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Chapter 1. Introduction

|. Basic Concepts

The finite element method (FEM), or finite element analysis
(FEA), 1s based on the 1dea of building a complicated object with
simple blocks, or, dividing a complicated object into small and
manageable pieces. Application of this simple 1dea can be found
everywhere in everyday life, as well as in engineering.

Examples:

e Lego (kids’ play) . ¥
e Buildings |

“Element” S;

- k oy
Area of one triangle: S, = S ing,

2 N
where N = total number of triangles (elements).

y & 1 ., . (2# )
Area of the circle: Sy = ZS,. =—R*Nsinl—|—> #R asN > o
i=1

Observation: Complicated or smooth objects can be
represented by geometrically simple pieces (elements).
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Why Finite Element Method?

e Design analysis: hand calculations, experiments, and
computer simulations

e FEM/FEA i1s the most widely applied computer simulation
method in engineering

e (Closely integrated with CAD/CAM applications

Applications of FEM in Engineering

e Mechanical/Aerospace/Civil/Automobile Engineering
e Structure analysis (static/dynamic, linear/nonlinear)

¢ Thermal/fluid flows ¢ T

e Electromagnetics '
e Geomechanics

e Biomechanics

Modeling of gear coupling

Examples:

(5]
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A Brief History of the FEM

o 1943 ----- Courant (Variational methods)

o 1956 ----- Turner, Clough, Martin and Topp (Stiffness)

e 1960 ----- Clough (“Finite Element”, plane problems)
e 1970s ----- Applications on mainframe computers

e [980s ----- Microcomputers, pre- and postprocessors
e 1990s ----- Analysis of large structural systems

Can Drop Test (Click for more information and an animation)
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FEM in Structural Analysis (The Procedure)

e Divide structure into pieces (elements with nodes)

e Describe the behavior of the physical quantities on each
element

e Connect (assemble) the elements at the nodes to form an
approximate system of equations for the whole structure

e Solve the system of equations involving unknown
quantities at the nodes (e.g., displacements)

e Calculate desired quantities (e.g., strains and stresses) at
selected elements

Example:

Typical
element

Typical
node

FEM model for a gear tooth (From Cook’s book, p.2).
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Computer Implementations

e Preprocessing (build FE model, loads and constraints)
e FEA solver (assemble and solve the system of equations)

e Postprocessing (sort and display the results)

Available Commercial FEM Software Packages

o ANSYS (General purpose, PC and workstations)
SDRC/I-DEAS (Complete CAD/CAM/CAE package)
NASTRAN (General purpose FEA on mainframes)
ABAQUS (Nonlinear and dynamic analyses)
COSMOS (General purpose FEA)

e ALGOR (PC and workstations)

o PATRAN (Pre/Post Processor)

e HyperMesh (Pre/Post Processor)
e Dyna-3D (Crash/impact analysis)
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Objectives of This FEM Course

e Understand the fundamental ideas of the FEM

e Know the behavior and usage of each type of elements
covered 1in this course

e Be able to prepare a suitable FE model for given problems

e Can interpret and evaluate the quality of the results (know
the physics of the problems)

e Be aware of the limitations of the FEM (don’t misuse the
FEM - a numerical tool)

FEA of an Unloader Trolley (Click for more info)
By Jeff Badertscher (ME Class of 2001, UC)

See more examples 1n:
Showcase: Finite Element Analysis in Actions
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Il. Review of Matrix Algebra

Linear System of Algebraic Equations

Xy T WXy tta, %, = bl

8% +a,x:0 00 % =b2

2n""n

(1)
anlxl +anzx2 +.. '+annxn - bn
where x;, x5, ..., X, are the unknowns.
In matrix form:
Ax=b (2)
where
11 aIZ aln
R [aij £ A, Ay ... 4,
__anl anz am N
5 . (3)
E )
X b,
x:{x{}=< } b:{b,}z }
Lx" J b" J

A 1s called a nxn (square) matrix, and x and b are (column)
vectors of dimension #.
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Row and Column Vectors

t
—

w, |

Matrix Addition and Subtraction

For two matrices A and B, both of the same size (mxn), the
addition and subtraction are defined by

C=A+B with c,.j:a,.j+b,j
D=A-B with d,.j:a,.j—b,.j

Scalar Multiplication
A = lﬂaU]

Matrix Multiplication

For two matrices A (of size /xm) and B (of size mxn), the
product of AB 1s defined by

C=AB withc, =) a,b,
k=1

wheret=1.2, ...L 1= 1. 2,1

Note that, in general, AB # BA , but (AB)C = A(BC)
(associative).
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Transpose of a Matrix
If A = [a;], then the transpose of A is

AT = [aj,.]
Notice that (AB)" = B'A”".

Symmetric Matrix
A square (nxn) matrix A 1s called symmetric, if

A=AT or a.=a

Unit (Identity) Matrix

1 0 s O]

0 1 .. 0
I=

0 0 .. 1]

Note that Al= A, Ix = x.

Determinant of a Matrix

The determinant of square matrix A is a scalar number
denoted by det A or |A|. For 2x2 and 3 %3 matrices, their
determinants are given by

a b
del{ } =ad —bc
c d

and
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det|a,, a,, a, |=a,a,a,+ayaa, +a,aa,,

—a;0,,0;, —dhd, d;, —dydnd,,

127721

Singular Matrix

A square matrix A is singular if det A = 0, which indicates
problems in the systems (nonunique solutions, degeneracy, etc.)

Matrix Inversion

For a square and nonsingular matrix A (detA #0), its
inverse A”' is constructed in such a way that

AA ' =ATA=1
The cofactor matrix C of matrix A 1s defined by
Cy =DM,

where M, 1s the determinant of the smaller matrix obtained by
eliminating the /th row and jth column of A.

Thus, the inverse of A can be determined by

-1 1 CT

: det A

We can show that (AB)' =B'A™".

10
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Examples:
a b’ b
(1) = —
c d (ad —bc)|—c a
Checking,
a b]'a b] 1 d -bTa b] [1 0
¢c d| |¢c d| (ad-bc)|-c a |c d| |0 1
1l =1 47" 1 3 21T 32 1
(2)—12—1=421221=221
0 =1 2| ( )_1 11 111
Checking,
(1 -1 013 2 1] [1 0 O]
-1 2 =112 2 1|=[0 1 O
0 -1 21 1 1] |00 1

If det A =0 (i.e., A is singular), then A" does not exist!

The solution of the linear system of equations (Eq.(1)) can be
expressed as (assuming the coefficient matrix A 1s nonsingular)

x=A"b

Thus, the main task in solving a linear system of equations is to
found the mnverse of the coefficient matrix.

11
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Solution Techniques for Linear Systems of Equations
e Gauss elimination methods

e [terative methods

Positive Definite Matrix

A square (nxn) matrix A 1s said to be positive definite, if for
all nonzero vector x of dimension n,

x " Ax>0

Note that positive definite matrices are nonsingular.

Differentiation and Integration of a Matrix
Let

A(t) = [a,,(t)]

then the differentiation 1s defined by

d | day(1)
ZAU)_[ dt ]

and the integration by

_" A(t)dt = [ J' a,.j(t)dt]
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Types of Finite Elements

1-D (Line) Element

.__—

(Spring, truss, beam, pipe, efc.)

2-D (Plane) Element

(Membrane, plate, shell, etc.)

3-D (Solid) Element

(3-D fields - temperature, displacement, stress, flow velocity)

13
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lll. Spring Element

2 (Y
(Snom/[/u'ng t'mpor[cm[ 4 .1[»1f)£?.

One Spring Element

5 .

1 ]
e
i w I w f;

Two nodes: 1.9
Nodal displacements: u;, u; (In, m, mm)
Nodal forces: fi f; (Ib, Newton)

Spring constant (stiffness): & (Ib/in, N/m, N/mm)

Spring force-displacement relationship:

F =kA with A=u; —u,
A Linear
F Nonlinear
[k
>
Vi

k=F/A (>0)is the force needed to produce a unit stretch.

14
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We only consider lir s 1n this introductory
course.

Consider the equilibrium or rorces for the spring. At node 1,
we have

Ji=-F =—k(u; —u,) = ku, — ku,

1

and at node j,

[ =F=ku,—u)=—ku +ku,

In matrix form,
ko —k||w| [/
-k k ||u, - I

ku=f

or,

where
k = (element) stiffness matrix
u = (element nodal) displacement vector
f = (element nodal) force vector

Note that k 1s symmetric. Is k singular or nonsingular? That is,
can we solve the equation? If not, why?

15
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Spring System
X
k k,
— AN WN——
1 2 3

ll],FI ll_?_F_? ll3_F3

For element 1,

element 2,

kz —kz u | flz

~k, Kk |u] | S
where f;"1s the (internal) force acting on local node i of element
m(@=1,2).

Assemble the stiffness matrix for the whole system:

Consider the equilibrium of forces at node 1,

R=Af
at node 2,

E=F +f
and node 3,

F3=f22

16
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That 1s,
F =ku —ku,
F, =—ku, +(k, + &k, )u, —k,u,
F, =—k,u, +k,u,
In matnx form,
k, -k 0 |[u
-k k[+Ek] -k Ru,p=
0 +k k |lu

0

or
KU=F

K 1s the stiffness matrix (structure matrix) for the spring system.

An alternative way of assembling the whole stiffness matrix:

“Enlarging™ the stiffness matrices for elements 1 and 2, we
have

"k, —k, O)(w) [£]
-k, ky, ORu,p=13f,

0 0  0]|u, 0

——

0O O 0 |[u 0
0 &k -~k Qu

0 -k, k, |lu, =

1
=%

17
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Adding the two matrix equations (superposition), we have

3

k, - I 0 ||u, fll
-k, kt+k, —k u,p= le +f12 4
| 0 —k, k, J\u, fzz ]

This 1s the same equation we derived by using the force
equilibrium concept.

Boundary and load conditions:

Assuming, %, =0 and F,=F, =P
we have

[k, —k, 0 1[0) [FK

—k, k+k, —k, Ku,p=4P

0 —k, k, ||\u, P

which reduces to
ko+k, —k,|[u,| [P
-k, k, ||lu] |P

F =-ku,

and

Unknowns are

U

Il

{uz} and the reaction force F; (if desired).

18
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Solving the equations, we obtain the displacements

| 2P/k,
u,| |2P/k +Plk,

and the reaction force

F, =-2P

Checking the Results
e Deformed shape of the structure

e Balance of the external forces

e Order of magnitudes of the numbers

Notes About the Spring Elements
e Suitable for stiffness analysis

e Not suitable for stress analysis of the spring itself

e Can have spring elements with stiffness in the lateral
direction, spring elements for torsion, etc.

19
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Example 1.1

Given:  For the spring system shown above,
k, =100 N/mm, k, =200 N/mm, k, =100 N/mm
P=500N, u,=u,=0
Find. (a) the global stiffness matrix
(b) displacements of nodes 2 and 3
(c) the reaction forces at nodes 1 and 4
(d) the force in the spring 2
Solution:

(a) The element stiffness matrices are

_[100 1007 o o
12100 100 e
o [200 -200] 2)
2= _200 200 | ™™ (
L [100 -100] :
*=|-100 100 i ®)
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Applying the superposition concept, we obtain the global stiffness
matrix for the spring system as

u, u, U, u,

-

100 —100 0 0
o ~100 100[+200  —200 0
10 200 200100 —100
0 0 ~100 100 |
or
T 100 =100 0 0
~100 300 =200 O
K=

0 =200 300 -100
0 0 -100 100

-

which 1s symmetric and banded.
Equilibrium (FE) equation for the whole system 1s
(100 -100 0 0 |(u) [E]
-100 300 -200 O ||u, 0
I S W S
0 -200 300 —100 ||u, P
0 0 -=100 100 |lu,| |F

(b) Applying the BC (#, =u, =0) in Eq(4), or deleting the 1* and
4™ rows and columns, we have
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300 —2007(w.) [0
[ 200 300 H }z{ } (%)
5 3 u, P

Solving Eq.(5), we obtain
u, P /250 2 - 6)
= — mm
u, 3P /500 3

(¢) From the 1% and 4™ equations in (4), we get the reaction forces

F, =—100u, =-200 (N)
F, =—-100u, =-300 (N)

(d) The FE equation for spring (element) 2 1s

200 200 ||u | |
-200 200 ||lu,| |f,
Here i = 2, j = 3 for element 2. Thus we can calculate the spring
force as

u
F=f,==f,=[-200 200]{ 2}

u,

=[-200 200]{‘;‘,}

=200 (N)
Check the results!

[
(&)
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Example 1.2

Problem: For the spring system with arbitrarily numbered nodes

and elements, as shown above, find the global stiffness
matrix.

Solution:

First we construct the following

Element Connectivity Table

Element | Nodei (1) | Nodej (2)
1

oW NN B

2
2 3
3 5
. 1

which specifies the global node numbers corresponding to the
local node numbers for each element.
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Then we can write the element stiffness matrices as follows

u, u, u, u,
" k, -k - k, -k,
L _kl kl t _kz kz

u, Us u, u,
. k, -k, £ k, —k,
-k kK Yol-k, K,

Finally, applying the superposition method, we obtain the global
stiffness matrix as follows

u, u, u, u, U
-k, —if, 0 0 g |
-k | B+t —k | ~K| O
K=| 0 ~k, k;+k, | 0 |~k
0 —k, 0 & '| ¥
| 0 0 = B I K.

The matrix 1s symmetric, banded, but singular.
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Chapter 2. Bar ¢ Elements

|. Linear Static Analysis

Most structural analysis problems can be treated as linear
static problems, based on the following assumptions

1. Small deformations (loading pattern 1s not changed due
to the deformed shape)

2. Elastic materials (no plasticity or failures)

3. Static loads (the load 1s applied to the structure in a slow
or steady fashion)

Linear analysis can provide most of the information about
the behavior of a structure, and can be a good approximation for
many analyses. It 1s also the bases of nonlinear analysis in most
of the cases.




Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

Il. Bar Element

Consider a uniform prismatic bar:

'—» U; U
i 1 - A, E ] j
L o
& length
A cross-sectional area
E elastic modulus
u=u(x) displacement
€ = g(x) strain
o =0(x) stress

Strain-displacement relation:

_du

5—5 (1)

Stress-strain relation:

o=E¢ (2)
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Stiffness Matrix — Direct Method

Assuming that the displacement u 1s varying linearly along
the axis of the bar, 1.¢.,

u(x)=(1‘£,)“: “"%”j (3)
we have
= U; Z %, % (A = elongation) 4)
EA
oc=Eg=— 3
= (3)

o= i (F' = force 1n bar) (6)
Thus, (5) and (6) lead to
BTN = (7)

-

where &k = i—A 1s the stiffness of the bar.

The bar is acting like a spring 1n this case and we conclude
that element stiffness matrix 1s
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—

EA_EA
—k k _EA EA
L. & L .
or
EA| 1 -1
k=— 8
j [—1 1] (8)

This can be verified by considering the equilibrium of the forces
at the two nodes.

Element equilibrium equation 1s
EA|l 1 -1 7
T Ul ”
J J

Degree of Freedom (dof)

Number of components of the displacement vector at a
node.

For 1-D bar element: one dof at each node.

Physical Meaning of the Coefficients in k

The jth column of k (here j = 1 or 2) represents the forces
applied to the bar to maintain a deformed shape with unit
displacement at node j and zero displacement at the other node.
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Stiffness Matrix — A Formal Approach

We derive the same stiffness matrix for the bar using a
formal approach which can be applied to many other more
complicated situations.

Define two linear shape functions as follows

N,(f)=1—§, N,(é:):é: (]O)
where
o £
{E—L, 0<é<1 (11)

From (3) we can write the displacement as

u(x) =u(g) = N,(Hu, + N ,(Su,

or
N, NJRO=N 12
u—[ ‘ j] " =Nu (12)
Strain 1s given by (1) and (12) as
g=@=[iN}u=Bu (13)
dx |dx

where B 1s the element strain-displacement matrix, which 1s
. d . d d&
B= |8 KB~ NBlz

16 B=[—1/L l/L] (14)
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Bar and Beam Elements

Stress can be written as
o=FEe¢=FEBu
Consider the strain energy stored in the bar

L gtaar =L (B zBar
_2Ia el == (u"B"EBuld/

V V

= %uT[ _f (BTEB)dI']u

V
where (13) and (15) have been used.

The work done by the two nodal forces is

1 1 L s
W=—fu+—fu =—uf
2-/;1 2f_, Jj 2

For conservative system, we state that
U=W

which gives

l"r-‘- T r ___1_T
zu{ (B"EB)I }u_zu f

Vv

We can conclude that

[I(B"EB)dV

Vv

u="~f

(15)

(16)

(17)

(18)

30
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or
ku = f (19)

where

k= _[ (B"EB)V (20)

1s the element stiffness matrix.

Expression (20) 1s a general result which can be used for
the construction of other types of elements. This expression can
also be derived using other more rigorous approaches, such as
the Principle of Minimum Potential Energy, or the Galerkin's
Method.

Now, we evaluate (20) for the bar element by using (14)

L

-1/L 1 =l
k=I E[-1/L 1/L]Adx=E

VUL E|l=1 1

which 1s the same as we derived using the direct method.

Note that from (16) and (20), the strain energy in the
element can be written as

U -—-%uTku 21)

31
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Example 2.1

MD24E O AE
. =

¥
1 2| P 3 X
L i L
Problem: Find the stresses in the two bar assembly which 1s

loaded with force P, and constrained at the two ends,
as shown 1n the figure.

Solution: Use two 1-D bar elements.

Element 1,
U u,
= ?%4{—1 1 —11J
Element 2,
u, Uy

1 -1
o s
= B |l= 1
Imagine a frictionless pin at node 2, which connects the two
elements. We can assemble the global FE equation as follows,
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—

2 =2 01(u
E—A—Z 3 =1RKRu,p=1F,

7 2 2
| 0 =1 1 |l% F,

Load and boundary conditions (BC) are,
u, =u; =0, F,=P

FE equation becomes,

[2 =2 01][0 E
% -2 3 —=1Ru, =P
7 2

| 0 =1 T |10 F,

Deleting the 1* row and column, and the 3™ row and column, we
obtain,

23w} = (P}

Thus,
PL
U, =——o0
3EA
and
u, 0
PL
W0, += 1
= 3EA
u 0

3

Stress in element 1 1s

33
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u,
0,=Es =EBu, =E[-1/L 1/L};

u,—u, E( PL P

gt E( P o P
L L\3EA 34

Similarly, stress in element 2 1s

u,
o,=E¢g, =EB,u, =E[-1/L 1/L]{u'}
3

u,—u, E PL, P
=F2—2_-— (0 - ) L
L L 3EA 34
which indicates that bar 2 1s in compression.
Check the results!
Notes:

e [n this case, the calculated stresses in elements 1 and 2
are exact within the linear theory for 1-D bar structures.
It will not help if we further divide element 1 or 2 into
smaller finite elements.

e For tapered bars, averaged values of the cross-sectional
areas should be used for the elements.

e We need to find the displacements first in order to find

the stresses, since we are using the displacement based
FEM.

34
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© u *@Tfi
12

L

Example 2.2

Problem: Determine the support reaction forces at the two ends
of the bar shown above, given the following,
P=60x10*"N, E=20x10"N/mm?,
A=250mm*, L=150mm, A=1.2mm

Solution:

We first check to see if or not the contact of the bar with
the wall on the right will occur. To do this, we imagine the wall
on the right 1s removed and calculate the displacement at the
right end,

_PL_ (60x10")150)

" = 7 =18 mm>A=12mm
EA  (20x10")(250)

Thus, contact occurs.

The global FE equation is found to be,

35
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1 -1 0 ][z F,

EA
—|=1 2 =1{u,p=1F
L -
| @ =L 1 ||% F,

The load and boundary conditions are,

F,=P=60x10'N

u =0, u, =A=12mm

FE equation becomes,

1 -1 0[O0 )

E -1 2 —=1Kwu,p=3xP
7 2

| B =L 1 ]JtA F,

The 2™ equation gives,

B el

that 1s,
%[2]{1‘1, } = {P +EA}
L . I
Solving this, we obtain

u, =—1-(PL+A) =15mm
© 2\EA

and

36
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u, 0
u, p =19 1.5 (mm)
u, 12

To calculate the support reaction forces, we apply the 1%
and 3" equations in the global FE equation.

The 1* equation gives,

u,

F,zﬁ[l -1 O] u, =EA(—u,)=-—5.O><104N
L - L -
u,
and the 3" equation gives,
EA | g
E, = z 0 -1 1[ju,p= = (—u, +u,)
15 )
=-10x10*N

Check the results.!

37
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Distributed Load
- S
K ] [
1 —»x ]
qL/2 ql/2
—¢ —

Uniformly distributed axial load ¢ (N/mm, N/m, Ib/in) can
be converted to two equivalent nodal forces of magnitude gl./2.
We verify this by considering the work done by the load g,

L 1 1
1 1 L
W, = J-Euqu = EJ‘u(f)q(Ld.f) = %J‘u(é’)df

0

=%![N,-<f> N,(@]{Z; }d§

38
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that 1s,
1 : qlL/2
173" W {qL/2} (2)
Thus, from the U= concept for the element, we have
—un ku=—uf+—-uf (23)
2 2 2 1
which yields
ku=f+f, (24)
The new nodal force vector 1s
fi+qlL/2
f+f = 25
o { f,+qL12 o

In an assembly of bars,

> »q . >
) & (7
1 2 3
qL/2 qL ql./2
—r-g .2_‘ p—
] 3

39
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Bar Elements in 2-D and 3-D Space
2-D Case

= X
Local Global
X,y X, Y
u, v, u, v,
1 dof at a node 2 dof’s at a node

Note: Lateral displacement v; does not contribute to the stretch
of the bar, within the linear theory.

Transformation

. . u,
u, = u; cos@+v,sin@=|1 m]{ '}

V.

I

. , u,
v, =—u, sin@ +v, cosd =[~m I]{ }
v,

i

where / = cos@, m=smné.

40
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Chapter 2. Bar and Beam Elements

In matrix form,
w| [ 1 m|fy,
vi| [-m 1]y

u =Tu,

or,

where the transformation matrix

T=[ l m}
-m |

is orthogonal, thatis, T =T".

For the two nodes of the bar element, we have

w)] [1 m 0 0] u
v, e -m I 0 0]y, :
u, 10 0 I m u,
vj | 0 0 -m [ ||v]
or,

: , T 0
u =Tu with T = =

0 T

The nodal forces are transformed in the same way,

f =TI

(26)

(27)

(28)

(29)

(30)

41
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Stiffness Matrix in the 2-D Space
In the local coordinate system, we have

%l—lu;_fi'
L—llu;_fj'

Augmenting this equation, we write

1 0 -1 0]fu) (£
EA[ 0 0 0 Ov;}_O}
L|-10 1 0|lu| |f
0 0 0 Offv,] |0}
or,
ku =f

Using transformations given in (29) and (30), we obtain
k Tu=Tf

Multiplying both sides by T” and noticing that T'T = I, we
obtain

T’k Tu=f (31)

Thus, the element stiffness matrix k in the global coordinate
system 1s

k=Tk'T (32)

which is a 4x4 symmetric matrix.
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Explicit form,

i i J J
P Im -1 —Im]
Jiis EA Im m* —-lm —-m’ (33)
L|=-PF -lm P Im
| —Im -m* Im  m’ i

Calculation of the directional cosines [ and m:

) )

[ =cosf = .,  m=sinf=-"2L—" (34)
L L

The structure stiffness matrix 1s assembled by using the element
stiffness matrices in the usual way as in the 1-D case.

Element Stress

(u, |
u, 1 177 m 0 0]|y
oc=FEe=EB ; =f|—=— — 4 }
u, L LJj0 0 I m|lu,
[¥5 ]
That 1s,
u, )
E v,
O'—Z-[—l -m 1 m| u.} (35)

J

VJ-J

43



Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

Example 2.3

A simple plane truss 1s made
of two 1dentical bars (with E, 4, and
L), and loaded as shown 1in the
figure. Find

1) displacement of node 2;
2) stress 1n each bar.

Solution:

This simple structure 1s used
here to demonstrate the assembly
and solution process using the bar element in 2-D space.

In local coordinate systems, we have

. EA[1 -1]
g ~K,
Ll-1 1

These two matrices cannot be assembled together, because they
are in different coordinate systems. We need to convert them to
global coordinate system OXY.

Element I:

0=45°, 1=m=£
2
Using formula (32) or (33), we obtain the stiffness matrix in the

global system
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u v
[ 1 1
k, =T1Tk.lTl =’Eﬁ 1 1
2L -1 -1
-1 -1
Element 2:
g=13%, Iz—ﬂ, m=£
2 2
We have,
142 VZ
1 -1
T “L 2
- " 2L1-1 1
1 -1
Assemble the structure FE equation,
o v, u, v, u
1 1 -1 -1 0
1 1 -1 -1 0
EAl-1 -1 2 0 -1
23L|-1 -1 0 2 1
0O 0 -1 1 1
L0 @ 1 =1 =l

Vi

0
0
]
-1

|
1

v,

_ﬂ
-1
1
k]

V3

.
-1
-1

1 -

(”1\ (le\
v Fy
1, F,

I | (P |
v, Fy
Uy Fiy

vs)] sy,
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L.oad and boundary conditions (BC):
=V =u;=v; =0, Fox=h, Fpy=F
Condensed FE equation,
EA(2 Ol|u,| [R
2L{0 2|lv,| |R
Solving this, we obtain the displacement of node 2,
w,| L |A
v,| EA|P,

Using formula (35), we calculate the stresses in the two bars,

(0’
EJ‘ 0 2

Oy = [ 1 P}=E(R+P2)
1
P, ]
(B
f 24

a,=££[l -1 -1 1]L< '}:ﬂ(Pl—P,)

G - ) EA[O0 24 X
LOJ

Check the results:

Look for the equilibrium conditions, symmetry,
antisymmetry, etc.
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Example 2.4 (Multipoint Constraint)

For the plane truss shown above,
P=1000kN, L=1m, E =210GPa,
A=60x10"*m* forelements 1 and 2,
A=62x10"m* for element 3.
Determine the displacements and reaction forces.

Solution:

We have an inclined roller at node 3, which needs special
attention in the FE solution. We first assemble the global FE
equation for the truss.

Element 1:

8=00", =0,
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u, v, u, v,

—

_(210x10”)(6.0x107")

k, 1

0
1 (N/m)

m
0

o o O O

=]

Element 2:

_(210x107)(6.0x107*)| O
1 -1

Kk, (N/m)

20 O Q@%
O
-

Element 3:

0=45", I=

5i-
i
-

05 05 -05 -05
_(210x10°)(62x107")| 05 05 -05 -05

k3

N2 ~05 -05 05 05
|-05 -05 05 05|
(N / m)
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The global FE equation 1s,
(05 05 0 0 -05 -05|(u,) [F,)
15 0 -1 =05 -05]|v, E,

: 1 O =l 0 |{u,
]260 X 10 < } =9
1 0 0 ||v, ey

15 05 ||u, F,

 Sym. 05 1% |Fe)
LLoad and boundary conditions (BC):

w = =y =0 and v =0,
F;’.X = P’ }73.1' =10,

From the transformation relation and the BC. we have

' [ V2 \/E:Hus} J2
Vg = =— — =—(—y +v;) =0,
2 2 ||v, 2

that 1s,
U, —v, =0
This 1s a multipoint constraint (MPC).

Similarly, we have a relation for the force at node 3,

ol )-8

=—(F,, +F,;)=0,
2 2 F;y 2 ( 3X SY) ?

that 1s,
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Fiy +F,; =0

Applying the load and BC’s in the structure FE equation by
‘deleting” 1%, 2™ and 4™ rows and columns. we have

1 -1 0 ]fu,] P

1260x10°| -1 15 05[u, p=1F,
005 05)(v,) |Ey

Further, from the MPC and the force relation at node 3, the
equation becomes,

1 -1 0 |[u, P
1260x10%| -1 15 05Ru, b=4 F,,
| 0 05 05]|u, -
which 1s
(1 1] P
1260x10°| =1 2 {"2} = B
{
= 0 1 J - _st
The 3" equation yields,
F,, =-1260x10"u,
Substituting this into the : 1d rearranging, we have
J 1 P
1260 x 10°
-1 0

Solving this, we obtain the displacements,
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u,| ]
u, [ 2520 x 10°

3P
P

0.01191
0.003968

L

From the global FE equation, we can calculate the reaction

forces,
[Fix ] 0 —05 —03] (~500)
2 0 -05 -05]||u, —-500
{E, $=1260x10°l 0 0 0 Ru,p=1< 00 }(kN)
F,, -1 15 05 [|lv,] |-500
| Fy | 0 05 05 | | 500 |
Check the results!

A general multipoint constraint (MPC) can be described as,
D Au, =0
J

where A4;’s are constants and #;’s are nodal displacement
components. In the FE software, such as MSC/NASTRAN, users
only need to specify this relation to the software. The software
will take care of the solution.

Penalty Approach for Hc and MPC’s
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3-D Case

Local Global
XYz X EZ
u ,v,, w, w v, w,

1 dof at node 3 dof’s at node

Element stiffness matrices are calculated in the local
coordinate systems and then transformed into the global
coordinate system (X, ¥, Z) where they are assembled.

FEA software packages will do this transformation
automatically.

Input data for bar elements:
e (X, Y, Z)for each node

e I and A for each element
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lll. Beam Elen

Simple Plane Be
y
;
6, M B
2] i L
L
length
i § moment of nertia of the cross-sectional area
E elastic modulus
v =v(x) deflection (lateral displacement) of the
neutral axis
O = % rotation about the z-axis

F = F(x) shear force

M = M(x) moment about z-axis

Elementary Beam Theory:

Er® 2‘,’ = M(x) (36)
dx”
g = —% (37)
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Direct Method

Using the results from elementary beam theory to compute
each column of the stiffness matrix.

Element stiffness equation (local node: i,jorl, 2):

(Fig. 2.3-1. on Page 21 of Cook’s Book)

Element stiffness equation (local node: 1,jor 1, 2):

v, 0 v 0

i J J

12 6L -12 6L 1w [F
Er| 6L 41 -6L 2% ||| |M,|  (38)
L|-12 -6L 12 -6L vj}zﬁFj}

6L 21} -6L 4’ ||9,| |M,]
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Formal Approach
Apply the formula,

L
k = IBTEIde (39)
0

To derive this, we introduce the shape functions,

N,(x)=1-3x*/L*+2x* /I
N,(x) =x—-2x*/L+x’/I?

N (»=3x"/1"-2% /1 (9)
N,(x)=-x*/L+x*/ L}
Then, we can represent the deflection as,
v(x) = Nu
(v, ]
0, (41)

=[Nl(x) N,(x) N,(x) N4(x)]*v'f

&

J )

which 1s a cubic function. Notice that,
N,+N, =1
N,+N,L+ N, =x

which implies that the rigid body motion 1s represented by the
assumed deformed shape of the beam.
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Curvature of the beam 1s,

d’ ‘,’ 4’ Nu = Bu (42)
dx® dx’
where the strain-displacement matrix B is given by,
B9 () Ni)]
dx’ (43)

[ 6 12x 4 6x 6 12x 2 Gx]
o i e o= ey - i
Y i 3 L I P L Ty, Iv

Strain energy stored in the beam element is

oo -Af-8) 32

V
§ 1 (dv) (dzv)
=5.0M EN[dx—EJ‘ dx E] dxz dx
L
=%. (Bu) EI(Bu)dx
0
L
= -;—uTU-BTEIde]u
0

We conclude that the stiffness matrix for the simple beam
element is

L
k = IBTEIde
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Applying the result in (43) and carrying out the integration, we
arrive at the same stiffness matrix as given in (38).

Combining the axial stiffness (bar element), we obtain the
stiffness matrix of a general 2-D beam element,

u, v, Hi u, v, HJ.
b 0 o -4 0 0 7
L L
12EI  G6EI 12EI  6EI
‘ I3 I O - 12
OEI  4EI  ,  _GEl 2K
K = i T i L
_& () () .E_A () O
7 L
12EI  6EI 12E] 6El
O = 7= r I
6EI  2EI 6EI  4EI
0 2 e 0 T o
L L 7 L F

3-D Beam Element

The element stiffness matrix is formed in the local (2-D)
coordinate system first and then transformed into the global (3-
D) coordinate system to be assembled.

(=lord *‘n

PR
\ . ,'f- Uy
3 e
/.= L

Nocal ot in
cobal zacrsmat

-
-

X Nogal gef.
Ioca| coondmnates

(Fig. 2.3-2. On Page 24 of Cook’s book)
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Example 2.5
A v

N P
M
oW lle
1 EI |2 3
| L

o L

L

-

Given:  The beam shown above 1s clamped at the two ends and
acted upon by the force P and moment M 1n the mid-

span.

Find: The deflection and rotation at the center node and the
reaction forces and moments at the two ends.

Solution: Element stiffness matrices are,

v, o, v, o,

(12 6L -12 6L |

-

#r| 6k AL =6& 28

Y =T lo12 —6L 12 -6l
| 6L 2L -6L 4L’
v, o, V3 o,
12 6L =12 &L
. _EI| 6L 4L —6L 2L
3= | <12 —6L 12 —6L

6L 2L° -6L 4L
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Global FE equation 1s,
v, o, v, o, v, 0,
12 6L | -12 6L | 0o 0 v) [(E,)
6L AL* | -6L 2E | 0 0 |6 M,
Er|-12 -6L| 24 0 |-12 6L [(|v,| |FE,
Tler 22| o s |-er 21 o~ )M,
0 0 |-12 -6L| 12 =6L|v,| |F,
| 0 0 | 6L 2L’ [-6L 4L ||6,] |M,)
Loads and constraints (BC’s) are,
E,=-P, M,=M,
bon=g=g =0
Reduced FE equation,

EIl24 0'||v] [P

o 8r*||lg,] |M
Solving this we obtain,

v,| L |=PL

0,] 24EI'| 3M
From global FE equation, we obtain the reaction forces and
moments,
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F) [-12 6L (2P +3M /L)
M,| EIl-6L 20 |(v,) 1| PL+M

F D] -12 6L {92}=Z‘2P—3M/L}
M, |6L 2r*] | -PL+M |

Stresses in the beam at the two ends can be calculated using the
formula,

' I/

Note that the FE solution 1s exact according to the simple beam
theory, since no distributed load is present between the nodes.
Recall that,

d*v

El — = M(x)
and
;ﬂ =1" (V" - shear force in the beam)
X
dl’ e
— =q (g - distributed load on the beam)
X
Thus,
d4
EI === q(x)

If g(x)=0, then exact solution for the deflection v 1s a cubic
function of x, which 1s what described by our shape functions.
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Equivalent Nodal Loads of Distributed Transverse Load

HHHHT:

1 x T ]

qL/2

qL/2
ql/13 d _ qux’/zz
- ]

1

This can be verified by considering the work done by the
distributed load g.

Y
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r :
LY

Given: A cantilever beam with distributed lateral load p as
shown above.

Find. The deflection and rotation at the right end, the
reaction force and moment at the left end.

Solution: The work-equivalent nodal loads are shown below,

/

‘&'

1 EI 2 %
L

f=pLil2, m=pl/12

by

T

where

Applying the FE equation, we have




Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

12 6L -12 6L 1(v) (F,)
EI| 6L 4> —6L 2I° M,
-1z —61 12 —6Lllv.["\F,
6L 2 —6L 4L ||g

LLoad and constraints (BC’s) are,
E, =-f, M,=m
v, =6,=0

Reduced equation 1s.

EI| 12 -6L|([v,| |-f
L'|-6L 41 ||6,] | m
Solving this, we obtain,
v,| L [-2L°f+3Lm| [-pL'/8EI A)
0,| 6EI| —3Lf+6m — pL* | 6EI
These nodal values are the same as the exact solution. Note
that the deflection v(x) (for 0 < x< 0) in the beam by the FEM 1is,
however, different from that by the exact solution. The exact

solution by the simple beam theory is a 4™ order polynomial of
x, while the FE solution of v is only a 3™ order polynomial of x.

If the equivalent moment m 1s ignored, we have,
v,| L [-2Lf| |-pL'/6EI B)
6,] 6EI| -3Lf | |-pL'/4El

The errors in (B) will decrease 1f more elements are used. The
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equivalent moment m 1s often ignored in the FEM applications.
The FE solutions still converge as more elements are applied.

From the FE equation, we can calculate the reaction force
and moment as,

Fy|l| L[|-12 6L |[v,| | pL/2
M, EI|-6L 2I*||6,] |5pL*/12
where the result in (A) 1s used. This force vector gives the total

effective nodal forces which include the equivalent nodal forces
for the distributed lateral load p given by,

- pL/[2
—pl? /12

The correct reaction forces can be obtained as follows,

Fy| | pL/2 -pL/2 | | pL
M [ \5pl?/12| |-pI?/12| |pL*/2
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Example 2.7
by
| P
l © w1
" 2 3%, X
L L T L 4
Given: P=50kN. k=200kN/m, L =3 m,
E=210GPa, I=2x10"m".
Find. Deflections, rotations and reaction forces.

Solution:

The beam has a roller (or hinge) support at node 2 and a
spring support at node 3. We use two beam elements and one
spring element to solve this problem.

The spring stiffness matrix is given by,
Vy ¥,
k -k
k, =
-k k
Adding this stiffness matrix to the global FE equation (see
Example 2.5), we have
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vl 0] v.’. 82 v3 63 v4
12 &L 12 ‘6L 0 0 O—(vl‘ (Flf
4> =6, 21 0 0 0 (|4 M,
24 0 -12 6L 0 ||v,| |E,
El " .
e 81 —6L 2I* 0 KRG r=1M,|
124k ~6L —k|v| |E,
A2 0 |6 |M,
S Symmetry k' . Lv‘u LF;Y;
m which
3
k'=L—k
EI

1s used to simply the notation.

We now apply the boundary conditions,

V=0 =v,=v, =0,
M, =M, =0, Fy =-P

‘Deleting” the first three and seventh equations (rows and
columns), we have the following reduced equation,

—

8L —6L 2I'1](6, 0
~6L 12+k' —6LWKv,t=4-P

3

21 —-6L 4L’ ||6, 0

L -

EI
i

Solving this equation, we obtain the deflection and rotations at
node 2 and node 3.
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2 2
V, p=—— il 7L
g EI(12+7k")

3

The influence of the spring & 1s easily seen from this result.
Plugging in the given numbers, we can calculate

6, [-0.002492 rad
v, =4 —001744 m
6,] |-0007475 rad

From the global FE equation, we obtain the nodal reaction
forces as.

[ —6978 kN )
~69.78 kN-m
7] 162k
F,| | 3488kN

—-L
~
>

<

e
I

Checking the results: Draw free body diagram of the beam

69.78 kN 50 kKN
\d
(S
T 'y
69.78 kKN-m

116.2 kN 3.488 kKN

67



Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

FE Analysis of Frame Structures

Members in a frame are considered to be rigidly connected.
Both forces and moments can be transmitted through their joints.
We need the general beam element (combinations of bar and
simple beam elements) to model frames.

Example 2.8

500 Ib/ft

nnnnnm

—i

Y
3000 Ib 1 ® 2

E 14| | **®
4

3 X

. 12 fi

Given: E =30x10°psi, / =65in", A=68in’

Find. Displacements and rotations of the two joints 1 and 2.
Solution:

For this example, we first convert the distributed load to its
equivalent nodal loads.
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3000 Ib 3000 Ib
72000 Ib-in.
3000108, © 2 1772000 1b-in.
@, ©
3 4
]

In local coordinate system, the stiffness matrix for a general 2-D
beam element 1s

u, v, o, u, v, o,
E4 0 0 _EA 0 0 |
L L
12EI  6FEI 0 - 12EI  6EI
E L 54 E
0 6E] 4ET 0 _6EI  2EI
k= i L B L
_E4 0 0 EA 0 0
L L
12EI  6EI 12E1 6E]
0 T3 T T2 0 3 T2
L L L L
6E] 2EI 6ElI  4FEI
0 . — 0 ——
! 5 L L £,
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Element Connectivity Table

Element | Nodei(l) | Nodej (2)
1 1 2
2 3 1
3 4 2
For element 1, we have
u, v, 6, u, v, o,
[ 1417 0 0 —-141.7 0 0 ]
0 0.784 564 0 -0.784 564
0 564 5417 0 -564 2708
k. =k '=10"%
-1417 0 0 141.7 0 0
0 -0.784 -564 0 0784 —-564
0 564 2708 0 -564 5417 |
For elements 2 and 3, the stiffness matrix in local system 1s,
u,' v,' A u,' v, 0,
" 2125 0 0 -=2125 0 0
0 265 127 0 -265 127
’ 0 127 8125 0 —127 4063
k,'=k.)'=10"%
-212.5 0 0 2125 0 0
0 -265 -127 0 265 =127
0 127 4063 0 -127 8125

where 1=3. =1 for element 2 and 1=4, j=2 for element 3.
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In general, the transformation matrix T 1s,

] m 0 0 0 O]
-m [ 0 O 0 0
0O O 1 0 0 0
T =
0O 0 0 I m O
0 0 0 —-m [ O
0 0 0 0 0 1
We have
=0, m=1
for both elements 2 and 3. Thus,
0 1 0 0 0 O]
-1 00 0 O O
O 01 0 0 0
T =
O 00 O 1 0
0O 00 -1 0 O
0 00 0 0 1]

Using the transformation relation,
k=Tk'T

we obtain the stiffness matrices in the global coordinate system
for elements 2 and 3,
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k, =10* x

[

and

k, =10" x

u
[ 2.65
0
=127
—2:63
0

| <127

u,
[ 2.65
0
—127
—2.65
0

| —127

0
2125
0
0
=2125
0

V4
0
2125
0
0
-2125
0

—] 27

8125
127

4063

0,
~127
0
8125
127
0
4063

u
~2.63
0
127
2.65
0
127

u,
— 265
0
127
2.65
0
127

\4

0

=212.5

0
2125

¥3
0
-2125
0
0
2125

0

0

1

~127]
0
4063
127
0
8125 |

0,
~127]
0
4063
127
0
8125

Assembling the global FE equation and noticing the following
boundary conditions,

u, =v, =6, =u,=v,=6,=0
K. =30001b, F,, =0, E, =E,=-30001b;
M, =-720001t

we obtain the condensed .

.

720001b-1n.
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[ 1443 0 127 -141.7 0 0 [z
0 2133 564 0 -0.784 564 ||v,
10* 127 564 13542 0 -564 2708 < o, }
-141.7 0 0 1443 0 127 ||u,
0 -0.784 -564 0 2133 -564||v,
0 564 2708 127 -564 13542]|6,)
(3000 )
—3000
— 72000
=9 O
—-3000
| 72000 |
Solving this, we get
(w,) [ 00
v, ~000104in.
o, —-0.00139rad
(=1 o000l |
v, —00018in.
16,] |-388x10rad]

To calculate the reaction forces and moments at the two ends.
we employ the element FE equations for element 2 and element
3. We obtain,
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Fey —-672.71b

E, = 2210 1b

M, 60364 1b-1n.
and

F,, —-23381b

F,t= 3825 1b

M, 112641 1b-1n.
Check the results:

Draw the free-body diagram of the frame. Equilibrium 1s
maintained with the calculated forces and moments.

3000 1b 3000 Ib
72000 1b-in.
3000 Ib |
72000 1b-in.
60364 1b-in. 112641 1b-in.
672.7 1b 2338 1b

2210 1b 3825 1b
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Chapter 3. Two-Dimensional Problems

|. Review of the Basic Theory

In general, the stresses and strains in a structure consist of
SIX components:

s Oy Os Tiss Tios T for stresses,
and
BBy Bl W P i for strains.
O-_V
A
L T
r # 4)
L
o}
7t—> 7. !
3 4
0-.’
X
z

Under contain conditions, the state of stresses and strains
can be simplified. A general 3-D structure analysis can,
therefore, be reduced to a 2-D analysis.
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Plane (2-D) Problems

e Plane stress:

o, =17, =T, =0 (g, #0) (1)

X

A thin planar structure with constant thickness and
loading within the plane of the structure (xy-plane).

9% AV

+

Ny

e Plane strain:
8, =¥ s =0 (o, #0) (2)

A long structure with a uniform cross section and
transverse loading along its length (z-direction).

9% 19 %

-

xz?
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Stress-Strain-Temperature (Constitutive) Relations
For elastic and 1sotropic materials. we have,

e,] [1/E -viE 0 [o,] [g,]
s, r=|-vIiE 1/E 0 [o,t+36,¢7 (3)
Yw) L O 0 4Gl %s) [Zon)
or,
e=E'o+g,

where g, 1s the initial strain, E the Young’s modulus, v the
Poisson’s ratio and ( the shear modulus. Note that,

K
2(1+v)

(4)
which means that there are only two independent materials

constants for homogeneous and isotropic materials.

We can also express stresses in terms of strains by solving
the above equation,

crx\ 1 v 0 ] (a_t\ 8_‘0\
ot=mlv 1 0 g t-tet|  ©®
Tx_vJ ‘ __O O (1—“/)/2_ Lyny 7/.‘y0J
or,
c=E¢+o0,

where o, = —Eg, is the initial stress.
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The above relations are valid for plane stress case. For
plane strain case, we need to replace the material constants in
the above equations in the following fashion,

E—> & -
1-v*
Vo (6)
1-v
GG
For example. the stress 1s related to strain by
o, - 1-v v 0 Tle] [£;]
o, = v 1-v. 0 e t-1601
' (1+v)1-2v) ; '
Ty | 0 0 A-2v)/2\|7s] |Zwo,

in the plane strain case.

Initial strains due to temperature change (thermal loading)
1s given by,

3

B aAT
€, ¢ =90AT (7)
}/.tyOJ 0

where « 1s the coefficient of thermal expansion, A7 the change
of temperature. Note that if the structure 1s free to deform under
thermal loading, there will be no (elastic) stresses in the
structure.
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Strain and Displacement Relations
For small strains and small rotations, we have,

27 & at o

£ =— e p—

X 78v *7W=_+—
e Ty A

In matnx form,

3

e ] [élax 0

e l=l 0 /5 {"}, or &=Du 8)
’ \ %
Y 2/ 2O/

From this relation, we know that the strains (and thus
stresses) are one order lower than the displacements, if the
displacements are represented by polynomaals.

Equilibrium Equations
In elasticity theory. the stresses in the structure must satisfy
the following equilibrium equations,

bo. Or,
+

X ~ —_ 0
©)
or,, 0o,
Zip—=ud f. =0
& &

where f; and f, are body forces (such as gravity forces) per unit
volume. In FEM, these equilibrium conditions are satisfied in
an approximate sense.
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Boundary Conditions

The boundary S of the body can be divided into two parts,
S.and S;. The boundary conditions (BC’s) are described as,

u=u, v=v, on S,
[

- 10
t, =1, on S, ()
in which ¢, and ¢, are traction forces (stresses on the boundary)
and the barred quantities are those with known values.

In FEM, all types of loads (distributed surface loads. body
forces, concentrated forces and moments, etc.) are converted to
point forces acting at the nodes.

Exact Elasticity Solution

The exact solution (displacements, strains and stresses) of a
given problem must satisfy the equilibrium equations (9), the
given boundary conditions (10) and compatibility conditions
(structures should deform 1n a continuous manner, no cracks or
overlaps in the obtained displacement fields).
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Example 3.1

A plate 1s supported and loaded with distributed force p as
shown in the figure. The material constants are £ and v.

¥

S

Y'Y ¥y YO VY

=

Y

The exact solution for this simple problem can be found
easily as follows,

Displacement:
P P
u=-Xx, T
E B
Strain:
g‘ :ﬁ’ g‘( ——1"£', ywzo
E E
Stress:
o, =p, o, =0, 7, =0

Exact (or analytical) solutions for simple problems are
numbered (suppose there 1s a hole in the plate!). That 1s why we
need FEM!
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Il. Finite Elements for 2-D Problems

A General Formula for the Stiffness Matrix

Displacements («, v) in a plane element are interpolated
from nodal displacements (u;, v;) using shape functions N, as
follows,

u N O N, O -
— : Ju,por u=Nd (11)
v O N, O N, -~

where N 1s the shape function matrix, u the displacement vector
and d the nodal displacement vector. Here we have assumed
that # depends on the nodal values of # only, and v on nodal
values of v only.

From strain-displacement relation (Eq.(8)), the strain vector
1S,
£ = Du = DNd, or £=Bd (12)

where B = DN is the strain-displacement matrix.
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Consider the strain energy stored in an element,

U =lIGT8dI--’ = lJ‘(G‘ £, F OB, + rw}’w)dV

V 1 4
=lj'(Eg)ng1' =lJ'gTEng"
2 2

V V

=%dTJ‘BTEBdI’d
'/'

- Lakd
2

From this, we obtain the general formula for the element
stiffness matrix,

k =IBTEBdI' (13)
V

Note that unlike the 1-D cases. E here 1s a matrix which 1s given
by the stress-strain relation (e.g., Eq.(5) for plane stress).

The stiffness matrix k defined by (13) 1s symmetric since E
1s symmetric. Also note that given the material property, the
behavior of k depends on the B matrix only, which in turn on the
shape functions. Thus, the quality of finite elements in
representing the behavior of a structure is entirely determined by
the choice of shape functions.

Most commonly employed 2-D elements are linear or
quadratic triangles and quadrilaterals.
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Constant Strain Triangle (CST or T3)

This 1s the simplest 2-D element, which is also called
linear triangular element.

AV

Linear Triangular Element

For this element, we have three nodes at the vertices of the
triangle, which are numbered around the element in the
counterclockwise direction. Each node has two degrees of
freedom (can move in the x and y directions). The
displacements u# and v are assumed to be linear functions within
the element, that 1s,

u=b +b,x+by, v=>5b, +bx+byy (14)

where b; (1= 1, 2, ..., 6) are constants. From these, the strains
are found to be,

& =b,, &, =b, Vg = b, + b; (15)

which are constant throughout the element. Thus, we have the
name “‘constant strain triangle™ (CST).
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Displacements given by (14) should satisfy the following
SIX equations,

u =b +b,x, +b,y,

u,=b +b,x,+b,y,

v,=b, +bx, +b.y,

Solvmg these equations, we can find the coefficients b;, b, ...,
and b4 in terms of nodal displacements and coordinates.
Substituting these coefficients into (14) and rearranging the
terms, we obtain,

(1,

vl
u N 0 N, 0 N, 0|un
- . b (16)
V 0O N 0 N, 0 N,||v,

U,

Lv-h

where the shape functions (linear functions in x and y) are

Nl ZA{(xvys-xg.yo)'}'(yo y;)x+(x3~_x2)y}

3= 24 {(xs}ﬁ x1y3)+(y3_y1)x+(xl_x3)y} (17)
1
N, = ZA{(xxyv xz)’1)+(Y1_yz)x"'(xz_xn)y}

and
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I 1 X N
A=§det L x ¥ (18)
1 x5y

1s the area of the triangle (Prove this!).

Using the strain-displacement relation (8), results (16) and
(17), we have,

(1,

3 - vl

£, ([P 0 0 oy O Ik
g, }=Bd=ﬁ 0 % 0 2. 0O =x, <v: +(19)
Yy | (X3 Vaz X3 Vi Xy Vip | s

3

where x; = x;- x;and y; = y;-y; (i, j = 1, 2, 3). Again, we see
constant strains within the element. From stress-strain relation

(Eq.(5), for example), we see that stresses obtained using the
CST element are also constant.

Applying formula (13), we obtain the element stiffness
matrix for the CST element,

k= IBTEB dV = tA(B"EB) (20)
V

in which 7 1s the thickness of the element. Notice that k for CST
1s a 6 by 6 symmetric matrix. The matrix multiplication in (20)
can be carried out by a computer program.
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Both the expressions of the shape functions in (17) and
their derivations are lengthy and offer little insight into the
behavior of the element.

The Natural Coordinates

We introduce the natural coordinates (£.n) on the triangle,
then the shape functions can be represented simply by,

N,=¢, N,=n, stl—f'—ﬂ (21)
Notice that,
N,+N,+N, =1 (22)

which ensures that the rigid body translation is represented by
the chosen shape functions. Also, as in the 1-D case,

at node 1;

1,
N. = 23
: {O, at the other nodes )

and varies linearly within the element. The plot for shape
function N, 1s shown in the following figure. N, and N; have
similar features.
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Shape Function N, for CST

We have two coordinate systems for the element: the global
coordinates (x, y) and the natural coordinates (£, 7). The

relation between the two 1s given by
x=Nx +Nx, +N,x,

(24)
y=Ny, +N,y, +N,y,

or,

X=X+ X+ X,

- (25)
Y=Yis+tVulltys

where x; = x; - x;and y; = y; - y; (i, j = 1, 2, 3) as defined earlier.

Displacement « or v on the element can be viewed as
functions of (x, y) or (£.77). Using the chain rule for derivatives,

we have,

ou ) Ox JOyl[du) (Fu)

o&| |oe ofl||lox|  |ox
o"u}— Ox 5y<5u}_']<0"u}

on| |dn onl\dy| |9y

— .

(26)

where J 1s called the Jacobian matrix of the transformation.
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From (25), we calculate,

J=|:x13 y13:|, J! =L|: Va3 _yls] 27)
X3 Va 24 - x5 Xy

where detJ = x,,y,, —x,,¥,; = 24 has been used (4 1s the area of
the triangular element. Prove this!).

From (26), (27). (16) and (21) we have,

o fd
ﬁx}__l- y23 —y13<ﬁ§}
Jul 24|-x, x, ||%4 28
Jy. S -
=L Y “hs ||
2A = xB xlS llz = 113
Similarly,
Q\
Ox 1| Y —Val[Yi—V
- 29
ﬁ} 2A[—x23 X3 :Hv2 _v3} .
oy |

Using the results in (28) and (29), and the relations
£ =Du = DNd = Bd, we obtain the strain-displacement matrix,

-Y23 O yv, 0 y, O
B=—]0 x, 0 x, 0 x, (30)

| X33 Va3 X3 Vy Xy Vin ]

which 1s the same as we derived earlier in (19).
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Applications of the CST Element:

e Use in areas where the strain gradient 1s small.
e Use in mesh transition areas (fine mesh to coarse mesh).

e Avoid using CST in stress concentration or other crucial
areas 1n the structure, such as edges of holes and comers.

e Recommended for quick and preliminary FE analysis of
2-D problems.

Analysis of composite materials (for which the CST 1s NOT appropnate!)
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Linear Strain Triangle (LST or T6)
This element 1s also called quadratic triangular element.

Quadratic Triangular Element

There are six nodes on this element: three corer nodes and
three midside nodes. Each node has two degrees of freedom
(DOF) as before. The displacements (u, v) are assumed to be
quadratic functions of (x, y).

u=>b +bx+by+b,x*+bxy+by’ a1

2

v=>b,+bx+b,y+b,x’+b,xy+b,y

where b; (1= 1, 2, ..., 12) are constants. From these, the strains
are found to be.

&, =b, +2bx+b;y

g, =b, +b,x+2b,y (32)

Vi = (bs +b8)+(b5 +2b10 )x+(2b6 +bn )y

which are linear functions. Thus, we have the “linear strain
triangle™ (LST), which provides better results than the CST.
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In the natural coordinate system we defined earlier, the six
shape functions for the LST element are,

N, =&(28-1)

N, =n2n-1)

N, =2 -1) -
N,=4&n

N; =4n¢g

Ne=4¢¢

in which £'=1-&-n. Each of these six shape functions
represents a quadratic form on the element as shown 1n the
figure.

Shape Function N, for LST

Displacements can be written as,
6 6

u=y Nu, v=Y Ny, (34)
i=1 i=1

The element stiffness matrix is still given by
k= IBT EBdl’, but here B'EB is quadratic in x and y. In
V

general, the integral has to be computed numerically.
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Linear Quadrilateral Element (Q4)

Linear Quadrilateral Element

There are four nodes at the comers of the quadrilateral
shape. In the natural coordinate system (&, 7). the four shape

functions are.

Ny==(-&1-n), N,=~1+&X1-n)
‘I ‘1‘ (35)
N =461+, N =7 (=81 +7)

4
Note that ' N, =1 at any point inside the element, as expected.
i=1

The displacement field is given by

4 4
u=y Nu,, v=> Ny, (36)
i=1 i1

which are bilinear functions over the element.
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Quadratic Quadrilateral Element (Q8)

This 1s the most widely used element for 2-D problems due
to 1ts high accuracy in analysis and flexibility in modeling.

Quadratic Quadrilateral Element

There are eight nodes for this element, four corners nodes
and four midside nodes. In the natural coordinate system (&, 7).

the eight shape functions are,
1
N, =Z(1—§)(77—1)(§+ﬂ+1)

N, =%(1+§)(77—1)(77—§+1)
1 (37)
N, =70+ O+ n)E+7-1)

N, =%(§—1)(77+1)(§—f7+1)
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1 )
N, —5(1—77)(1"4: )

N, =%<l+§>(1 1)

N, =%(1+77)(1-§2)

N, =%(1—5)(1—772)

8
Again, we have ) N, =1 at any point inside the element.

i=1

The displacement field is given by

8 8

u=Yy Nu, v=>) Ny, (38)

i=1 i=1
which are quadratic functions over the element. Strains and
stresses over a quadratic quadrilateral element are linear
functions, which are better representations.

Nofes:

e Q4 and T3 are usually used together in a mesh with
linear elements.

e Q8 and T6 are usually applied in a mesh composed of
quadratic elements.

e Quadratic elements are preferred for stress analysis,
because of their high accuracy and the flexibility in
modeling complex geometry, such as curved boundaries.
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