bounded by curves $xy=2, 4y=x^2$ and the line $y=4$.	Understand	CBSC103.20
5	Evaluate the double integral $\int_{0}^{2} \int_{0}^{x} e^{(x+y)} dy dx$.	Understand	CBSC103.18
6	Evaluate by converting $\int_{0}^{a} \int_{1}^{\sqrt{a^{2}-x^{2}}} (x^{2} + y^{2}) dy dx$ to polar co-ordinates.	Understand	CBSC103.18
7	Find the volume of tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	Understand	CBSC103.20
8	Using double integral, find area of the cardioid $r = a(1-\cos\theta)$.	Understand	CBSC103.18
9	Evaluate the area of $\iint r^3 dr d \theta$ over the region included between the circles	Apply	CBSC103.20
10	$r = \sin \theta$, $r = 4 \sin \theta$. If R is the region bounded by the planes x=0,y=0,z=1 and the cylinder $x^{2} + y^{2} = 1$, evaluate $\iint_{\pi} xyzdxdydz$.	Understand	CBSC103.18

	UNIT-V			
	VECTOR CALCULUS Part - A (Short Answer Questions)			
1	Define gradient of scalar point function.	Remember	CBSC103.21	
2	Define divergence of vector point function.	Remember	CBSC103.21	
3	Define curl of vector point function.	Remember	CBSC103.21	
4	State Laplacian operator.	Understand	CBSC103.21	
5	Find curl \overline{f} where $\overline{f} = \text{grad} (x^3 + y^3 + z^3 - 3xyz)$.	Understand	CBSC103.21	
6	Find the angle between the normal to the surface $xy=z^2$ at the points (4, 1, 2) and (3,3,-3).	Understand	CBSC103.21	
7	Find a unit normal vector to the given surface $x^2y+2xz = 4$ at the point (2,-2,3).	Understand	CBSC103.21	
8	If \bar{a} is a vector then prove that grad $(\bar{a}, \bar{r}) = \bar{a}$.	Understand	CBSC103.21	
9	Define irrotational vector and solenoid vector of vector point function.	Remember	CBSC103.21	
10	Show that $\nabla (f(r)) = \frac{\overline{r}}{r} f'(r).$	Understand	CBSC103.21	
11	Prove that $f = yzi + zxj + xyk$ is irrotational vector.	Understand	CBSC103.21	
12	Show that $(x+3y)i+(y-2z)j+(x-2z)k$ is solenoid.	Understand	CBSC103.21	
13	Show that curl (grad φ) =0 where φ is scalar point function.	Understand	CBSC103.21	
14	State Stokes theorem of transformation between line integral and surface integral.	Understand	CBSC103.24	
15	Prove that div curl $\overline{f}=0$ where $\overline{f} = f_1 \overline{i} + f_2 \overline{j} + f_3 \overline{k}$.	Understand	CBSC103.21	
16	Define line integral on vector point function.	Remember	CBSC103.23	
17	Define surface integral of vector point function \overline{F}	Remember	CBSC103.23	
18	Define volume integral on closed surface S of volume V.	Remember	CBSC103.23	
19	State Green's theorem of transformation between line integral and double integral.	Understand	CBSC103.24	
20	State Gauss divergence theorem of transformation between surface integral and volume integral.	Understand	CBSC103.24	
	Part - B (Long Answer Questions)			
1	Evaluate $\int_{C} \overline{f} d\overline{r}$ where $\overline{f} = 3xyi - y^2j$ and C is the parabola y=2x ² from	Understand	CBSC103.23	
	points (0, 0) to (1, 2).	TT 1 / 1	CD0C102.02	
2	Evaluate $\iint \overline{F}.d\overline{s}$ if $\overline{F} = yzi + 2y^2 j + xz^2 k$ and S is the Surface of the	Understand	CBSC103.23	
	cylinder $x^2+y^2=9$ contained in the first octant between the planes $z = 0$ and $z = 2$.			
3	Find the work done in moving a particle in the force field	Understand	CBSC103.23	
	$\overline{F} = (3x^2)i + (2zx - y)j + zk$ along the straight line from(0,0,0) to (2,1,3).			
4	Find the circulation of	Understand	CBSC103.23	
	$\overline{F} = (2x - y + 2z)\overline{i} + (x + y - z)\overline{j} + (3x - 2y - 5z)\overline{k}$ along the circle			
	$x^2 + y^2 = 4$ in the xy plane.			

5	Varify Cause divergence theorem for the vector point function	Understand	CDSC102.24
3	Verify Gauss divergence theorem for the vector point function $F = (x^3-yz)i - 2yxj + 2zk$ over the cube bounded by $x = y = z = 0$ and	Understand	CBSC103.24
	x = y = z = a.		
6	Verify Gauss divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the	Understand	CBSC103.24
	region of first octant of the cylinder $y^2 + z^2 = 9$ and $x = 2$.		
7	Verify Green's theorem in the plane for $\int (x^2 - xy^3) dx + (y^2 - 2xy) dy$	Understand	CBSC103.24
	$\int_{c} (x - xy) f(x - xy)$		
	where C is a square with vertices (0,0),(2,0),(2,2),(0,2).		
8	Applying Green's theorem evaluate $\iint_{C} (y - \sin x) dx + \cos x dy$ where C is the	Understand	CBSC103.24
	plane triangle enclosed by $y = 0$, $y = \frac{2x}{\pi}$, and $x = \frac{\pi}{2}$.		
9	Apply Green's Theorem in the plane for $\int (2x^2 - y^2) dx + (x^2 + y^2) dy$ where	Understand	CBSC103.24
	C is a is the boundary of the area enclosed by the x-axis and upper half of		
	the circle $x^2 + y^2 = a^2$.		
10	Verify Stokes theorem for $f = (2x - y)i - yz^2 j - y^2 zk$ where S is the	Understand	CBSC103.24
	upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ bounded by the		
11	projection of the xy plane. Verify Stokes theorem for $\overline{f} = (x^2 - y^2)\overline{i} + 2xy\overline{j}$ over the box bounded by the	Understand	CBSC103.24
11	planes x=0, x=a, y=0,y=b.	Onderstand	CD5C105.24
12	Find the directional derivative of the function $\phi = xy^2 + yz^3$ at the point	Understand	CBSC103.21
	P(1,-2,-1) in the direction to the surface $x \log z - y^2 = -4 at$ (-1,2,1).		
	F(1,-2,-1) in the direction to the surface $x log z - y = -4 ut (-1,2,1).$		
13	If $\overline{F} = 4xz\overline{i} - y^2\overline{j} + yz\overline{k}$ evaluate $\int \overline{F} \cdot nds$ where S is the surface of the cube x	Understand	CBSC103.23
	s S	Chacistana	0000100.20
	= 0, x = a, y = 0, y = a, z = 0, z = a. If $\overline{f} = (5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}$ evaluate $\int \overline{f} d\overline{r}$ along the curve C in xy-		
14	If $f = (5xy - 6x^2)i + (2y - 4x)j$ evaluate $\int \overline{f} d\overline{r}$ along the curve C in xy-	Understand	CBSC103.23
	plane $y = x^3$ from (1,1) to (2,8).		
15	Evaluate the line integral $\int (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the	Understand	CBSC103.23
	square formed by lines $x = \pm 1$, $y = \pm 1$.		
16	If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ show that $\nabla r^n = nr^{n-2}\vec{r}$.	Understand	CBSC103.21
17	Evaluate by Stokes theorem $\int (e^x dx + 2y dy - dz)$ where c is the curve	Understand	CBSC103.24
	c		
10	$x^2+y^2=9$ and $z=2$.	Undanata	CDSC102.24
18	Verify Stokes theorem for the function $x^2 \overline{i} + xy \overline{j}$ integrated round the square	Understand	CBSC103.24
10	in the plane z=0 whose sides are along the line x=0,y=0,x=a, y=a.	Undonstand	CDSC102.04
19	Evaluate by Stokes theorem $\int_{C} (x + y)dx + (2x - z)dy + (y + z)dz$ where C is	Understand	CBSC103.24
	the boundary of the triangle with vertices $(0,0,0),(1,0,0),(1,1,0)$.		
20	Verify Green's theorem in the plane for $\int (3x^2 - 8y^2) dx + (4y - 6xy) dy$	Understand	CBSC103.24
	c		
	where C is a region bounded by $y = \sqrt{x}$ and $y = x^2$.		

	Part – C (Problem Solving and Critical Thinking)		
1	Verify Gauss divergence theorem for $\overline{f} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$ taken over the	Understand	CBSC103.24
2	cube bounded by x=0,x=a, y=0,y=b, z=0,z=c. Find the work done in moving a particle in the force field	Understand	CBSC103.23
	$\overline{F} = (3x^2)i + (2zx - y)j + zk$ along the curve defined by		
	$x^{2} = 4y$, $3x^{3} = 8z$ from x=0 and x=2.		
3	Show that the force field given by $\overline{F} = 2xyz^{3}i + x^{2}z^{3}j + 3x^{2}yz^{2}k$ is conservative. Find the work done in moving a particle from (1,-1,2) to (3,2,-1) in this force field.	Understand	CBSC103.23
4	Show that the vector $(x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational and find its scalar potential function.	Understand	CBSC103.21
5	Using Gauss divergence theorem evaluate $\iint \overline{F}.d\overline{s}$, for the $\overline{F} = y\overline{i} + x\overline{j} + z^2\overline{k}$ for the cylinder region S given by $x^2 + y^2 = a^2$, $z = 0$ and $z = b$.	Understand	CBSC103.24
6	Find the directional derivative of $\phi(x, y, z) = x^2 yz + 4xz^2$ at the point (1,-2,-1) in the direction of the normal to the surface $f(x, y, z) = x \log z - y^2$ at (-1,2,1).	Understand	CBSC103.21
7	Using Green's theorem in the plane evaluate $\int_{c} (2xy - x^{2})dx + (x^{2} + y^{2})dy$ where C is the region bounded by $y = x^{2}$ and $y^{2} = x$.	Apply	CBSC103.24
8	Applying Green's theorem evaluate $\int_{C} (xy + y^2) dx + x^2 dy$ where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$.	Apply	CBSC103.24
9	Verify Green's Theorem in the plane for $\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy$	Understand	CBSC103.24
10	where C is the region bounded by x=0, y=0 and x + y=1. Verify Stokes theorem for $\overline{F} = (y - z + 2)i + (yz + 4)j - xzk$ where S is the surface of the cube x=0, y=0, z=0 and x=2,y=2,z=2 above the xy-plane.	Understand	CBSC103.24

Prepared By: Ms. L Indira, Associate Professor

HOD, FRESHMAN ENGINEERING