INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MECHANICS OF SOLIDS				
Course Code	AAEB04				
Programme	B.Tech				
Semester	III	AE			
Course Type	Core				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Mr. G S D Madhav Assistant Professor				
Course Faculty	Ms. Y Shwetha, Assistant Professor Mr. G S D Madhav Assistant Professor				

COURSE OBJECTIVES

The course will enable the students to:	
I	Understand the behavior of structure basic structural components under loading conditions.
II	Apply the shear force, bending moment and deflection methods to the beam in different load conditions.
III	Relate the bending and flexural stress solving methods to real time problems.
IV	Pertain the concept of buckling behavior of the columns along with eigen modes.
V	Discuss the equilibrium and compatibility conditions for two-dimensional and three-dimensional elastic bodies.

COURSE OUTCOMES (COs):

CO 1	To understand the basics of material properties, stress and strain.
CO 2	To apply knowledge of various kinds of beams for engineering applications.
CO 3	Ability to identify, formulates, and solves engineering \& real life problems.
CO 4	Ability to design and conduct experiments, as well as to analyze and interpret data
CO 5	Ability to design a component to meet desired needs within realistic constraints of safety.

TUTORIAL QUESTION BANK

MODULE-I
INTRODUCTION TO STRESSES \& STRAINS
Part - A (Short Answer Questions)

S. No	Question	Blooms Taxonomy Level	Course Outcome	Course Learning Outcome
1	Define Longitudinal strain and lateral strain.	Remember	CO 1	AAEB04.01
2	State Hooke's law	Remember	CO 1	AAEB04.01
3	Define Modular ratio, Poisson's ratio	Remember	CO 1	AAEB04.01
4	What is modulus of elasticity?	Remember	CO 1	AAEB04.01
5	Explain lateral strain with a neat sketch	Remember	CO 1	AAEB04.01
6	Write the relationship between bulk modulus, rigidity modulus and Poisson's Ratio	Remember	CO 1	AAEB04.01
7	Explain shear force in a beam with neat sketches	Remember	CO 1	AAEB04.01
8	What are the different types of beams? Differentiate between a point load and a uniformly distributed load.	Remember	CO 1	AAEB04.01
9	What is the maximum bending moment for a simply supported beam subjected to uniformly distributed load and where it occurs?	Remember	CO 1	AAEB04.01
10	Write the relation between bending moment, shear force and the applied load.	Remember	CO 1	AAEB04.01
11	Define Modular ratio, Poisson's ratio	Understand	CO 1	AAEB04.03
12	What is modulus of elasticity?	Remember	CO 1	AAEB04.04
13	Explain lateral strain with a neat sketch	Understand	CO 1	AAEB04.01
14	Write the relationship between bulk modulus, rigidity modulus and Poisson's Ratio	Remember	CO 1	AAEB04.02
15	Draw the stress-strain diagram for mild steel, brittle material and a ductile material and indicate the salient points	Understand	CO 1	AAEB04.03
16	What is Principle of Superposition?	Remember	CO 1	AAEB04.04
17	What is the procedure for finding the thermal stresses in a composite bar?	Remember	CO 1	AAEB04.01
18	Define Factor of Safety, working stress and allowable stress.	Remember	CO 1	AAEB04.02
19	Define Resilience. What is proof resilience?	Understand	CO 1	AAEB04.03
20	What is torsion? How polar modulus is related to torsion?	Understand	CO 1	AAEB04.04
Part - B (Long Answer Questions)				
1	Three sections of a bar are having different lengths and different diameters. The bar is subjected to an axial load P . Determine the total change in length of the bar. Take Young's modulus of different sections as same.	Understand	CO 1	AAEB04.01
2	Prove that the total extension of a uniformly tapering rod of diameters $D_{1} \& D_{2}$, when the rod is subjected to an axial load P is given by $\mathrm{dL}=4 \mathrm{PL} /\left(\pi \mathrm{E} \mathrm{D} \mathrm{D}_{1} \mathrm{D}_{2}\right)$ where L is total Length of the rod.	Understand	CO 1	AAEB04.01
3	Find an expression for the total elongation of a bar due to its own weight, when the bar is fixed at its upper end and hanging freely at the lower end.	Understand	CO 1	AAEB04.01
4	Find an expression for the total elongation of a uniformly tapering rectangular bar when it is subjected to an axial load P .	Remember	CO 1	AAEB04.01
5	Derive the relation between three elastic modulus.	Understand	CO 1	AAEB04.01
6	Define Volumetric Strain. Prove that the volumetric strain for a rectangular bar subjected to an axial load P in the direction of its length is given by $\boldsymbol{\varepsilon}_{\mathrm{V}}=(\delta 1 / 1)(1-2 \mu)$ Where $\mu=$ Poisson's Ratio and $\delta 1 / l=$ longitudinal strain.	Understand	CO 1	AAEB04.01

7	Derive an expression between modulus of elasticity and modulus of rigidity.	Understand	CO 1	AAEB04.01
8	Prove that the stress induced in the body when the load is applied with the impact is given by, $\alpha=\frac{P}{A}\left(1+\sqrt{1+\frac{2 A E h}{P \cdot L}}\right)$ $\mathrm{A}=$ cross-section area of the body $\mathrm{H}=$ height through which load falls $\mathrm{E}=$ modulus of rigidity $\mathrm{L}=$ length of the body	Understand	CO 1	AAEB04.01
9	Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.	Remember	CO 1	AAEB04.02
10	If the extension produced in a rod due to impact load is very small in comparison with the height through which the load falls, then the maximum stress induced in the body is given by $\sigma=\sqrt{\frac{2 E \cdot P \cdot h}{A \cdot L}}$	Understand	CO 1	AAEB04.01
11	Prove that the torque transmitted by the solid shaft when subjected to torsion is given by $T=\frac{\pi}{16} \tau D^{3}$	Understand	CO 1	AAEB04.01
12	Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{J}=\frac{\tau}{R}=\frac{C \theta}{L}$	Understand	CO 1	AAEB04.04
13	Find the expression for strain energy stored in a body due to torsion.	Understand	CO 1	AAEB04.02
14	A hollow shaft of external diameter D and internal diameter d is subjected to torsion. Prove that the strain energy stored is given by $U=\frac{\tau^{2}}{4 C D^{2}}\left(D^{2}+d^{2}\right) \times V$	Understand	CO 1	AAEB04.03
15	A solid shaft of 20 cm diameter is used to transmit torque. Find the maximum shaft transmitted by the torque if the maximum shear stresses induced in the shaft is $50 \mathrm{~N} / \mathrm{mm}^{2}$	Understand	CO 1	AAEB04.04
16	The shearing stress in a solid shaft is not to exceed $45 \mathrm{~N} / \mathrm{mm}^{2}$ when the torque transmitted $40000 \mathrm{~N}-\mathrm{m}$. Determine the minimum diameter of the shaft.	Understand	CO 1	AAEB04.01
17	Two shafts of same material and of same lengths are subjected to the same torque if the first shaft is of a solid circular section and the second shaft is of hollow circular section whose internal diameter is 0.7 times the outside diameter and the maximum shear stress developed in each shaft is same compare the weights of the shafts.	Remember	CO 1	AAEB04.02
18	Find the maximum shear stress induced in a solid circular shaft of diameter 20 cm when shaft transmit 187.5 KW at 2000 r.p.m.	Understand	CO 1	AAEB04.03
19	A solid shaft has to transmit 12.5 KW at 250 r.p.m taking allowable shear stress as $70 \mathrm{~N} / \mathrm{mm}^{2}$. Find suitable diameter for the shaft if maximum torque transmitted at each revolution exceeds the main by 20%.	Remember	CO 1	AAEB04.04

20	A bar of uniform cross-section A and length L hangs vertically, subjected to its own weight. Prove that the strain energy stored within the bar is given by $U=\frac{A \times p^{2} \times L^{3}}{6 E}$ Where $\mathrm{E}=$ Modulus of elasticity $\rho=$ weight per unit volume.	Understand	CO 1	AAEB04.01
Part - C (Problem Solving and Critical Thinking Questions)				
1	Find the minimum diameter of a steel wire with which a load of 3500 N can be raised so that the stress in the wire may not exceed $130 \mathrm{~N} / \mathrm{mm}^{2}$. For the size and the length of the middle portion if the stress there is $140 \mathrm{~N} / \mathrm{mm}^{2}$ and the total extension of the bar is 0.14 mm . take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	Understand	CO 1	AAEB04.01
2.	A copper rod 5 mm in diameter when subjected to a pull of 750 N extends by 0.125 mm over a gauge length of 327 mm . find the Young's Modulus for copper.	Understand	CO 1	AAEB04.01
3	A steel punch can operate at a maximum compressive stress of $75 \mathrm{~N} / \mathrm{mm}^{2}$. Find the minimum diameter of the hole which can be punched through a 10 mm thick steel plate. Take the ultimate shearing strength as $375 \mathrm{~N} / \mathrm{mm}^{2}$	Understand	CO 1	AAEB04.01
4	A steel rod of cross-sectional area $1600 \mathrm{~mm}^{2}$ and two brass rods each of cross-sectional area of $1000 \mathrm{~mm}^{2}$ together support a load of 50 KN as shown in figure. Find the stresses in the rods. Take E for steel $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and E for brass 1×10^{5} $\mathrm{N} / \mathrm{mm}^{2}$	Remember	CO 1	AAEB04.01
5	A steel rod 5 cm diameter and 6 m long is connected to two grips and the rod is maintained at a temperature of $100^{\circ} \mathrm{C}$. determine the stress and pull exerted when the temperature falls to $20^{\circ} \mathrm{C}$ if (i) The ends do not yield (ii) The ends yield by 0.15 cm Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=12 \times 10^{-}{ }^{\circ} \mathrm{C}$	Remember	CO 1	AAEB04.01
6	The extension in a rectangular steel bar of length 800 mm and of thickness 20 mm is found to be 0.21 mm . The bar tapers uniformly in width from 80 mm to 40 mm . if E for the bar is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine the axial tensile load on the bar.	Understand	CO 1	AAEB04.01
7	The maximum stress produced by a pull in a bar of length 1 m is $150 \mathrm{~N} / \mathrm{mm}^{2}$. The area of cross-sections and length are shown in	Understand	CO 1	AAEB04.02

| | figure. Calculate the strain energy stored in the bar if E=2
 $\times 10 \mathrm{~N}^{2} \mathrm{~mm}^{2}$ | | |
| :--- | :--- | :--- | :--- | :--- |

14	Write the relation between udl w and deflection y at a section.	Remember	CO 2	AAEB04.08
15	Write the expression for slope at the supports of a SSB carrying a point load at the center.	Understand	CO 2	AAEB04.05
16	What are the rules to follow to determine the deflection by Macaulay's method?	Remember	CO 2	AAEB04.06
17	What will be the value of slope at the point of maximum deflection?	Understand	CO 2	AAEB04.07
18	Write the expression of slope at point B if slope at A is zero by moment area method.	Remember	CO 2	AAEB04.08
19	Write the deflection equation for a beam by moment area method and explain the terms.	Understand	CO 2	AAEB04.05
20	What are propped cantilever beams?	Remember	CO 2	AAEB04.06
Part - B (Long Answer Questions)				
1	A beam of length 6 m is simply supported at its ends and carries two point loads of 48 kN and 40 kN at a distance of 1 m and 3 m respectively from the left support. Find: i) deflection under each load, ii) maximum deflection, and iii) the point at which maximum deflection occurs. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=85 \times 10^{6} \mathrm{~mm}^{4}$	Understand	CO 2	AAEB04.04
2	A cantilever of length 3 m is carrying a point load of 50 KN at a distance of 2 m from the fixed end. If $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ find the slope and deflection at the free end.	Remember	CO 2	AAEB04.04
3	Evaluate deflection of beam by Double integration method	Remember	CO 2	AAEB04.02
4	A beam is loaded as shown in the figure Evaluate deflection of beam by MacAulay's method	Remember	CO 2	AAEB04.05
5	A beam is loaded as shown in the figure Evaluate deflection of beam by Moment Area method	Remember	CO 2	AAEB04.04
6	A cantilever of length 2 m carries a udl of $1 \mathrm{kN} / \mathrm{m}$ run over a length of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the cantilever.	Remember	CO 2	AAEB04.04
7	A cantilever of length 4 m carries a gradually varying load, zero at the free end to $2 \mathrm{kN} / \mathrm{m}$ at the fixed end. Draw the shear force and bending moment diagrams for the cantilever.	Understand	CO 2	AAEB04.05
8	Draw the shear force and bending moment diagrams of a	Remember	CO 2	AAEB04.04

	simply supported beam of length 7 m carrying uniformly distributed loads as shown in the figure.			
9	Draw S.F.D and B.M.D for a SSB carrying uniformly varying load from zero at each end to w per unit length at the center.	Remember	CO 2	AAEB04.04
10	A SSB of length 5 m carries a uniformly increasing load of 800 N / m at one end to $1600 \mathrm{~N} / \mathrm{m}$ at the other end. Draw S.F.D and B.M.D for the beams. Also calculate the position and magnitude of maximum bending moment.	Remember	CO 2	AAEB04.04
11	Draw the S.F.D and B.M.D for following beam	Understand	CO 2	AAEB04.08
12	A simply supported beam 6 m long is carrying a uniformly distributed load of $5 \mathrm{KN} / \mathrm{m}$ over a length of 3 m from the right end. Draw the S.F and B.M diagrams for the beam and also calculate the maximum B.M on the section.	Remember	CO 2	AAEB04.05
13	Derive the relation between slope, deflection and radius of curvature.	Understand	CO 2	AAEB04.06
14	Determine the deflection of a SSB with an eccentric point load.	Remember	CO 2	AAEB04.07
15	Determine the deflection of a SSB subjected to uniformly distributed load.	Understand	CO 2	AAEB04.08
16	A beam of length 5 m and of uniform rectangular section is supported at its ends and carries uniformly distributed load over the entire length. Calculate the depth of the section if the maximum permissible bending stress is $8 \mathrm{~N} / \mathrm{mm}^{2}$ and central deflection is not to exceed 10 mm .	Remember	CO 2	AAEB04.05
17	An overhanging beam ABC is loaded as shown in the figure. Find the slopes over each other and at the right end. Find also tha maximum upward deflection between the supports and the deflection at the right end. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=5$ $\times 10^{8} \mathrm{~N} / \mathrm{mm}^{4}$.	Understand	CO 2	AAEB04.06
18	A horizontal beam AB is simply supported at A and $\mathrm{B}, 6 \mathrm{~m}$ apart. The beam is subjected to a clockwise couple of 300 kNm at a distance of 4 m from the left end as shown in the figure. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=2 \times 10^{8} \mathrm{~N} / \mathrm{mm}^{4}$ determine i. Deflection at the point where couple is acting and ii. The maximum deflection	Remember	CO 2	AAEB04.07
19	A cantilever of length 2 m carries a udl $2 \mathrm{kN} / \mathrm{m}$ over a length of 1 m from the free end, and a point load of 1 kN at the free end. Find the slope and deflection at the free end if $\mathrm{E}=2.1$ $\times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=6.667 \times 10^{7} \mathrm{~N} / \mathrm{mm}^{4}$	Understand	CO 2	AAEB04.08

20	A cantilever of length 2 m carries a uniformly varying load of $25 \mathrm{kN} / \mathrm{m}$ at the free end to $75 \mathrm{kN} / \mathrm{m}$ at the fixed end. If $\mathrm{E}=1$ $\times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~N} / \mathrm{mm}^{4}$, determine slope and deflection of the cantilever at the free end.	Remember	CO 2	AAEB04.05
Part - C (Problem Solving and Critical Thinking Questions)				
1	A beam 10 m long and simply supported at each end has a uniformly distributed load of $1000 \mathrm{~N} / \mathrm{m}$ extending from the left end upto the centre of the beam. There is also an anticlockwise couple of $15 \mathrm{kN} / \mathrm{m}$ at a distance of 2.5 m from the right end. Draw the S.F and B.M diagrams.	Remember	CO 2	AAEB04.04
2	A cantilever of length 2 m carries a udl of $2 \mathrm{KN} / \mathrm{m}$ run over the length of 1 m from the free end. It also carries a point load of 4 KN at a distance of 0.5 m from the free end. Draw the S.F.D and B.M.D.	Remember	CO 2	AAEB04.04
3	A beam is loaded as shown in the figure. Draw S.F.D and B.M.D and find a) Maximum Shear Force b) Maximum Bending Moment c) Point of inflexion	Remember	CO 2	AAEB04.03
4	Draw the sheer force and bending moment diagrams for a cantilever of length L carrying a uniformly varying load zero at free end to w per unit length at the fixed end.	Understand	CO 2	AAEB04.03
5	Draw the shear force and bending moment diagrams for a simply supported beam of length L carrying a uniformly varying load zero at each end to w per unit length at the centre.	Understand	CO 2	AAEB04.04
6	A cantilever of length 2 m carries a point load of 20 kN at the free end and another load of 20 kN at its center. If $\mathrm{E}=1$ $\times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~N} / \mathrm{mm}^{4}$ for the cantilever then determine by moment area method, the slope and deflection of the cantilever at the free end.	Understand	CO 2	AAEB04.04
7	Derive the equation of the deflection curve for a simple beam $A B$ loaded by a couple M_{0} at the left-hand support (see figure). Also, determine the maximum deflection.	Remember	CO 2	AAEB04.03
8	A cantilever of length L carries a UDL of w per unite length of $\mathrm{L} / 3$ from the fixed end. Determine the slope and deflection at the free end using are moment method.	Remember	CO 2	AAEB04.04
9	A simple beam AB supports a uniform load of intensity q acting over the middle region of the span (see figure).	Understand	CO 2	AAEB04.03

| | Determine the angle of rotation at the left-hand support and the
 deflection at the midpoint. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

3	A rectangular beam 80mm wide and 150mm deep is subjected to a shearing force of 30KN. Draw the distribution diagram for the shear stress.	Remember	CO 3	AAEB04.06
4	A circular beam of diameter 150mm is subjected to a shear force of 70KN. Find the value of maximum shear stress.	Understand	CO 3	AAEB04.07
5	Draw and explain shear stress distribution across I section.	Understand	CO 3	AAEB04.07
6	Show that for a rectangular section the max shear stress is 1.5 times the average stress.	Understand	CO 3	AAEB04.07
7	The shear stress is not maximum at the neutral axis in case of a triangular section. Prove this statement.	Remember	CO 3	AAEB04.06
8	A rectangular beam 100mm wide and 150mm deep is subjected to a shear force of 30kN. Determine the average stress, max shear stress	Understand	CO 3	AAEB04.07
9	Derive bending equation M/I=f/y=E/R.	CO	CO	CO

	flange $=200 \mathrm{~mm} \times 50 \mathrm{~mm}$. If the beam is subjected to a shearing force of 50 KN , find the maximum shear stress across the section. Also draw the shear stress distribution diagram. Take $\mathrm{I}=284.9 \times 10^{6} \mathrm{~mm}^{4}$			
4	For the section shown in the figure. Determine the average shearing stress at A, B, C \& D for shearing force of 20 KN . Draw the shear stress distribution.	Remember	CO 3	AAEB04.05
5	An I-section, with rectangular ends, has the following dimensions: Flanges $=150 \mathrm{~mm} \times 20 \mathrm{~mm}$, Web $=300 \mathrm{~mm} \times 10 \mathrm{~mm}$. Find the maximum shearing stress developed in the beam for a shear force of 50 KN .	Remember	CO 3	AAEB04.04
6	Prove that the moment of resistance of a beam of square section is equal to $\sigma \times x^{3} / 6$ where σ is the permissible stress in bending, x is the side of the square beam and beam is placed such that its two sides are horizontal.	Remember	CO 3	AAEB04.04
7	A beam is of T-section as shown in the figure. The beam is SSB over a span of 4 m and carries a UDL of $1.7 \mathrm{kN} / \mathrm{m}$ run over the entire span. Determine the maximum tensile and maximum compressive stress.	Understand	CO 3	AAEB04.07
8	A beam of an I-section shown in the figure is SSB over a span	Understand	CO 3	AAEB04.07

| | of 4m. Determine the load that the beam can carry per meter
 length, if the allowable stress in the beam is $30.82 \mathrm{~N} / \mathrm{mm}^{2}$. | | |
| :--- | :--- | :--- | :--- | :--- |
| 5 | | | |

6	Write the expression for the crippling load by straight line formula.	Remember	CO 4	AAEB04.08
7	What is Johnson's parabolic formula to determine the crippling load?	Remember	CO 4	AAEB04.08
8	Define the terms column, strut, and crippling load.	Remember	CO 4	AAEB04.08
9	Explain how the failure of a short and of a long column takes place?	Remember	CO 4	AAEB04.08
10	Define buckling load.	Remember	CO 4	AAEB04.11
11	Discuss two types of instability in columns	Remember	CO 4	AAEB04.09
12	Discuss limitations of Euler's column theory.	Understand	CO 4	AAEB04.10
13	Classify types of columns with neat sketches.	Remember	CO 4	AAEB04.11
14	What are Eigen value functions and Eigen value Problems?	Understand	CO 4	AAEB04.12
15	Define Bifurcation Point for a column with neat sketches.	Remember	CO 4	AAEB04.09
16	Write a note on effective length of column. Write effective lengths for different end conditions of columns.	Understand	CO 4	AAEB04.10
17	Derive the Rankine's semi empirical formula for columns	Remember	CO 4	AAEB04.11
18	Explain failure of columns with neat sketches. Also give sign convention for bending of columns.	Understand	CO 4	AAEB04.12
19	Write the assumptions made in Euler's Column Theory	Understand	CO 4	AAEB04.10
20	Define equivalent length of a column subjected to buckling load.	Understand	CO 4	AAEB04.10
Part - B (Long Answer Questions)				
1	Discuss two types of instability in columns	Understand	CO 4	AAEB04.08
2	Discuss limitations of Euler's column theory.	Understand	CO 4	AAEB04.08
3	Classify types of columns with neat sketches.	Understand	CO 4	AAEB04.08
4	What are Eigen value functions and Eigen value Problems?	Understand	CO 4	AAEB04.10
5	Define Bifurcation Point for a column with neat sketches.	Remember	CO 4	AAEB04.08
6	Write a note on effective length of column. Write effective lengths for different end conditions of columns.	Understand	CO 4	AAEB04.08
7	Derive the Rankine's semi empirical formula for columns	Understand	CO 4	AAEB04.08
8	Explain failure of columns with neat sketches. Also give sign convention for bending of columns.	Remember	CO 4	AAEB04.08
9	Write the assumptions made in Euler's Column Theory	Understand	CO 4	AAEB04.08
10	Derive Johnson's Parabolic Formula for Short Columns	Understand	CO 4	AAEB04.08
11	Derive the expression for crippling load when one end of the column is fixed and the other end is free.	Understand	CO 4	AAEB04.09
12	Derive the expression for crippling load when one end of the column is fixed and the other end is hinged (or pinned).	Understand	CO 4	AAEB04.09
13	A strut length 1, moment of inertia of cross section I uniform throughout and modulus of material E , is fixed at its lower end, and its upper end is elastically supported laterally by a spring of stiffness k. show from the first principles that the crippling load P is given by $(\tan \alpha 1) /(\alpha \mathrm{l})=[1-(\mathrm{P} / \mathrm{kL})]$, where $\alpha^{2}=(\mathrm{P} / \mathrm{EI})$	Understand	CO 4	AAEB04.10
14	The pin-jointed column shown in Figure carries a compressive load P applied eccentrically at a distance e from the axis of the column. Determine the maximum bending moment in the column	Analyze	CO 4	AAEB04.10

15	A column of length 1m has the cross-section shown in Figure. If the ends of the column are pinned and free to warp, calculate its buckling load; $\mathrm{E}=70000 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{G}=30000 \mathrm{~N} / \mathrm{mm}^{2}$.	Analyze	CO 4	AAEB04.10
16	A column of timber section $15 \mathrm{~cm} \times 20 \mathrm{~cm}$ is 6 m long. If $\mathrm{E}=17.5 \mathrm{KN} / \mathrm{mm}^{2}$. Determine crippling load and safe load for the column if both ends are fixed and factor of safety is 3 .	Analyze	CO 4	AAEB04.10
17	A solid round bar 3 m long and 5 cm in diameter is used as a strut. Determine the crippling load if a. Both ends of strut are hinged b. One end of strut is fixed and other end is free c. Both ends of strut are fixed d. One end is fixed and other is hinged	Analyze	CO 4	AAEB04.10
18	Derive the expression for maximum deflection when strut is subjected to compressive axial load with both ends pinned.	Analyze	CO 4	AAEB04.11
19	A 2 m long column has a circular cross-section of 6 m diameter. One of the ends of the column is fixed in direction and position and other end is free. Taking factor of safety as 3 , calculate the safe load.	Analyze	CO 4	AAEB04.11
20	Deduce an expression for the Euler's crippling load of an ideal column pin-joined at each end. Explain the limitations, if any in using the formula.	Analyze	CO 4	AAEB04.11
Part - C (Problem Solving and Critical Thinking Questions)				
1	A solid bar 4 m long and 6 cm in diameter is used as a strut with both ends hinged. Determine the crippling load. Take $\mathrm{E}=2$ $\times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$	Understand	CO 4	AAEB04.12
2	A column of timber section $10 \mathrm{~cm} \times 15 \mathrm{~cm}$ is 5 m long both ends being fixed. If the Young's modulus for timber $=17.5 \mathrm{kN} / \mathrm{mm}^{2}$. Determine i. Crippling load ii. Safe load for the column if the factor of safety is 3 .	Understand	CO 4	AAEB04.12
3	A hollow mild steel tube 5 m long, 4 cm internal diameter and 5 mm thick is used as a strut with both ends hinged. Find the crippling load and safe load taking factor of safety as 3. Taking $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$	Understand	CO 4	AAEB04.12
4	A short length of tube, 40 mm internal and 50 mm external diameter, failed in compression at a load of 240 KN . When a 2 m length of the same tube was used as a strut with fixed ends, the load at failure was 158 KN . Assuming that σ_{c} in the Rankine's formula is given by first test, find the value of constant ' a ' in the same formula. Hence estimate the crippling load for a 3 m long strut made out of the tube with one end fixed and other hinged.	Remember	CO 4	AAEB04.12
5	The strut of length 1 , moment of inertia I, of cross section I uniform throughout and modulus of material E is fixed at its	Remember	CO 4	AAEB04.12

	lower end and upper end is supported laterally by a spring of stiffness constant k. show from the first principles that the crippling load P is given by $(\tan \alpha 1) /(\alpha \mathrm{l})=[1-(\mathrm{P} / \mathrm{kL})]$, where $\alpha^{2}=(\mathrm{P} / \mathrm{EI})$.			
6	A tubular steel strut is of 65 mm external diameter and 50 mm internal diameter. It is 2.5 m long and hinged at both ends. The load acting is eccentric. Find the maximum eccentricity for a crippling load of 0.75 of the Euler load, the yield stress being $330 \mathrm{MPa}, \mathrm{E}=210 \mathrm{GPa}$.	Remember	CO 4	AAEB04.13
7	Determine the crippling load for a T-section of dimensions $12 \mathrm{~cm} \times 12 \mathrm{~cm} \times 2 \mathrm{~cm}$ and of length 6 cm when it is used as a strut with both of its ends hinged. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	Understand		AAEB04.11
8	Determine Euler's crippling load for an I-section joist $30 \mathrm{~cm} \times$ $15 \mathrm{~cm} \times 2 \mathrm{~cm}$ and 5 m long which is used as a strut with both ends fixed. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ for the joist.	Understand	CO 4	AAEB04.12
9	A hollow cylindrical cast iron column is 6 m long with both ends fixed. Determine the minimum diameter of the column if it has to carry a safe load of 300 KN with a factor of safety of 4 . Take the internal diameter as 0.7 times the external diameter. Take $\mathrm{f}_{\mathrm{C}}=550 \mathrm{~N} / \mathrm{mm} 2$ and $\alpha=1 / 1600$ in Rankine's formula.	Understand	CO 4	AAEB04.11
10	Derive the expression for maximum deflection and maximum deflection for a strut subjected to compressive axial load or axial thrust and a transverse UDL of intensity w per unit length when both ends are pinned.	Understand	CO 4	AAEB04.10
MODULE -V				
THEORY OF ELASTISITY				
Part - A (Short Answer Questions)				
1	Define terms of principle plane and principle Stress	Understand	CO 5	AAEB04.14
2	Define the term obliquity and how it is determined	Remembering	CO 5	AAEB04.14
3	Write a note on Mohr's circle of stress	Remembering	CO 5	AAEB04.14
4	Derive the expression for the stresses on an oblique plane of a rectangular body When the body is subjected to to simple shear stress	Understand	CO 5	AAEB04.15
5	Write equations of equilibrium for elastic body under three dimensional force systems. Also draw neat sketch representing forces.	Remembering	CO 5	AAEB04.14
6	Write the equations for direct strains in terms of displacement functions for a three mutually perpendicular line elements.	Understand	CO 5	AAEB04.14
7	Derive the compatibility equation for two-dimensional problem.	Understand	CO 5	AAEB04.14
8	Write condition equations for plane stress and plane strain for 2D elastic body.	Remembering	CO 5	AAEB04.14
9	Define Airy's stress function for two dimensional problems in elasticity.	Remembering	CO 5	AAEB04.14
10	Give stress strain relationship for 2D elastic body.	Understand	CO 5	AAEB04.14
11	Derive equations of static equilibrium for a three dimensional elastic body.	Understand	CO 5	AAEB04.15
12	Derive the equations for stresses acting on inclined planes and deduce stress equations for principal planes.	Understand	CO 5	AAEB04.15
13	Determine graphically state of stress on inclined plane for a deformable body.	Understand	CO 5	AAEB04.14
14	Derive the strain equations for three mutually perpendicular line elements in terms of displacement functions and deduce compatibility equations.	Understand	CO 5	AAEB04.15
15	Write the expression for normal and tangential stress on a oblique plane when a member is subjected to a simple shear stress τ.	Understand	CO 5	AAEB04.14

16	Write the expression for major principal stress for a member is subjected to two direct stresses in two mutually perpendicular directions are accompanied by a simple shear stress.	Understand	CO 5	AAEB04.14
17	Write the expression for minor principal stress for a member is subjected to two direct stresses in two mutually perpendicular directions are accompanied by a simple shear stress.	Understand	CO 5	AAEB04.15
18	Write the expression for maximum shear stress for a member is subjected to two direct stresses in two mutually perpendicular directions are accompanied by a simple shear stress.	Understand	CO 5	AAEB04.16
19	At what angle the maximum and minimum normal stresses act to each other.	Understand	CO 5	AAEB04.16
20	What is the condition of maximum shear stress for a member is subjected to two direct stresses in two mutually perpendicular directions are accompanied by a simple shear stress.	Understand	CO 5	AAEB04.16
Part - B (Long Answer Questions)				
1	Derive equations of static equilibrium for a three dimensional elastic body.	Understand	CO 5	AAEB04.17
2	Derive the equations for stresses acting on inclined planes and deduce stress equations for principal planes.	Understand	CO 5	AAEB04.17
3	Determine graphically state of stress on inclined plane for a deformable body.	Understand	CO 5	AAEB04.17
4	Derive the strain equations for three mutually perpendicular line elements in terms of displacement functions and deduce compatibility equations.	Understand	CO 5	AAEB04.14
5	Derive equations for stains on inclined planes and deduce strain for principal planes.	Understand	CO 5	AAEB04.14
6	Draw the Mohr's Circle to determine strains on inclined plane.	Remembering	CO 5	AAEB04.15
7	A structural member supports loads which produce, at a particular point, a direct tensile stress of $80 \mathrm{~N} / \mathrm{mm}^{2}$ and a shear stress of $45 \mathrm{~N} / \mathrm{mm}^{2}$ on the same plane calculate the values and directions Of the principal stresses at the point and also the maximum stress, stating on which planes this will act.	Remembering	CO 5	AAEB04.15
8	A solid shaft of circular cross-section supports a torque of 50 KNm and a bending moment of 25 KNm . If the diameter of the shaft is 150 mm calculate the values of the principal stresses and their directions at a point on the surface of the shaft?	Understand	CO 5	AAEB04.14
9	A shear stress τ_{xy} acts in a two-dimensional field in which the maximum allowable shear stress is denoted by $\tau_{\max }$ and the major principal stress by σ_{1}. Derive using the geometry of Mohr's circle of stress, expressions for the maximum values of direct stress which may be applied to the x and y planes in terms of three parameters given above.	Understand	CO 5	AAEB04.14
10	The stresses at point of a machine component are 150 MPa and 50MPa both tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an angle of 55 with axis of major tensile stress. Also find the magnitude of the maximum shear stress in the component.	Understand	CO 5	AAEB04.17
11	A bar is subjected to a tensile stress of 100 MPa , determine the normal and tangential stresses on a plane making an angle of 30° with the direction of the tensile stress.	Analyze	CO 5	AAEB04.17
12	Write the expression for major and minor principal stresses for an oblique plane subjected to direct stress in two mutually perpendicular directions and accompanied with shear stress.	Analyze	CO 5	AAEB04.17
13	The principal stresses or a point in the section of a member are 50 MPa or 20 MPa both tensile. If there is a clockwise shear stress of 30 MPa , find the normal and shear stresses on a section inclined at an angle of 15° with the normal to the major tensile stress.	Analyze	CO 5	AAEB04.17

14	A cantilever of length L and depth 2 h is in a state of plane stress. The cantilever is of unit thickness, is rigidly supported at the end $\mathrm{x}=\mathrm{L}$ and is located as shown in figure. Show that stress function $\phi=A x^{2}+B x^{2} y+C y^{3}+D\left(5 x^{2} y^{3}-y^{5}\right)$ is valid for the beam and evaluate the constants $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .	Analyze	CO 5	AAEB04.17
15	The principal stresses at a point in the section of a member are 50 MPa and 20 MPa both tensile. If there is a clockwise shear of 30 MPa , find graphically the normal and shear stresses on a section inclined at an angle of 15° with the normal to the major tensile stress.	Analyze	CO 5	AAEB04.17
16	A point in the stressed element, the normal stresses in two mutually perpendicular directions are 45 MPa and 25 MPa both tensile. The complimentary shear stress in these directions is 15 MPa . By using Mohr's circle method determine the maximum and minimum principal stresses.	Analyze	CO 5	AAEB04.17
17	A plane element in a boiler is subjected to tensile stresses of 400 MPa on one plane and 150 MPa on the other	Analyze	CO 5	AAEB04.17
18	A rectangular bar of cross-sectional are $1200 \mathrm{~mm}^{2}$ is subjected to an axial load of $360 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal and shear stresses on a section which is inclined at an angle of 30 with the normal cross-section of the bar.	Analyze	CO 5	AAEB04.17
19	Find the diameter of a circular bar which is subjected to an axial pull of 150 kN , if the maximum allowable shear stress on any section is $60 \mathrm{~N} / \mathrm{mm}^{2}$.	Analyze	CO 5	AAEB04.17
20	What do you understand by an Airy stress function in two dimensions? A beam of length l, with a thin rectangular crosssection, is built-in at the end $x=0$ and loaded at the tip by a vertical force P. Show that the stress distribution, as calculated by simple beam theory, can be represented by the expression $\varphi=A y 3+B y 3 x+C y x$ as an Airy stress function and determine the coefficients A, B and C.	Analyze	CO 5	AAEB04.17
Part - C (Problem Solving and Critical Thinking Questions)				
1	The cantilever beam shown in Figure is in a state of plane strain and is rigidly supported at $x=L$. Examine the following stress function in relation to this problem: $\varphi=\left(w / 20 h^{3}\right)\left(15 h^{2} x^{2} y-\right.$ $5 x^{2} y^{3}$ $2 h^{2} y^{3}$ Show that the stresses acting on the boundaries satisfy the	Understand	CO 5	AAEB04.17

	conditions except for a distributed direct stress at the free end of the beam which exerts no resultant force or bending moment.			
2	A thin rectangular plate of unit thickness is loaded along the edge $y=+d$ by a linearly varying distributed load of intensity $w=p x$ with corresponding equilibrating shears along the vertical edges at $x=0$ and l. As a solution to the stress analysis problem an Airy stress function φ is proposed, where $\varphi=\left(p / 120 d^{3}\right)\left[5\left(x^{3}-\right.\right.$ $\left.\left.l^{2} x\right)(y+d)^{2}(y-2 d)-3 y x\left(y^{2}-d^{2}\right)^{2}\right]$. Show that φ satisfies the internal compatibility conditions and obtain the distribution of stresses within the plate. Determine also the extent to which the static boundary conditions are satisfied.	Understand	CO 5	AAEB04.17
3	The cantilever beam shown in Fig. P.2.5 is rigidly fixed at $x=L$ and carries loading such that the Airy stress function relating to the problem is $\varphi=\left(w / 40 b c^{3}\right)\left(-10 c^{3} x^{2}-15 c^{2} x^{2} y+2 c^{2} y^{3}+\right.$ $5 x^{2} y^{3}-y^{5}$) Find the loading pattern corresponding to the function and check its validity with respect to the boundary conditions.	Understand	CO 5	AAEB04.17

4	Show that the compatibility equation for the case of plane strain, $\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y}=\frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}+\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}}$ may be expressed in terms of direct stresses σ_{x} and σ_{y} in the form $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\sigma_{x}+\sigma_{y}\right)=0$	Remembering	CO 5	AAEB04.16
5	The principal tensile stress at a point across two mutually perpendicular planes is $100 \mathrm{~N} / \mathrm{mm}^{2}$ and $50 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of the minor principal stress.	Understand	CO 5	AAEB04.16
6	At a point in a strained material, the principal stresses are 140 $\mathrm{N} / \mathrm{mm}^{2}$ (tensile) and $60 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 45° to the axis of the major principal stress. What is the maximum intensity of shear stress in the material at the point?	Understand	CO 5	AAEB04.15
7	At a point in a two dimensional system, the normal stress on two mutually perpendicular planes are σ_{1} and σ_{2} (both alike) and shear stress is τ. Show that one of the principal stresses is zero if $\tau=\sqrt{ } \sigma_{1} \times \sigma_{2}$.	Remembering	CO 5	AAEB04.14
8	A rectangular block of material is subjected to a tensile stress of $100 \mathrm{~N} / \mathrm{mm} 2$ on one plane and a tensile stress of $50 \mathrm{~N} / \mathrm{mm} 2$ on a plane at right angles, together with shear stresses of $60 \mathrm{~N} / \mathrm{mm} 2$ on the faces. Find: i. The direction of principal planes ii. The magnitude of principal stresses and iii. Magnitude of the greatest shear stress.	Understand	CO 5	AAEB04.14
9	A strained material is subjected to two dimensional stresses. Prove that the sum of the normal components of stresses on any two mutually perpendicular planes is constant.	Understand	CO 5	AAEB04.14
10	The principal tensile stresses at a point across two mutually perpendicular planes are $100 \mathrm{~N} / \mathrm{mm}^{2}$ and $50 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal and tangential and resultant stresses on a plane inclined at 300 to the axis of the minor principal stress. Use Mohr's circle method.	Understand	CO 5	AAEB04.14

Prepared By: Mr. G S D Madhav, Assistant Professor
Ms. Y Shwetha, Assistant Professor
HOD, AE

