

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal,Hyderabad-500043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MATHEMATICAL	MATHEMATICAL TRANSFORM TECHNIQUES							
Course Code	AHSB11	AHSB11							
Programme	B.Tech	B.Tech							
Semester	II	П							
Course Type	Core	Core							
Regulation	IARE - R18	IARE - R18							
Course Structure	Lectures	Tutorials	Practical	Credits					
	3	1	-	4					
Course Coordinator	Dr. S Jagadha, Assoc	ciate Professor							
Course Faculty	Ms. L Indira, Assista Ms. C Rachana, Assi	Dr. P. Srilatha, Associate Professor Ms. L Indira, Assistant Professor Ms. C Rachana, Assistant Professor Ms. P Rajani, Assistant Professor							

COURSE OBJECTIVES (COs):

The	course should enable the students to:
Ţ	Enrich the knowledge solving algebra and transcendental equations and understanding Laplace
1	transforms.
II	Determine the unknown values of a function by interpolation and applying inverse Laplace transforms
III	Fitting of a curve and determining the Fourier transform of a function
IV	Solving the ordinary differential equations by numerical techniques
V	Formulate to solve Partial differential equation

COURSE OUTCOMES (COs):

CO 1	Analyzing real roots of algebraic and transcendental equations by Bisection method, False
	position and Newton -Raphson method. Applying Laplace transform and evaluating given
	functions using shifting theorems, derivatives, multiplications of a variable and periodic
	function.
	Tunction.
CO 2	Understanding symbolic relationship between operators using finite differences. Applying
	Newton's forward, Backward, Gauss forward and backward for equal intervals and Lagrange's
	method for unequal interval to obtain the unknown value. Evaluating inverse Laplace transform
	using derivatives, integrals, convolution method. Finding solution to linear differential equation
CO 3	Applying linear and nonlinear curves by method of least squares. Understanding Fourier
	integral, Fourier transform, sine and cosine Fourier transforms, finite and infinite and inverse of
	above said transforms.
CO 4	Using Numericals methods such as Taylors, Eulers, Modified Eulers and Runge-Kutta methods
	to solve ordinary differential equations.
CO 5	Analyzing order and degree of partial differential equation, formation of PDE by eliminating
	arbitrary constants and functions, evaluating linear equation b Lagrange's method. Applying the
	heat equation and wave equation in subject to boundary conditions.

COURSE LEARNING OUTCOMES (CLOs):Students, who complete the course, will have demonstrated the asking to do the following:

AHSB11.01	Evaluate the real roots of algebraic and transcendental equations by Bisection method, False position and Newton -Raphson method.
AHSB11.02	Apply the nature of properties to Laplace transform and inverse Laplace transform of the given function.
AHSB11.03	Solving Laplace transforms of a given function using shifting theorems.
AHSB11.04	Evaluate Laplace transforms using derivatives of a given function.
AHSB11.05	Evaluate Laplace transforms using multiplication of a variable to a given function.
AHSB11.06	Apply Laplace transforms to periodic functions.
AHSB11.07	Apply the symbolic relationship between the operators using finite differences.
AHSB11.08	Apply the Newtons forward and Backward, Gauss forward and backward Interpolation method to determine the desired values of the given data at equal intervals, also unequal intervals.
AHSB11.09	Solving Laplace transforms and inverse Laplace transform using derivatives and integrals.
AHSB11.10	Evaluate inverse of Laplace transforms and inverse Laplace transform by the method of convolution.
AHSB11.11	Solving the linear differential equations using Laplace transform.
AHSB11.12	Understand the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems
AHSB11.13	Ability to curve fit data using several linear and non linear curves by method of least squares.
AHSB11.14	Understand the nature of the Fourier integral.
AHSB11.15	Ability to compute the Fourier transforms of the given function.
AHSB11.16	Ability to compute the Fourier sine and cosine transforms of the function
AHSB11.17	Evaluate the inverse Fourier transform, Fourier sine and cosine transform of the given function.
AHSB11.18	Evaluate finite and infinite Fourier transforms
AHSB11.19	Understand the concept of Fourier transforms to the real-world problems of circuit analysis, control system design
AHSB11.20	Apply numerical methods to obtain approximate solutions to Taylors, Eulers, Modified Eulers
AHSB11.21	Runge-Kutta methods of ordinary differential equations.
AHSB11.22	Understand the concept of order and degree with reference to partial differential equation
AHSB11.23	Formulate and solve partial differential equations by elimination of arbitrary constants and functions
AHSB11.24	Understand partial differential equation for solving linear equations by Lagrange method.
AHSB11.25	Learning method of separation of variables.
AHSB11.26	Apply solving the heat equation and wave equation in subject to boundary conditions
AHSB11.27	Understand the concept of partial differential equations to the real-world problems of electromagnetic and fluid dynamics

S. No	QUESTIONS	Blooms Taxonomy	Course Outcomes	Course Learning
		level	(COs)	Outcomes (CLOs
	MODULE - I			(CLOS
	ROOT FINDING TECHNIQUES AND LAPLACE	TRANSFO	RMS	
1	Part - A (Short Answer Questions)	D l	CO 1	AUCD11 01
2	Define an Algebraic equation. Define an Transcendental equation .	Remember Remember	CO 1	AHSB11.01 AHSB11.01
3	Write the Bisection formulae to find the real root of algebraic equation in an interval.	Remember	CO 1	AHSB11.01
4	Write the Regula-Falsi formula to find the real root of algebraic equation in an interval .	Remember	CO 1	AHSB11.01
5	Write the Newton-Raphson formulae to find the real root of algebraic equation in an interval.	Remember	CO 1	AHSB11.01
6	By using Regula-Falsi method, find an approximate root of the equation $x^4 - x - 10 = 0$ that lies between 1.8 and 2. Carry out two	Remember	CO 1	AHSB11.01
	approximations			
7	Apply Newton -Raphson method to find an approximate root of the	Understand	CO 1	AHSB11.01
	equation $x^3 - 3x - 5 = 0$, which lies near x=2 carry out two approximations.			
8	Find a real root of the transcendental equation $xe^x = 2$ using method of False Position carry out three approximations.	Understand	CO 1	AHSB11.01
9	Explain bisection method.	Understand	CO 1	AHSB11.01
10	Find a real root of the transcendental equation xe^x - $cosx = 0$ using Newton	Understand	CO 1	AHSB11.01
	-Raphson method carry out three approximations.			
11	Define Laplace Transform, and write the sufficient conditions for the	Remember	CO 1	AHSB11.02
11	existence of Laplace Transform.	Remember	CO 1	71110211.02
12	Find the Laplace transform of $(\sin t - \cos t)^3$	Remember	CO 1	AHSB11.02
13	Verify whether the function $f(t)=t^3$ is exponential order and find its transform.	Understand	CO 1	AHSB11.02
14	Find the Laplace transform of Dirac delta function	Remember	CO 1	AHSB11.02
15	Find the Laplace transform of	Understand	CO 1	AHSB11.02
	$ \sin \omega t , t \ge 0$			
16		Understand	CO 1	AHSB11.02
16 17	$ \sin \omega t , t \ge 0$ State and prove Linearity property of Laplace transform. Find $L\{g(t)\}$ where $g(t) = \begin{cases} \cos(t - \frac{2\pi}{3}), & \text{if } t > \frac{2\pi}{3} \\ 0, & \text{if } t < \frac{2\pi}{3} \end{cases}$	Understand Understand	CO 1 CO 1	AHSB11.02 AHSB11.02
17	State and prove Linearity property of Laplace transform.	Understand Remember	CO 1	AHSB11.02 AHSB11.02
17 18 19	State and prove Linearity property of Laplace transform. Find $L\{g(t)\}$ where $g(t) = \begin{cases} \cos(t-\frac{2\pi}{3}), & \text{if } t > \frac{2\pi}{3} \\ 0, & \text{if } t < \frac{2\pi}{3} \end{cases}$ Find the Laplace transform of Sinht Verify the initial and final value theorem for $e^{-t}(t+1)^2$	Understand Remember Remember	CO 1 CO 1 CO 1	AHSB11.02 AHSB11.02 AHSB11.03
17	State and prove Linearity property of Laplace transform.	Understand Remember Remember	CO 1	AHSB11.02 AHSB11.02 AHSB11.03
17 18 19 20	State and prove Linearity property of Laplace transform.	Remember Remember Understande	CO 1 CO 1 CO 1 rstan@O 1 AH	AHSB11.02 AHSB11.03 AHSB11.03 SBHISB911.03
18 19 20	State and prove Linearity property of Laplace transform.	Remember Remember Understånde	CO 1 CO 1 CO 1 rstanCO 1 AH	AHSB11.02 AHSB11.03 AHSB11.01 AHSB11.01
17 18 19 20	State and prove Linearity property of Laplace transform.	Remember Remember Understande	CO 1 CO 1 CO 1 rstan@O 1 AH	AHSB11.02 AHSB11.03 AHSB11.03 SBHISB911.03

4	Find a real root of transcendental equation $\log x = \cos x$ using method	Remember	CO 1	AHSB11.01
5	of False position correct up to four decimals. Find a real root of transcendental equation $3x - \cos x - 1 = 0$ using Newton Raphson method correct up to four decimals.	Remember	CO 1	AHSB11.01
6	Find a real root of the transcendental equation xtanx+1=0 by Newton- Raphson method correct up to four decimals.	Remember	CO 1	AHSB11.01
7	Find the real root algebraic equation x^3 - x- 4=0 by Bisection method correct up to four decimals.	Apply	CO 1	AHSB11.01
8	Find the real root of algebraic equation $3x = e^x$ by Bisection method correct up to two decimals.	Remember	CO 1	AHSB11.01
9	Find the square root of 26 up to 4 decimal places by using Newton-Raphson method.	Remember	CO 1	AHSB11.01
10	Find by using Bisection method the real root of the equation $xe^x - 3 = 0$ carry out three approximations.	Remember	CO 1	AHSB11.01
11	Find the Laplace transform of $f(t) = (t+3)^2 e^t$	Remember	CO 1	AHSB11.03
12	Find $L\left\{\frac{\cos 4t \sin 2t}{t}\right\}$	Remember	CO 1	AHSB11.05
13	Using Laplace transform evaluate $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$	Understand	CO 1	AHSB11.04
14	Find $L\{\cosh at \sin bt\}$	Understand	CO 1	AHSB11.01
15	Find $L\left\{e^{-3t}\sinh 3t\right\}$	Understand	CO 1	AHSB11.05
16	Find $L\{t\sin 3t\cos 2t\}$	Understand	CO 1	AHSB11.05
17	Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{t}$	Understand	CO 1	AHSB11.05
18	Find the Laplace transform of $te^{2t} \sin 3t$	Remember	CO 1	AHSB11.05
19	Find the Laplace transform of $\left\{\frac{1-\cos a t}{t}\right\}$	Remember	CO 1	AHSB11.06
20	Find the Laplace transform of $\cos t \cos 2t \cos 3t$	Remember	CO 1	AHSB11.06
	Part - C (Problem Solving and Critical Thinking Quo	estions)		
1	Derive a formula to find a cube root of N using Newton-Raphson method and hence find cube root of 15.	Understand	CO 1	AHSB11.01
2	Find reciprocal of real number 18 using Newton-Raphson method.	Remember	CO 1	AHSB11.01
3	Find a root of the equation 4sinx=e ^x using Bisection method correct up to four decimals.	Remember	CO 1	AHSB11.01
4	Find a root of the equation $2x$ -log $x=7$ using the False Position method correct up to three decimals.	Remember	CO 1	AHSB11.01
5	Find a root of the equation $x+\log_{10} x=3.375$ using Newton-Raphson method.	Remember	CO 1	AHSB11.01
	TT' d d C C 1 ' ' C 1 1 T 1 TP C	Lindon II. 1		ICIA LICEDII 1 0.4
6	Using the theorem on transforms of derivatives, find the Laplace Transform the following functions (a) e ^{at} (b) cosat (c) t sin at	n omderstande:	rstand O I AI	18BHSBII 104
7	Find the Laplace transform of (a) $e^{-3t} \cosh 4t \sin 3t$ (b) $(t+1)^2 e^t$	Understand	CO 1	AHSB11.04
8	Find the Laplace transform of (a) $t^2e^t \sin 4t$ (b) $t\cos^2 t$	Understand	CO 1	AHSB11.04
9	Find the Laplace transform of $\int_{0}^{t} \frac{e^{t} \sin t}{t} dt$	Apply	CO 1	AHSB11.05
		ı		1

10	Find the L{f(t)} and L{f'(t)} for the function (a) $\frac{\sin t}{t}$ (b) $e^{-5t} \sin t$	Understand	CO 1	AHSB11.04
	MODULE-II	IGEODE EG		
	INTERPOLATION AND INVERSE LAPLACE TRAN	SFORMS		
1	Part – A (Short Answer Questions)	Remember	CO 2	AHSB11.07
2	Define the term Interpolation. State Newton's forward interpolation formula for equal length of	Remember	CO 2	AHSB11.07 AHSB11.08
2	intervals.	Kemember	CO 2	Ansbii.06
3	State Newton's backward interpolation formula for equal length of intervals.	Remember	CO 2	AHSB11.08
4	State Gauss forward interpolation formula for equal length of intervals and state Lagrange's Interpolation formulae for unequal intervals	Remember	CO 2	AHSB11.08
5	Define average operator and shift operator.	Remember	CO 2	AHSB11.07
6	Prove the relationship between forward difference operator and shift operator.	Remember	CO 2	AHSB11.07
7	Prove the relationship between backward difference operator and shift operator.	Remember	CO 2	AHSB11.07
8	Prove the relationship between forward and backward difference operator.	Remember	CO 2	AHSB11.07
9	Construct a forward difference table for $f(x)=x^3+5x-7$ if $x=-1,0,1,2,3,4,5$	Understand	CO 2	AHSB11.07
10	For what values of p the Gauss forward and backward interpolation formula is used to interpolate?	Understand	CO 2	AHSB11.08
			~~ •	1777771100
11	Find the inverse Laplace transform of $\frac{s}{s^2 - a^2}$	Understand	CO 2	AHSB11.09
12	Find the inverse Laplace transform of $\frac{1}{s} \cos \frac{1}{s}$	Understand	CO 2	AHSB11.09
13	Find the inverse Laplace transform of $\left\{ \frac{2s-5}{4s^2+25} + \frac{4s-18}{9-s^2} \right\}$	Understand	CO 2	AHSB11.09
14	Find the inverse Laplace transform of $\frac{e^{-2s}}{(s+4)^3}$	Remember	CO 2	AHSB11.09
15	Find $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$	Understand	CO 2	AHSB11.09
16	Find $L^{-1}\left\{\frac{s^{2}-2s-3}{(s+1)^{2}(s^{2}+1)}\right\}$	Understand	CO 2	AHSB11.09
17	Find the inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$	Understand	CO 2	AHSB11.09
18	Find the inverse Laplace transform $\frac{s}{(s^2+1)(s^2+9)(s^2+25)}$	Understand	CO 2	AHSB11.09
19	Find the inverse Laplace transform of $\log \left(\frac{s^2 + 4}{s^2 + 9} \right)$	Understand	CO 2	AHSB11.09
20	e^{-2s}	Understand	CO 2	AHSB11.09
	Find the inverse Laplace transform $\frac{1}{s^2 + 4s + 5}$			-
1	Part - B (Long Answer Questions) Find y(2.8) for the following data using Newton's forward interpolation formula. X 2.4 3.2 4.0 4.8 5.6	Apply	CO 2	AHSB11.08
	f(x) 22 17.8 14.2 38.3 51.7			

2	Find f(42) from the following data using Newton's Backward	Apply	CO 2	AHSB11.08
	interpolation formula.			
	x 20 25 30 35 40 45			
	y 354 332 291 260 231 204			
3	The population of a town in the decimal census was given below. Estimate the population for the year 1895	Apply	CO 2	AHSB11.08
	Year (x) 1891 1901 1911 1921 1931 Population (y) 46 66 81 93 101			
4	Find y(25) given that y(20)=24, y(24)=32, y(28)=35, y(32)=40 using Gauss forward interpolation formula.	Remember	CO 2	AHSB11.08
5	Find by Gauss's backward interpolating formula the value of y at	Remember	CO 2	AHSB11.08
	x = 1936 using the following table			
	x 1901 1911 1921 1931 1941 1951			
	y 12 15 20 27 39 52			
6	Find by Gauss's backward interpolating formula the value of y at $x = 14$	Remember	CO 2	AHSB11.08
	using the following table		-	
	x 0 5 10 15 20 25			
	y 7 11 14 18 24 32			
7	Find f (1.6) using Lagrange's formula from the following table.	Apply	CO 2	AHSB11.08
,	x 1.2 2.0 2.5 3.0	1 ippij	CO 2	71115111.00
	f(x) 1.36 0.58 0.34 0.20			
8	Find y(5) given that y(0)=1, y(1)=3, y(3)=13 and y(8) =123 using	Remember	CO 2	AHSB11.08
	Lagrange's interpolation formula.			
9	Find y(10), given that $y(5)=12$, $y(6)=13$, $y(9)=14$, $y(11)=16$ using	Remember	CO 2	AHSB11.08
10	Lagrange's interpolation formula. Fit a curve which passes through the points (0, 18), (1, 10), (3,-18) and (6, 90) using Lagrange's formula.	Remember	CO 2	AHSB11.08
	(0, >0) word Englange of formalian			
11	Find the inverse Laplace transform of $\frac{2S^2 - 6S + 5}{S^3 - 6S^2 + 11S - 6}$	Understand	CO 2	AHSB11.09
12	Find the inverse Laplace transform $\frac{1}{(s^3+1)s^3}$	Understand	CO 2	AHSB11.09
13	Find the inverse Laplace transform $\frac{(s+1)e^{-\pi s}}{s^2 + s + 1}$	Understand	CO 2	AHSB11.09
14	Find the inverse Laplace transform of $\tan^{-1} \left(\frac{a}{s} \right) + \cot^{-1} \left(\frac{s}{b} \right)$	Understand	CO 2	AHSB11.09
15	Find the inverse Laplace transform $\frac{s^2 + 2s - 4}{(s^2 + 9)(s - 5)}$	Understand	CO 2	AHSB11.09
16	Solve the following initial value problem by using Laplace transform	Apply	CO 2	AHSB11.11
	$(D^2 + 2D + 5)y = e^{-t} \sin t$, $y(0) = 0$, $y'(0) = 1$			
17	Solve the following initial value problem by using Laplace transform	Understand	CO 2	AHSB11.11
	$y'' + 9y = \cos 2t$, $y(0) = 1$, $y(\frac{\pi}{2}) = -1$			

18	Solve t	he follo	wing in	itial value	problem	sform	Understand	CO 2	AHSB11.11		
	y'''-2	2y''+5	y'=0,	y(0) = 1	, y'(0) =	=0, y''(0)=	1				
19	Solve the	he follo	wing in	itial value	problem	by using La	place trans	sform	Apply	CO 2	AHSB11.11
	D^3	$D^{2} + 4$	4D - 4	y = 686	$e^x \sin 2x$	x, y = 1, I	Dy = -19),			
	1	= -37									
20	Solve t	he follo	wing in	itial value	problem	n by using La	place trans	sform	Understand	CO 2	AHSB11.11
	dy	$\sum_{t=1}^{t}$	vdt = c	in + .v(0							
	dt	$2y+\int_{0}^{2}$	yai — s	$\sin t$, $y(0)$) — 1						
			Pa	rt – C (F	roblem	Solving an	d Critica	l Thinkin	l		
1				(x)=168, on formul		5 at x=1, 7, 1	5 respecti	vely using	Remember	CO 2	AHSB11.08
2	Prove t	hat ∆[x)(x+2)(x+3) 1	by taking	difference	Apply	CO 2	AHSB11.07
3	as unity Find y(7. 1.6) fro	m the fo	ollowing	data usin	g Newton's f	orward int	terpolation	Remember	CO 2	AHSB11.08
	formula	I		-	1	1					
	X	1	1.4	1.8	2.2	 -					
4	Jeing (3.49	4.82	5.96	6.5	lula find y(24) from the	following	Remember	CO 2	AHSB11.08
-	table	Jauss De	uck wai		101111	uia iiiu y(24) Hom the	Tonowing	Kemember	CO 2	7415571.00
	X		0	5	10	15	20	25			
5	Compu	to f(0.2)	7 for the	11	14	18 nge's interpol	24	32	Apply	CO 2	AHSB11.08
3	х		0	data usii	1	3		iuia.	Apply	CO 2	Ansbir.06
		у	1		3	49					
6	F: 1.1		T 1			s+3			Understand	CO 2	AHSB11.09
				ce transfo	s^2	-10s + 29					
7	Find th	e invers	e transf	Form of —	$\frac{s+2}{2}$				Understand	CO 2	AHSB11.09
				S							
8	Find th	e invers	e I anla	ce transfo	ormS	$\frac{s^2 + s - 2}{s + 3(s - 2)}$			Understand	CO 2	AHSB11.09
			_		s(s)	+3)(s-2)					
9	Apply	convolu	tion the	orem to e	valuate	$L^{-1}\left\{\frac{1}{(s^2+a^2)^{1/2}}\right\}$	s^2	}	Apply	CO 2	AHSB11.10
	117					$ (s^2 + a)$	$a^{2})(s^{2}+a^{2})$	$b^2)$			
10		_			. 1	1			Apply	CO 2	AHSB11.10
	Apply	convolu	tion the	orem to e	valuate	$L^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$	$\overline{4)^2}$				
					I	MODULE-1	Ш				
			CUF			AND FOUR			MS		
1	State fl	ne norm	al egua			hort Answe t line y = a +		U118 <i>)</i>	Understand	CO 3	AHSB11.13
2	State tl	ne norm	al equa			l degree equa			Understand	CO 3	AHSB11.13
	y = a +	bx + cx	ζ-								

$y = ae^{bx}$ 4 State the normal equations to fit the power curve of the form $y = ab^x$ Remember	O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13
4 State the normal equations to fit the power curve of the form $y = ab^x$ Remember CC State $y = a + \frac{b}{a}$ is a curve then write normal equations to find the constants a and b. 6 If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$ Remember by least squares method? 7 If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$? Remember CC State $y = ax^b$ by the method of least squares to the following data. 8 Fit a curve of the form $y = ax^b$ by the method of least squares to the following data. 9 Fit a straight line to the form $y = a + bx$ by the method of least squares for the following data 10 Fit a curve $y = ae^{bx}$ to the data 10 Fit a curve $y = ae^{bx}$ to the data 11	O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13
If $y = a + \frac{b}{x}$ is a curve then write normal equations to find the constants a and b. 6 If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$ Remember by least squares method? 7 If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$? Remember CO Fit a curve of the form $y = ax^b$ by the method of least squares to the following data.	O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13
If $y = a + \frac{b}{x}$ is a curve then write normal equations to find the constants a and b. 6 If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$ Remember by least squares method? 7 If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$? Remember CO Fit a curve of the form $y = ax^b$ by the method of least squares to the following data.	D 3 AHSB11.13 D 3 AHSB11.13 D 3 AHSB11.13 D 3 AHSB11.13
by least squares method? 7 If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$? Remember 8 Fit a curve of the form $y = ax^b$ by the method of least squares to the following data.	O 3 AHSB11.13 O 3 AHSB11.13 O 3 AHSB11.13
7 If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$? Remember CO 8 Fit a curve of the form $y = ax^b$ by the method of least squares to the following data. x 1 2 3	O 3 AHSB11.13 O 3 AHSB11.13
Fit a curve of the form $y = ax^b$ by the method of least squares to the following data. X 1 2 3	O 3 AHSB11.13 O 3 AHSB11.13
Fit a curve of the form $y = ax$ by the method of least squares to the following data. x 1 2 3 y 2.98 4.26 5.21 Fit a straight line to the form $y = a + bx$ by the method of least squares for the following data x 0 5 10 y 12 15 17 The fit a curve $y = ae^{bx}$ to the data Apply Compared to the following data A	O 3 AHSB11.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
for the following data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
for the following data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O 3 AHSB11.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O 3 AHSB11.13
x 0 2 4	
11 Write the Fourier sine integral and cosine integral. Remember CO	O 3 AHSB11.14
	O 3 AHSB11.15
13 Write the infinite Fourier transform of f(x). Remember CC	O 3 AHSB11.18
14 Write the properties of Fourier transform of f(x) Remember CO	
15 Find the Fourier sine transform of $f(x) = x$ Understand CO	
, ,	O 3 AHSB11.15
	O 3 AHSB11.18
Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$ Understand CO	O 3 AHSB11.18
Find the inverse finite sine transform $f(x)$ if $F_S(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ Understand CO	O 3 AHSB11.18
20 State the Modulation property of Fourier transforms. Understand CC	O 3 AHSB11.15
Part – B (Long Answer Questions)	
	O 3 AHSB11.13
x 1 3 5 7 9	
y 1.5 2.8 4.0 4.7 6	
	O 3 AHSB11.13
following data:	
following data: x 1 2 3 4 5	
following data: X	
following data: X	O 3 AHSB11.13
following data: x	O 3 AHSB11.13
following data: x	O 3 AHSB11.13
following data: x	O 3 AHSB11.13

	X	0	5	10	15	20	25				
	у	12	15	17	22	24	30				
5				quares, f owing dat		nd degree	polynomia	al	Understand	CO 3	AHSB11.13
	x y	3.07	4 12.85	6 31.4	8 7 57.3						
6	Fit a se	cond de						ta by method	Understand	CO 3	AHSB11.13
	of least	1	2	3	4						
7	Using the y=ae ^{bx}	6 he methor fits the f	11 od of lea followin	st square g data:	s find the	e constant	ts a and b s	such that	Apply	CO 3	AHSB11.13
	X	0	0.5	1	1.5	2	2.5]			
	у	0.10	0.45	2.15	9.15	40.35	180.75				
8		a relatio squares.		form y=	ab^ for tl	he follow	ing data b	y the method	Understand	CO 3	AHSB11.13
	x y	8.3	3 15.4	33.1	5 65.2	6 127.4					
9	_		gree curv				of least squ	iares	Understand	CO 3	AHSB11.13
	X V	23	5.2	3	7	16.5	5 29.4	4			
10	Obtain	a relatio									
	least sq							•			
	X	2	3	4		5	6	•			
						5 65.2	6 127.4				
11	x y Find the	2 8.3 he Fouri	15 er transf	orm of f(3.1 x) define	65.2 ed by			Understand	CO 3	AHSB11.15
11	x y Find the	2 8.3 he Fouri	15 er transf	5.4 3	3.1 x) define	65.2 ed by			Understand	CO 3	AHSB11.15
11	Find the following $f(x)$	$\begin{vmatrix} 2 \\ 8.3 \end{vmatrix}$ he Fourier $= \begin{cases} 1, \\ 0, \end{vmatrix}$	er transf $ x < a$ $ x > a$	orm of f(3.1 x) define	ed by			Understand	CO 3	AHSB11.15
11	Find the following $f(x)$	$\begin{vmatrix} 2 \\ 8.3 \end{vmatrix}$ the Fourier $= \begin{cases} 1, \\ 0, \\ \frac{1}{p} \end{cases}$	er transf $ x < a$ $ x > a$ $ x > a$ $ x = a$	orm of f(and he. $\int_{-\infty}^{\infty} \frac{\sin a}{a}$	3.1 x) define nce eval p.cos p	ed by aluate $\frac{\partial x}{\partial p}$	127.4	$x^{2}, x \le 1$ $ x > 1$	Understand	CO 3	AHSB11.15 AHSB11.15
	Find the find the function $f(x)$	$\begin{vmatrix} 2 \\ 8.3 \end{vmatrix}$ the Fourier $= \begin{cases} 1, \\ 0, \\ \frac{1}{p} \end{cases}$	er transfer $ x < a$ $ x > a$ $ dp.and$	orm of f(and he. $\int_{-\infty}^{\infty} \frac{\sin a}{a}$	3.1 x) define nce eval p.cos p	ed by aluate $\frac{\partial x}{\partial p}$	127.4				
	Find the Heavisian Find the Hea	$\begin{vmatrix} 2 \\ 8.3 \end{vmatrix}$ the Fourier $= \begin{cases} 1, \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p} \end{cases}$ the Fourier $= \begin{cases} 1 \\ 0, \\ \frac{1}{p$	er transfer $ x < a$ $ x > a$ $ dp.and$ er transfer transfer	orm of f(and head $\int_{-\infty}^{\infty} \frac{\sin a}{a}$ orm of f(x	x) define nce eva up.cos p p	ed by aluate $\frac{\partial x}{\partial p}$ d by $f(x)$	127.4	$ x^2, x \le 1$ $ x > 1$			
	Find the Head (i	the Fourier $= \begin{cases} 1, \\ 0, \end{cases}$ $= \begin{cases} 1 & \text{on } p \end{cases}$ The Fourier ence evaluation of the following states are supported by the following states are su	er transformation $ x < a$ $ x > a$	orm of f(and head $\int_{-\infty}^{\infty} \frac{\sin a}{a}$ orm of f(x	3.1 x) define $\frac{x}{p} \cos p$ x) define $\frac{x}{2} dx$ (ed by aluate $\frac{\partial x}{\partial p} dp$ d by $f(x)$	$x = \begin{cases} 1 - x \\ 0 \end{cases}$	$ x^2, x \le 1$ $ x > 1$			
12	Find the Head of the Find the	the Fourier $= \begin{cases} 1, \\ 0, \end{cases}$ $= \begin{cases} 1 & \text{on } p \end{cases}$ The Fourier ence evaluate ence evaluate encounter ence evaluate evaluate	er transformation $ x < a$ $ x > $	orm of f(and here $\int_{-\infty}^{\infty} \frac{\sin a}{\cos a} \cos a$ orm of f(form of f(for	3.1 x) define $\frac{x}{p} \cos p$ $\frac{x}{2} dx$ (x) define $\frac{x}{2} dx$	ed by aluate $\frac{\partial x}{\partial p} dp$ d by $f(x)$ ed by	$x = \begin{cases} 1 - x \\ 0 \end{cases}$	$ x \le 1$ $ x > 1$ $ x > 1$	Apply	CO 3	AHSB11.15
12	Find the following function $f(x)$ Find the function $f(x)$	the Fourier $= \begin{cases} 1, \\ 0, \end{cases}$ $= \begin{cases} 1 & \text{on } p \end{cases}$ The Fourier ence evaluate ence evaluate encounter ence evaluate evaluate	er transformation $ x < a$ $ x > $	orm of f(and here $\int_{-\infty}^{\infty} \frac{\sin a}{\cos a} \cos a$ orm of f(form of f(for	3.1 x) define $\frac{x}{p} \cos p$ $\frac{x}{2} dx$ (x) define $\frac{x}{2} dx$	ed by aluate $\frac{\partial x}{\partial p} dp$ d by $f(x)$ ed by	$x = \begin{cases} 1 - x \\ 0 \end{cases}$ $\cos x - \sin x^3$	$ x \le 1$ $ x > 1$ $ x > 1$	Apply	CO 3	AHSB11.15

14	Find the Fourier sine Transform of $e^{- x }$ and hence evaluate	Understand	CO 3	AHSB11.17
	$\int_0^\infty \frac{x \sin mx}{1+x^2} dx$			
15	Find the Fourier cosine transform of (a) $e^{-ax} \cos ax$ (b) $e^{-ax} \sin ax$	Apply	CO 3	AHSB11.17
16	Using Fourier integral show that	Apply	CO 3	AHSB11.14
	$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{\left(\lambda^2 + a^2\right)\left(\lambda^2 + b^2\right)} d\lambda, a > 0, b > 0$			
17	Using Fourier Integral, show that $\int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \cdot \sin \lambda x d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } 0 < x < \pi \\ 0, & \text{if } x > \pi \end{cases}$	Understand	CO 3	AHSB11.14
18	Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in $(0, \pi)$.	Understand	CO 3	AHSB11.1 7
19	Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$	Apply	CO 3	AHSB11.17
	and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$			
20	Find the finite Fourier sine and cosine transform of f(x), defined by $f(x) = \left(1 - \frac{x}{\pi}\right)^2, \text{ where } 0 < x < \pi$	Understand	CO 3	AHSB11.17
	Part - C (Problem Solving and Critical Thinking Que	estions)		
1	Describe the concept of method of least squares to fit a curve for the given data.	Understand	CO 3	AHSB11.13
2	Derive the Normal equations of a straight line by method of least squares.	Understand	CO 3	AHSB11.13
3	Derive the Normal equations of a second degree parabola method of least squares.	Understand	CO 3	AHSB11.13
4	If $y = ax + b$ is a straight line that fits the following data by the method of least squares find a and b.	Understand	CO 3	AHSB11.13
5	Fit a straight line to the form $y=ax^2+bx+c$ for the following data by method of least squares:	Understand	CO 3	AHSB11.13
	x 0 5 10 15 20 25			
	y 12 15 17 22 24 30			
6	Find the Fourier cosine transform of the function f(x) defined by	Understand	CO 3	AHSB11.16
U	$f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x \ge a \end{cases}$	Shorsund		1115511.10

7	Find the Fourier sine transform of $f(x)$ defined by	Understand	CO 3	AHSB11.16
,		Chacistana	CO 3	Alisbii.io
	$f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0, & x \ge a \end{cases}$			
	$\int_{0}^{\infty} \int_{0}^{\infty} (x)^{-1} dx$			
8	Find the Fourier sine and cosine transform of	Understand	CO 3	AHSB11.16
	$\begin{cases} x, & for \ 0 < x < 1 \end{cases}$			
	$f(x) = \begin{cases} 2-x & \text{for } 1 < x < 2 \end{cases}$			
	$f(x) = \begin{cases} x, & for & 0 < x < 1 \\ 2 - x, & for & 1 < x < 2 \\ 0, & for & x > 2 \end{cases}$			
9	Find the finite Fourier sine and cosine transforms of	Understand	CO 3	AHSB11.16
	$f(x) = x(\pi - x) \text{ in } (0, \pi).$			
10	State and prove the properties of Fourier transforms	Understand	CO 3	AHSB11.15
	MODULE-IV			
	NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTI	AL EQUAT	IONS	
4	Part – A (Short Answer Questions)	D .	- CO 1	AHGD11.20
1	State the Taylor series formula to find the numerical solution of ordinary differential equation.	Remember	CO 4	AHSB11.20
2	State the Euler formula to find the numerical solution of ordinary	Remember	CO 4	AHSB11.20
	differential equation.			
3	State the modified Euler formula to find the numerical solution of ordinary differential equation.	Remember	CO 4	AHSB11.20
4	What is the difference between Euler and modified Euler formula to find the numerical solution of ordinary differential equation	Remember	CO 4	AHSB11.20
5	What are single step methods to find the numerical solution of ordinary	Remember	CO 4	AHSB11.20
	differential equation?			
6	What are multistep methods to find the numerical solution of ordinary differential equation?	Remember	CO 4	AHSB11.20
7	Using Taylor's series method find an approximate value of y at $x = 0.1$	Remember	CO 4	AHSB11.20
	given y(0)=1 for the differential equation $y' = 3x + y^2$			
8	Using Euler's method, solve $y' = y^2 + x$, $y(0)=1$ to find $y(0.1)$ and	Apply	CO 4	AHSB11.20
	y(0.2)			
9	Using Taylors series, method solve $y' = y^2 + x$, $y(0) = 1$ to find $y(0.1)$	Apply	CO 4	AHSB11.20
	and y (0.2)			
	• • •			
10	Using Euler's method, solve the differential equation from $\frac{dy}{dt} = 3x^2 + 1$,	Apply	CO 4	AHSB11.20
	for $x = 2$, $y(1) = 2$, taking step size $h = 0.5$.			
	101 A = 2, y(1) = 2,taking step size II = 0.3.			
11	State the second order Runge- Kutta method to find the numerical solution of ordinary differential equation.	Remember	CO 4	AHSB11.21
12	State the third order Runge- Kutta method to find the numerical solution	Remember	CO 4	AHSB11.21
	of ordinary differential equation.			
13	State the fourth order Runge- Kutta method to find the numerical solution of ordinary differential equation.	Remember	CO 4	AHSB11.21
14	What is the advantage of Runge- Kutta method over Taylors series method	Remember	CO 4	AHSB11.21
15	State the merits of Runge- Kutta method	Remember	CO 4	AHSB11.21
16	State the demerits of Runge- Kutta method	Remember	CO 4	AHSB11.21
17	Using Runge-Kutta method of second order, find y(0.2) where $y' = y - x$, y(0)=2, h = 0.2	Remember	CO 4	AHSB11.21
	y = x, $y(0)=2$, $y=0.2$			
				_ ·

18	Using Runge-Kutta method of third order, find y(0.2) where $10y' = y^2 + x^2$, y(0)=1, h = 0.1	Remember	CO 4	AHSB11.21
19	Using Runge-Kutta method, find y(0.2) where $y' = yx$, y(0) =1, h = 0.2	Remember	CO 4	AHSB11.21
20	Using Runge-Kutta method, find y(0.2) where $y' = y + x$, y(0) = 1,	Remember	CO 4	AHSB11.21
	b = 0.2			
	Part – B (Long Answer Questions)			
1	Using Taylor's series method find an approximate value of y at $x = 0.2$	Apply	CO 4	AHSB11.20
	for the differential equation $y' - 2y = 3e^x$, $y(0)=0$.			
2	Solve by Euler's method $y' + y = 0$ given $y(0) = 1$ and find $y(0.04)$	Understand	CO 4	AHSB11.20
	taking step size $h = 0.01$.			
3	Solve by Euler's method $y' = x + y$, $y(0) = 1$ and find the value of $y(0.3)$	Remember	CO 4	AHSB11.20
	taking step size $h = 0.1$. compare the result obtained by this method with			
	the result obtained by analytical methods			
4	Solve $y' = x^2 - y$, $y(0) = 1$, using Taylor's series method and compute	Remember	CO 4	AHSB11.20
	y(0.1), $y(0.2)$, $y(0.3)$ and $y(0.4)$ (correct to 4 decimal places).			
5	Using Euler's method, solve the differential equation from $\frac{dy}{dx} = xy$,	Remember	CO 4	AHSB11.20
6	for $x = 0.5$, $y(0) = 1$, taking step size $h = 0.1$. Using modified Euler's method, find the approximate value of x when	Apply	CO 4	AHSB11.20
O		Арргу	CO 4	Alisbii.20
	$x = 0.3$ given differential equation $\frac{dy}{dx} = x + y$ and $y(0) = 1$.			
7	State the merits of Taylors series method	Remember	CO 4	AHSB11.20
8	State the demerits of Taylors series method Using modified Euler's method, find the approximate value of y when	Apply Remember	CO 4 CO 4	AHSB11.20 AHSB11.20
	$x = 0.25$ given differential equation $\frac{dy}{dx} = 2xy$ and y (0) = 1.	Kemember	CO 4	Alisbii.20
10	Solve by Euler's method $y' = \frac{2y}{x}$ given $y(1) = 2$ and find $y(2)$	Apply	CO 4	AHSB11.20
4.4		D 1	GO 4	A 110D 11 21
11	Using Runge-Kutta method of fourth order, find $y(0.2)$ where $y' = 3x + 0.5y$, $y(0) = 1$, $h = 0.1$.	Remember	CO 4	AHSB11.21
12	Apply the 4 th order Runge-Kutta method to find an approximate value of	Apply	CO 4	AHSB11.21
	y when x=1.2 in steps of 0.1, given that $y' = x^2 + y^2$, $y(1)=1.5$			
13	Using Runge-Kutta method of second order, find $y(2.5)$ given the	Remember	CO 4	AHSB11.21
	· · ·			
	differential equation $\frac{dy}{dx} = \frac{x+y}{x}$, y(2) = 2, h = 0.25.			
14	Find y(0.1) and y(0.2) by Runge-Kutta method of 4^{th} order for the	Apply	CO 4	AHSB11.21
	differential equation $y' = xy + y^2$, $y(0) = 1$	•		
15	Using Runge-Kutta method of fourth order, find $y(0.2)$ given the	Apply	CO 4	AHSB11.21
	differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1, h = 0.2.			
16	Compute $y(0.1), y(0.2)$ by Runge-Kutta method of 4 th order for the	Apply	CO 4	AHSB11.21
10		Appry	CO 4	A113D11.21
1.7	differential equation $y' = x + x^2 y$, $y(0) = 1$	A 1	CO 4	AHOD11 21
17	Using Runge-Kutta method of fourth order, given the differential equation $\frac{dy}{dx} = x^2 + 0.25y^2, y(0) = -1 \text{ on } [0,0.5], h = 0.1.$	Apply	CO 4	AHSB11.21
	dx			

18	Compute y at $x = (0.2), (0.4), (0.6)$ by Runge-Kutta method for the	Apply	CO 4	AHSB11.21
	differential equation $y' = \frac{1}{1+x}$, $y(0) = 0$			
19	Compute $y(0.3)$ by Runge-Kutta method of 4^{th} order for the	Apply	CO 4	AHSB11.21
	differential equation $y' + y + y^2 x = 0$, $y(0) = 1$			
20	Using Runge-Kutta method of fourth order, find y when $x=1.1$,	Apply	CO 4	AHSB11.21
	given the differential equation $\frac{dy}{dx} = 3x + y^2$, $y(1) = 1.2$.			
	Part – C (Problem Solving and Critical Thinkin			
1	Using modified Euler's method find y (0.2) andy (0.4) given differential equation $y' = y + e^x$, y(0) = 0.	Understand	CO 4	AHSB11.20
2	Given the differential equation $\frac{dy}{dx} = -xy^2$, y(0) = 2. Computey(0.2) in steps of 0.1, using modified Euler's method.	Remember	CO 4	AHSB11.20
3	Solve the first order differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ and	Apply	CO 4	AHSB11.20
4	estimate y(0.1) using Euler's method(5 steps).	Damamhan	CO 4	AHSB11.20
4	Given $\frac{dy}{dx} = -y$ and $y(0) = 1$. Determine the values of y at	Remember	CO 4	Апэр11.20
	x = (0.01), (0.02), (0.03), (0.04) by Eulers method.			
5	Find y(4.4) by modified Eulers method given that $\frac{dy}{dx} = \frac{2-y^2}{5x}$,	Remember	CO 4	AHSB11.20
	y=1 when $x=1$.			
	W. D. W	D 1	GO 4	AMGD11 21
6	Using Runge-Kutta method find y(0.2) for the differential equation $\frac{dy}{dx} = y - x, y(0) = 1, \text{take h} = 0.2.$	Remember	CO 4	AHSB11.21
7	$\frac{dx}{dx}$ Apply the 4 th order Runge-Kutta method to find an approximate value of	T.T., danston d	CO 4	AHSB11.21
/	Apply the 4 order Runge-Rutta method to find an approximate value of y when $x = 1.2$ in steps of $h = 0.1$ given the differential equation $y' = x^2 + y^2$, $y(1)=1.5$	Understand		АПЗВ11.21
8	Using Runge-Kutta method find to solve $10 \frac{dy}{dx} = x^2 + y^2$, $y(0)=1$ for the interval $0 \le x \le 0.4$ with $h=0.1$	Understand	CO 4	AHSB11.21
9	Find $y(0.5), y(1), y(1.5), y(2)$ taking $h = 0.5$, given that $\frac{dy}{dx} = \frac{1}{y+1}$,	Understand	CO 4	AHSB11.21
	y(0) = 1			
10	Using Runge-Kutta method find y(0.8) for the differential equation	Understand	CO 4	AHSB11.21
	$\frac{dy}{dx} = \sqrt{x+y}$, y(0.4) = 0.41.			
	MODULE-V			
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS Part A (Short Angus Overtions)				
1	Part - A (Short Answer Questions) Define order and degree with reference to partial differential equation	Remember	CO 5	AHSB11.22
2	Form the partial differential equation by eliminate the arbitrary constants from $z = ax^3 + by^3$	Understand	CO 5	AHSB11.22
3	Form the partial differential equation by eliminating arbitrary function	Understand	CO 5	AHSB11.22

1		Understand	CO 5	AHSB11.23
4	Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$	Understand	CO 3	АПЗБ11.23
5	Form the partial differential equation by eliminating a and b from $log(az-1) = x + ay + b$	Understand	CO 5	AHSB11.22
6	Form the partial differential equation by eliminating the constants from	Apply	CO 5	AHSB11.22
	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where α is a parameter.			
7	Eliminate the arbitrary constants from $z=(x^2+a)(y^2+b)$	Understand	CO 5	AHSB11.22
8	Solve the partial differential equation $x(y-z)p+y(z-x)q=z(x-y)$.	Apply	CO 5	AHSB11.23
9	Solve $p+q=z$	Remember	CO 5	AHSB11.23
10	Solve $zp + yq = x$	Remember	CO 5	AHSB11.23
11	Define non-linear partial differential equation.	Remember	CO 5	AHSB11.22
12	Solve $xp + yq = 3z$	Remember	CO 5	AHSB11.23
13	Solve $px + qy = z$	Remember	CO 5	AHSB11.23
14	Solve $p+3q=5z+\tan(y-3x)$	Understand	CO 5	AHSB11.23
15	Solve $2p+3q=1$	Understand	CO 5	AHSB11.23
16	Solve $(x^2 + y^2 + z^2)p - 2xyq = -2xz$	Understand	CO 5	AHSB11.23
17	Solve $(1+y)p + (1+x)q = z$	Understand	CO 5	AHSB11.23
18	Solve $y^2 p - xyq = x(z-2y)$	Understand	CO 5	AHSB11.23
19	Write the wave one dimension equation	Remember	CO 5	AHSB11.26
20	Write the heat one dimension equation	Remember	CO 5	AHSB11.26
	Part - B (Long Answer Questions)			
1	Form the partial differential equation by eliminating arbitrary function from $f(x^2+y^2+z^2,z^2\text{-}2xy)\text{=}0$	Understand	CO 5	AHSB11.23
2	Form a partial differential equation by eliminating a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ Solve the partial differential equation	Apply	CO 5	AHSB11.23
3	Solve the partial differential equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$	Understand	CO 5	AHSB11.24
4	Solve the partial differential equation	Understand	CO 5	AHSB11.24
	$(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx.$			
5	Solve the partial differential equation $(mz-ny) p + (nx-lz)q = (ly-mx)$.	Understand	CO 5	AHSB11.24
6	Find the differential equation of all spheres whose centres lie on z-axis with a given radius r.	Understand	CO 5	AHSB11.22
7	Solve the partial differential equation $(x^2 - y^2 - yz)p + (x^2 - y^2 - zx)q = z(x - y).$	Apply	CO 5	AHSB11.24
8	Solve the partial differential equation $(x^2-y^2-z^2)p+2xyq = 2xz$	Understand	CO 5	AHSB11.24
9	Solve the partial differential equation $z(z^2 + xy)(px - qy) = x^4$	Understand	CO 5	AHSB11.24
10	Solve the partial differential equation $px-qy=y^2-x^2$	Understand	CO 5	AHSB11.24
11	Solve the partial differential equation $px^2 + qy^2 = z(x + y)$	Understand	CO 5	AHSB11.24
12	Solve by the method of separation of variables $2xz_x - 3yz_y = 0$	Understand	CO 5	AHSB11.25
12	Solve the partial differential equation $y^2zp + x^2zq = xy^2$	Understand	CO 5	AHSB11.24
13	Borve the partial differential equation y $zp + x zq - xy$			

15	Solve the partial differential equation $(x-a)p + (y-b)q + (c-z) = 0$	Understand	CO 5	AHSB11.24
16	Solve the partial differential equation $x(y^2-z^2)p-y(z^2+x^2)q=z(x^2+y^2)=z$	Understand	CO 5	AHSB11.24
17	Solve the partial differential equation $(x+y)(p-q)=z$	Understand	CO 5	AHSB11.24
18	Solve by the method of separation of variables $4u_x + u_y = 3u$ and	Understand	CO 5	AHSB11.25
	$u(o, y) = e^{-5y}$			
19	Solve by the method of separation of variables $3u_x + 2u_y = 0$ with	Understand	CO 5	AHSB11.25
	$u(x,0) = 4e^{-x}$			
20	Solve $(x-y)p + (y-x-z)q = z$	Understand	CO 5	AHSB11.24
	Part – C (Problem Solving and Critical Thinkin	g)		
1	Form the partial differential equation by eliminating arbitrary function $lx + my + nz = \emptyset(x^2 + y^2 + z^2)$	Understand	CO 5	AHSB11.22
2	Form the partial differential equation by eliminating arbitrary function $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} \left(\frac{z}{z} \right)$	Understand	CO 5	AHSB11.22
	$xy + yz + zx = f(\frac{z}{x+y})$			
3	Solve the partial differential equation $z(x - y) = px^2 - qy^2$	Understand	CO 5	AHSB11.22
4	Solve the partial differential equation	Understand	CO 5	AHSB11.24
	$(z^{2}-2yz-y^{2})p+(xy+xz)q=xy-zx.$ Solve the partial differential equation			
5		Understand	CO 5	AHSB11.24
	$(x^2 + y^2 + yz)p + (x^2 + y^2 - zx)q = z(x + y).$			
6	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$ by the method	Understand	CO 5	AHSB11.25
	of separation of variables.	TT 1 . 1	GO 5	AHGD11.05
7	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$.	Understand	CO 5	AHSB11.25
8	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t.	Apply	CO 5	AHSB11.26
9	Write the boundary conditions for a rectangular plate is bounded by the line $x=0$, $y=0$, $x=a$, and $y=b$ its surface are insulated the temperature along $x=0$ and $y=0$ are kept at 0^{0} C and the other are kept at 100^{0} C.	Understand	CO 5	AHSB11.26
10	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_0\sin^3\frac{\pi x}{l}$. If it is released from rest from this position, find the displacement(x,t).	Apply	CO 5	AHSB11.26