INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	FLUII	FLUID MECHANICS AND MACHINES				
Course Code	AMEB	AMEB08				
Programme	B.Tech	3.Tech				
Semester	IV	IV ME				
Course Type	Core	Core				
Regulation	IARE - R18					
			Theory		Prac	tical
~ ~ ~	Lectu	res	Tutorials	Credits	Laboratory	Credits
Course Structure	3		1	4	3	2
Chief Coordinator	Dr. CH	VKN	ISN Moorthy, F	Professor		
Course Faculty	Dr. CH VKNSN Moorthy, Professor Mr. G. Sarath Raju, Assistant Professor					

COURSE OBJECTIVES:

The co	The course should enable the students to:				
Ι	Learn about the application of mass and momentum conservation laws for fluid flows.				
П	Understand the importance of dimensional analysis.				
Ш	Obtain the velocity and pressure variations in various types of simple flows.				
IV	Analyze the flow in water pumps and turbines.				

COURSE OUTCOMES (COs):

COs	Course Outcome
CO1	Discuss the basic concepts and methodologies of fluid statics
CO2	Understand various laws for fluid kinematics and dynamics
CO3	Understand the concepts of boundary layer theory and closed conduit flow
CO4	Explore the design, working and performance of turbines
CO5	Analyse the design, working, performance of pumps and dimensionality laws

COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLOs	At the end of the course, the student will have the ability to:
AMEB08.01	CLO 1	Define the properties of fluids and its characteristics.
AMEB08.02	CLO 2	Explain the hydrostatic forces on submerged bodies.

CLO Code	CLOs	At the end of the course, the student will have the ability to:
AMEB08.03	CLO 3	Define different types of manometers.
AMEB08.04	CLO 4	Apply the law of conservation of mass and derive continuity equation.
AMEB08.05	CLO 5	Demonstrate practical understanding of friction losses in internal flows.
AMEB08.06	CLO 6	Compare the results of analytical models introduced in lecture to the actual behavior of real fluid flows and draw correct and sustainable conclusions.
AMEB08.07	CLO 7	Calculate the performance analysis in turbines can be used in power plants.
AMEB08.08	CLO 8	Calculate the performance analysis in pumps.
AMEB08.09	CLO 9	Draw and analysis of performance characteristic curves of pumps.
AMEB08.10	CLO 10	Draw and analysis of performance characteristic curves of turbines.
AMEB08.11	CLO 11	Draw and analysis of characteristic curves of flow meters.
AMEB08.12	CLO 12	Determine the coefficient of impact of different types of vanes.
AMEB08.13	CLO 13	Determine the coefficient of discharge of different types of flow meters.
AMEB08.14	CLO 14	Determine the friction factor of different types of cross section of pipes.
AMEB08.15	CLO 15	Draw the characteristic curves of friction apparatus.
AMEB08.16	CLO 16	Determine the friction factor using moody's chart.
AMEB08.17	CLO 17	Applying the Darcy's Weisbach equation for the measurement of coefficient of friction.
AMEB08.18	CLO 18	Evaluate the performance of hydraulic turbines.
AMEB08.19	CLO 19	Evaluate the performance of hydraulic pumps.
AMEB08.20	CLO 20	Analyze flow in closed pipes, and design and selection of pipes including sizes.
AMEB08.21	CLO 21	Explain the working principle of various types of hydro turbines and know their application range
AMEB08.22	CLO 22	Demonstrate the various types of major and minor losses in pipes and explain flow between parallel plates.

		UNIT – I					
		FLUID STASTICS					
		Part - A (Short Answer Questions)					
S No		QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes		
1	Define	mass density and state its SI units	Understand	CO1	AMEB08.01		
2	Define	Weight density and state its SI units	Remember	CO1	AMEB08.01		
3	Define	Specific volume and state its SI units	Remember	CO1	AMEB08.01		
4	Define	specific gravity of a fluid and state its SI units	Understand	CO1	AMEB08.01		
5	Differe	ntiate between Liquids and gases	Remember	CO1	AMEB08.01		
6	Differe	ntiate between Real fluids and ideal fluids	Understand	CO1	AMEB08.01		
7		ntiate between Specific weight and specific e of a fluid.	Understand	CO1	AMEB08.01		
8	Differe fluids	ntiate between Newtonian and non-newtonian	Remember	CO1	AMEB08.01		
9	Define	dynamic viscosity and state its units	Remember	CO1	AMEB08.01		

10	Define and explain Newton's law of viscosity.	Remember	CO1	AMEB08.01
11	Why does the viscosity of a gas increases with the increases in temperature while that of a liquid decreases with increase in temperature?	Remember	CO1	AMEB08.01
12	One litre of crude oil weighs 9.6N.calculate its specific weight, density and specific gravity.	Remember	CO1	AMEB08.01
13	Define vapour pressure	Remember	CO1	AMEB08.01
14	What is the principle of continuity equation?	Remember	CO1	AMEB08.01
15	Write the general 3 dimensional continuity equation	Remember	CO1	AMEB08.01
16	Define the property of capillarity	Understand	CO1	AMEB08.01
17	Define kinematic viscosity and state its units	Remember	CO1	AMEB08.01
18	Differentiate between compressible and in compressible fluids	Remember	CO1	AMEB08.01
19	fluid flow	Understand	CO1	AMEB08.01
20	Write the continuity equation for steady incompressible fluid flow	Understand	CO1	AMEB08.01
	Part - B (Long Ansv	ver Questions)		
1	Explain in detail mass density, write its units and explain the effect of temperature and pressure on mass density	Understand	CO1	AMEB08.01
2	Explain in detail weight density, write its units and explain the effect of temperature and pressure on weight density	Understand	CO1	AMEB08.01
3	Derive the relation between the mass density and weight density	Understand	CO1	AMEB08.02
4	Explain in detail specific gravity, write its units and explain the effect of temperature and pressure on specific gravity	Understand	CO1	AMEB08.03
5	Explain with a neat sketch the viscosity, newton's law of viscosity, and the effect of temperature and pressure on viscosity	Understand	CO1	AMEB08.02
6	Explain in detail the kinematic and dynamic viscosity and derive the relation between them.	Understand	CO1	AMEB08.02
7	Explain in detail the momentum equation along with its derivation.	Understand	CO1	AMEB08.01
8	Define density and specific weight and derive the relation between them.	Remember	CO1	AMEB08.03
9	The pressure 3 metre below the free surface of a liquid is 13.72 kN/m^2 . Determine its specific weight	Remember	CO1	AMEB08.02
10	State the principle of continuity equation. Derive the general 3-D continuity equation for a fluid flow	Remember	CO1	AMEB08.02
11	State the principle of continuity equation. Derive the 1- D continuity equation for a fluid flow along a stream line flow	Remember	CO1	AMEB08.02
12	State and explain the momentum equation.	Remember	CO1	AMEB08.02
13	How thick is the layer of liquid mud (specific gravity 1.6) at the bottom of a river with water 8 m deep, if there is a pressure of 343 kN/m^2 at the bottom of the mud? Treat the mud as a fluid	Understand	CO1	AMEB08.03

		** 1 1	G A A	
14	8 - I	Understand	CO1	AMEB08.04
	bearing of length 120 mm. if the thickness of oil film is			
	1.5mm and dynamic viscosity of oil is 0.7Ns/m ² .			
	Determine i) torque required to overcome friction in			
	bearing, ii) power utilized in overcoming viscous			
1.7	resistance.	TT 1 / 1	001	
15	If the velocity distribution over a plate is given by $u = (2/2)$	Understand	CO1	AMEB08.05
	$(2/3)y - y^3$, in which 'u' is the velocity in m/s at a			
	distance 'y' meter above the plate, determine the shear stress at y=0 and y=0.3m. Take dynamic viscosity of			
	fluid as 8.63 poise.			
16	The surface tension of water in contact with air 20° c is	Understand	C01	AMEB08.02
10	given as 0.0816 N/m. The pressure inside the drop let of	Onderstand	COI	THULD00.02
	water is to be 0.0517 N/cm ² greater than the outside			
	pressure. Calculate the diameter of the droplet of water			
17		Understand	CO1	AMEB08.03
	Newtonian fluids			
18	Explain the difference between Real and Ideal fluids	Remember	CO1	AMEB08.01
19	Explain in detail different types of fluids with a neat	Understand	CO1	AMEB08.01
	sketch of the graph			
20		Understand	CO1	AMEB08.01
	of liquid happen in fluids			
	Part - C (Problem Solving and C	ritical Thinkin	g Question	s)
1	a) Explain the term surface tension	Apply	CO1	AMEB08.02
	b) A 40 mm diameter shaft is rotating at 200 rpm in a			
	bearing of length 120 mm. if the thickness of oil film is			
	1.5mm and dynamic viscosity of oil is 0.7Ns/m^2 .			
	Determine i) torque required to overcome friction in			
	bearing, ii) power utilized in overcoming viscous			
-	resistance.	The demotent of	CO1	
2	a) Explain the terms viscosity and kinematic viscosity	Understand	COI	AMEB08.03
	b) State Newton's law viscosity and explain how viscosity varies with temperature for liquids and gases.			
3	a) An oil film of thickness 1.5mm is used for	Apply	CO1	AMEB08.02
5	lubrication between a square plate of size 0.9m x 0.9m	дрргу	COI	AMLD00.02
	and an inclined plane having an angle of inclination			
	20° . The weight of the square is 392.4 N and it slides			
	down the plane with a uniform velocity of 0.2 m/s.			
	Determine the dynamic viscosity of the oil.			
	b) Derive the units of viscosity and kinematic viscosity.			
4	a) Define viscosity and derive Newton's law of	Apply	CO1	AMEB08.05
	viscosity.	•		
	b) If the velocity distribution over a plate is given by u			
1	= $(2/3)y - y^2$, in which 'u' is the velocity in m/s at a			
	distance 'y' meter above the plate, determine the shear			
	stress at y=0 and y=0.15m. Take dynamic viscosity of $x = 0.15m$			
<u> </u>	fluid as 8.63 poise.		001	
5	The diameters of a pipe at the sections 1 and 2 are 10	Apply	CO1	AMEB08.04
	cm and 15 cm respectively. Find the discharge through the nine if the velocity of water flowing through the			
1	the pipe if the velocity of water flowing through the pipe at section 1 is 5 m/s. Determine also the velocity			
1	pipe at section 1 is 5 m/s. Determine also the velocity at section 2.			

	a) An oil film of thickness 2mm is used for lubrication	Apply	CO1	AMEB08.04
	a) An oil film of thickness 3mm is used for lubrication between a square plate of size 1.8m x 1.8m and an	11.2	COI	AMEBU8.04
. 1	inclined plane having an angle of inclination 20° . The			
	weight of the square is 392.4 N and it slides down the			
	plane with a uniform velocity of 0.2 m/s. Determine the			
	dynamic viscosity of the oil.			
	b) What are poise and stoke? Write the corresponding			
	conversion factors with SI units.			
	a) Explain the principle of continuity equation.	Apply	CO1	AMEB08.04
	b) A 30 cm diameter pipe, conveying water, branched into two pipes of diameters 20 cm and 15 cm			
	respectively. If the average velocity in the 30 cm			
	diameter pipe is 2.5 m/s, find the discharge in this pipe.			
	Also determine the velocity in 15 cm pipe if the			
	average velocity in 20 cm diameter pipe is 2 m/s.			
	a) Explain the concept of surface tension with neat	Apply	CO1	AMEB08.04
	sketch			
	b) The surface tension of water in contact with air 20° c			
	is given as 0.0716 N/m. The pressure inside the drop let of water is to be 0.0417 N/cm ² greater than the outside			
	pressure. Calculate the diameter of the droplet of water.			
	a) The velocity profile of a viscous fluid over a plate is	Apply	CO1	AMEB08.03
	parabolic with vertex 20cm from the plate, where the			
	velocity is 120cm/s. calculate the velocity gradient and			
	shear stress at distance of 0.5 and 15cm from the plate,			
	given the viscosity of the fluid =6 poise.			
	b) Define specific gravity, specific volume and specific			
	weight. a) An oil film of thickness 4.5mm is used for	Apply	CO1	AMEB08.04
	lubrication between a square plates is of size 2.7m x	11 2	001	AMLD00.04
	2.7m and an inclined plane having an angle of			
	inclination 20°. The weight of the square is 392.4N and			
	it slides down the plane with a uniform velocity of 0.2			
	m/s. Calculate the dynamic viscosity of the oil.			
	m/s. Calculate the dynamic viscosity of the oil.b) Derive the relation between mass density and weight			
	m/s. Calculate the dynamic viscosity of the oil.b) Derive the relation between mass density and weight density.			
	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT -	II	ICS	
	m/s. Calculate the dynamic viscosity of the oil.b) Derive the relation between mass density and weight density.	II AND DYNAM		
	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans	II AND DYNAM		Course
	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS	II AND DYNAM wer Questions		Course Learning
S No	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION	II AND DYNAM wer Questions Blooms taxonomy level	Course Outcomes	Learning Outcomes
S No 1	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern.	II AND DYNAM wer Questions) Blooms taxonomy level Remember	Course Outcomes CO2	Learning Outcomes AMEB08.06
S No 1 2	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern.	II AND DYNAM wer Questions Blooms taxonomy level Remember Remember	Course Outcomes CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.06
S No 1 2 3	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern	II AND DYNAM wer Questions Blooms taxonomy level Remember Remember Remember	Course Outcomes CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.06 AMEB08.07
S No 1 2 3 4	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain stream tube	II AND DYNAM wer Questions) Blooms taxonomy level Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.06 AMEB08.07 AMEB08.06
S No 1 2 3 4 5	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain streak line flow pattern Explain stream tube Differentiate steady and unsteady flow.	II AND DYNAM wer Questions) Blooms taxonomy level Remember Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.06 AMEB08.06 AMEB08.06
S No 1 2 3 4 5 6	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain stream tube Differentiate steady and unsteady flow. Differentiate uniform and non-uniform flow	II AND DYNAM wer Questions) Blooms taxonomy level Remember Remember Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.07 AMEB08.06 AMEB08.06 AMEB08.07
S No 1 2 3 4 5 6 7	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain streak line flow pattern Explain stream tube Differentiate steady and unsteady flow. Differentiate uniform and non-uniform flow Differentiate laminar and turbulent flow	II AND DYNAM wer Questions) Blooms taxonomy level Remember Remember Remember Remember Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.07 AMEB08.06 AMEB08.06 AMEB08.07 AMEB08.08
S No 1 2 3 4 5 6 7	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain stream tube Differentiate steady and unsteady flow. Differentiate uniform and non-uniform flow	II AND DYNAM wer Questions) Blooms taxonomy level Remember Remember Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.07 AMEB08.06 AMEB08.06 AMEB08.07
S No 1 2 3 4 5 6 7	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain streak line flow pattern Explain streak line flow pattern Differentiate steady and unsteady flow. Differentiate uniform and non-uniform flow Differentiate laminar and turbulent flow Differentiate rotational and irrotational flow What is flow nozzle?	II AND DYNAM wer Questions Blooms taxonomy level Remember Remember Remember Remember Remember Remember Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.07 AMEB08.06 AMEB08.06 AMEB08.07 AMEB08.09 AMEB08.09
S No 1 2 3 4 5 6 7 8	m/s. Calculate the dynamic viscosity of the oil. b) Derive the relation between mass density and weight density. UNIT - FLUID KINEMATICS Part – A (Short Ans QUESTION Explain stream line flow pattern. Explain path line flow pattern. Explain streak line flow pattern Explain streak line flow pattern Explain stream tube Differentiate steady and unsteady flow. Differentiate uniform and non-uniform flow Differentiate laminar and turbulent flow Differentiate rotational and irrotational flow	II AND DYNAM wer Questions) Blooms taxonomy level Remember Remember Remember Remember Remember Remember Remember Remember Remember Remember	Course Outcomes CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	Learning Outcomes AMEB08.06 AMEB08.07 AMEB08.06 AMEB08.06 AMEB08.07 AMEB08.08 AMEB08.09

12	What forces are included in Navier Stoke's equation	Remember	CO2	AMEB08.06
13	-	Understand	CO2	AMEB08.06
14	-	Remember	CO2	AMEB08.08
15	What are body forces?	Understand	CO2	AMEB08.08
16	-	Understand	CO2	AMEB08.09
17	Write the assumptions of Bernoulli's equation	Understand	CO2	AMEB08.06
	What is a Venturi?		CO2	AMEB08.00
18		Remember		
19	What is the principle of Bernolli's equation	Remember	CO2	AMEB08.08
20	what is surface and body forces	Understand	CO2	AMEB08.06
	Part - B (Long Answ			-
	Write different types of flows and Explain in detail Steady flow	Understand	CO2	AMEB08.06
	Write different types of flows and Explain in detail Unsteady flow	Understand	CO2	AMEB08.07
	Write different types of flows and Explain in detail Uniform flow	Understand	CO2	AMEB08.06
	Write different types of flows and Explain in detail non Uniform flow	Understand	CO2	AMEB08.07
5	Write different types of flows and Explain in detail Laminar flow	Understand	CO2	AMEB08.06
	Write different types of flows and Explain in detail Turbulent flow	Remember	CO2	AMEB08.07
	Write different types of flows and Explain in rotational flow	Understand	CO2	AMEB08.06
8	Write different types of flows and Explain in detail irrotational flow	Understand	CO2	AMEB08.07
9	Classify the patterns of flow and Explain in detail with neat sketch the Stream line flow	Understand	CO2	AMEB08.06
10	Classify the patterns of flow and Explain in detail with neat sketch the Streak line flow	Understand	CO2	AMEB08.07
	Classify the patterns of flow and Explain in detail the path line flow and stream tube	Remember	CO2	AMEB08.06
	Classify and Explain different types of forces acting on a fluid flow	Remember	CO2	AMEB08.07
13	Describe the working of a venture meter with a neat sketch.	Remember	CO2	AMEB08.06
14	Describe the working of an orifice meter with a neat sketch.	Understand	CO2	AMEB08.07
	Derive Euler's equation for a fluid flow	Remember	CO2	AMEB08.08
	State the principle and Derive Bernoulli's equation for a fluid flow	Remember	CO2	AMEB08.09
17	State the assumptions of Bernoulli's equation and list the applications of Bernoulli's equation	Understand	CO2	AMEB08.07
	Describe the working of Pitot tube with neat sketch	Understand	CO2	AMEB08.08
19	Describe the working of Flow Nozzle with neat sketch	Understand	CO2	AMEB08.09
	Explain the terms fluid statics, fluid dynamics, fluid kinetics and fluid kinematics	Remember	CO2	AMEB08.09
	Part – C (Problem Solving a	nd Critical Th	inking)	1
L	· · · · · · · · · · · · · · · · · · ·		U.	

1	a) Define path line, stream line steam tube and streak line.b) Water flows through a pipe AB 1.2 m dia. at 3m/s	Apply	CO2	AMEB08.06
	and then pass through pipe BC 1.5 m dia. At C the			
	pipe branches, branch CD is 0.8 m dia. And carries $1^{/3}$			
	rd of the flow in AB the flow velocity in branch CE is			
	2.5 m/s. Calculate the volume rate of flow in AB, the			
2	velocity in BC, the velocity in CD and dia. of CE.	Understand	CO2	AMEDOS 07
2	a) Explain various regions of Venturimeter with a neat sketch	Understand	02	AMEB08.07
	b) A horizontal venturimeter with inlet and throat			
	diameters 30 cm and 15 cm respectively is used to			
	measure the flow of water. The reading of differential			
	manometer connected to the inlet and the throat is 20			
	cm of mercury. Determine the rate of flow. Take Cd =			
	0.98.			
3	a) State the assumptions and derive Bernoulli's	Remember	CO2	AMEB08.06
	equation for flow along a stream line.			
	b) Define and state examples of following flows			
	i) Steady and unsteady			
4	ii) Laminar and turbulent	L'u deusteu d	CO2	AMEB08.07
4	a) Explain body force, surface force and line force with examples	Understand	002	AMEB08.07
	b) A vertical Venturimeter with inlet and throat			
	diameters 30 cm and 15 cm respectively is used to			
	measure the flow of water. The reading of differential			
	manometer connected to the inlet and the throat is 20			
	cm of mercury. Determine the rate of flow. Take Cd =			
	0.98. The throat is 25 cm above the inlet			
5	a). Explain various regions of orifice meter with a neat	Understand	CO2	AMEB08.08
	sketch			
	b). An orifice meter with orifice diameter 15 cm is			
	inserted in a pipe of 30 cm diameter. The pressure			
	difference measured by a mercury oil differential			
	manometer on the two sides of the orifice meter gives a reading of 50 cm of mercury. Find the rate of flow of			
	oil of specific gravity 0.9 when the co-efficient of			
1	discharge of the meter = 0.64 .			
6	a). Explain the pitot tube with neat sketch	Understand	CO2	AMEB08.12
	b) The water is flowing through a pipe having			
1	diameters 20cm and 15cm at sections 1 and 2			
	respectively. The rate of flow through pipe is 40 ltr/s.			
1	the section 1 is 6 m above datum line and section 2 is			
	3m above the datum. If the pressure at section 1 is			
	29.43 N/cm ² , Calculate the intensity of pressure at			
	section 2.			
7	a) 250 lps of water is flowing in a pipe having a	Understand	CO2	AMEB08.08
	diameter of 300 mm. If the pipe is bent by 135° find the			
	magnitude and the direction of the resultant force on the head. The pressure of water flowing is 30.24			
1	the bend. The pressure of water flowing is 39.24 N/cm ² .			
1	b) Define rotational and irrotational flows with			
	examples.			
L				

		** 1 1	G 0 0	
8	a) a pipe of diameter 400 mm carries water at a	Understand	CO2	AMEB08.07
	velocity of 25 m/s. the pressure at the points A & B are given as 29.43 N/cm ² and 22.563 N/cm ² respectively,			
	while the datum head at A and B are 28 m and 30 m.			
	Calculate the loss of head at A and B.			
	b) Define uniform and non-uniform flows with			
	examples.			
9	a) The water is flowing through a taper pipe of length	Understand	CO2	AMEB08.08
	100 m having diameters 600 mm at the upper end and 300 mm at the lower end, at the rate of 50 lps. The pipe			
	has a slope of 1 in 30; determine the pressure at lower			
	end if pressure at higher level is 19.62 N/cm ² .			
	b) Derive an expression for Euler's equation of a flow			
10	along a stream line. a). a pipe of diameter 800 mm carries water at a	Understand	CO2	AMEB08.09
10	a). a pipe of diameter 800 mm carries water at a velocity of 50 m/s. the pressure at the points A & B are	Understand	02	AMED00.09
	given as 29.43 N/cm ² and 22.563 N/cm ² respectively,			
	while the datum head at A and B are 28 m and 30 m.			
	Calculate the loss of head at A and B.			
	b) Define compressible and in-compressible flows UNIT-III (C	TF_I)		
	BOUNDARY LAYER CONCEPTS AN		CONDUIT F	WOL
	Part - A (Short Answ			LOW
S	QUESTION	Blooms	Course	Course
No		taxonomy	Outcomes	Learning
		level		Outcomes
1	Write the condition of Reynold's number for Laminar	Understand	CO3	AMEB08.10
2	boundary layer region What is the separation of boundary layer?	Understand	CO3	AMEB08.11
3	What is laminar flow over a flat plate?	Remember	CO3	AMEB08.10
4	What is turbulence flow over a flat plate?	Understand	CO3	AMEB08.11
5	Write Darcy weisbach equation.	Understand	CO3	AMEB08.10
6	Define coefficient of friction and friction factor	Remember	CO3	AMEB08.11
7	What is the condition for boundary layer separation	Understand	CO3	AMEB08.10
8	Explain the relation between coefficient of friction and	Understand	CO3	AMEB08.11
	friction factor			
9	Define drag	Remember	CO3	AMEB08.10
10	Define lift	Remember	CO3	AMEB08.11
11	What is the expression for boundary layer thickness	Remember	CO3	AMEB08.10
12	Sketch the boundary layer formation over the flat plate	Understand	CO3	AMEB08.11
	Name the region at the end of the plate after boundary	Remember	CO3	AMEB08.11
13		Remember	000	
	layer formation	Understand	CO3	
13				AMEB08.10 AMEB08.10
13 14	layer formation Write the expression for momentum thickness	Understand Understand	CO3	AMEB08.10
13 14	layer formation Write the expression for momentum thickness What is transition flow over a flat plate. Part – B (Long Answerther Explain with neat sketch different regions of boundary	Understand Understand	CO3	AMEB08.10
13 14 15 1	layer formation Write the expression for momentum thickness What is transition flow over a flat plate. Part – B (Long Answ Explain with neat sketch different regions of boundary layer when a fluid is flowing over a horizontal flat plate	Understand Understand ver Questions) Evaluate	CO3 CO3 CO3	AMEB08.10 AMEB08.10 AMEB08.10
13 14 15 1 2	layer formation Write the expression for momentum thickness What is transition flow over a flat plate. Part – B (Long Answerther Part – B (Long Answerther Part – B) Explain with neat sketch different regions of boundary layer when a fluid is flowing over a horizontal flat plate Derive the equation for energy thickness	Understand Understand ver Questions) Evaluate Understand	CO3 CO3 CO3 CO3	AMEB08.10 AMEB08.10 AMEB08.10 AMEB08.10
13 14 15 1 2	layer formation Write the expression for momentum thickness What is transition flow over a flat plate. Part – B (Long Answ Explain with neat sketch different regions of boundary layer when a fluid is flowing over a horizontal flat plate	Understand Understand ver Questions) Evaluate	CO3 CO3 CO3	AMEB08.10 AMEB08.10 AMEB08.10

5	Derive the equation for displacement thickness	Remember	CO3	AMEB08.10
	Derive the equation for momentum thickness	Understand	CO3	AMEB08.10
	What will happen when the pipes are connected in	Understand	CO3	AMEB08.11
	series and in parallel?			
	Derive an expression for loss of head due to sudden enlargement	Remember	CO3	AMEB08.11
	Derive an expression for loss of head due to sudden contraction	Remember	CO3	AMEB08.10
	Explain boundary layer separation with neat sketch	Remember	CO3	AMEB08.10
	Part – C (Problem Solving	and Critical Th	ninking)	
1	a) Derive an expression for displacement thickness due to formation of boundary layer.b) Define boundary layer and boundary layer thickness.	Understand	CO3	AMEB08.10
1	a) Define drag and lift on a submerged body? b) For the velocity profile $2(y/\delta)$ - $(y/\delta)^2$, find the thickness of boundary layer at the end of the plate and the drag force on one side of a plate 1 m long and 0.8 m wide when placed in water flowing with a velocity of 150 mm/s. calculate the value of coefficient of drag also. Take μ for water as 0.01 poise.		CO3	AMEB08.10
1	a) Define displacement thickness, momentum thickness and energy thickness. b) Calculate the displacement thickness, momentum thickness for the velocity distribution in the boundary layer given by $u/U=2(y/\delta) - (\frac{y}{s})^2$	Apply	CO3	AMEB08.10
4	a) Define energy thickness, momentum thickness and boundary layer thickness.b) Derive an expression for momentum thickness of boundary layer.		CO3	AMEB08.10
	 a) Explain the boundary layer over a flat plate with neat sketch. b) A crude oil of kinematic viscosity and 0.4 stoke is flowing through a pipe of diameter 300 mm at the rate of 300 lps. Find the head loss due to friction for a length of 50 m of the pipe. 		CO3	AMEB08.10
	UNIT-III (O	CIE-II)		
	BOUNDARY LAYER CONCEPTS A	ND CLOSED	CONDUIT F	LOW
	Part - A (Short Ans	wer Questions)		
S No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
1	What is the principle used to derive Darcy-Weisbach equation.	Remember	CO3	AMEB08.10
2	What are the Froud's Laws of friction	Remember	CO3	AMEB08.11
3	Write the expression for the head loss at entrance	Understand	CO3	AMEB08.11
4	Explain the expression for the head loss at exit	Understand	CO3	AMEB08.11
5	Write the expression for the head loss due to sudden enlargement	Remember	CO3	AMEB08.10
6	Describe the expression for the head loss due to sudden contraction	Remember	CO3	AMEB08.11
7	Write the expression for the head loss due to sudden obstruction	Remember	CO3	AMEB08.11

8	What is the expression for the head loss due to pipe bend?	Understand	CO3	AMEB08.11
9	Describe the expression for the head loss due to pipe fitting	Remember	CO3	AMEB08.11
10		Remember	CO3	AMEB08.11
11	What is Poisuielle flow?	Remember	CO3	AMEB08.10
12	What is meant by TEL ?	Understand	CO3	AMEB08.10
13	What is meant by HGL?	Understand	CO3	AMEB08.11
14		Remember	CO3	AMEB08.10
15		Understand	CO3	AMEB08.11
10	Part – B (Long Ansv			
1	Find the head lost due to friction in a pipe of diameter 300 mm and length 50m through which water is flowing at a velocity of 3m/s. Take the kinematic viscosity of water is 0.01 stoke.	Understand	CO3	AMEB08.10
	Explain in detail Reynold's experiment with neat sketch	Remember	CO3	AMEB08.11
	Define drag and explain the difference between pressure drag and friction drag	Remember	CO3	AMEB08.11
4	A crude oil of kinematic viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm at the rate of 300 lps. Find the head lost due to friction for a length of 50m of the pope	Understand	CO3	AMEB08.11
5	Derive Darcy-Weisbach eauation.	Remember	CO3	AMEB08.10
	Explain various minor energy losses.	Understand	CO3	AMEB08.11
	An oil of specific gravity 0.7 is flowing through a pipe of diameter 300mm at the rate of 500 lps. Find the head lost due to friction and power required to maintain the flow for a length of 1000 m. Take kinematic viscosity as 0.29 stokes	Understand	CO3	AMEB08.11
8	Water is flowing through a pipe of diameter 600 mm and length 60m through which water is flowing at a velocity of 4 m/s. Take the kinematic viscosity of water is 0.01 stoke. Find the head lost due to friction.	Understand	CO3	AMEB08.11
	The rate of flow of water through a horizontal pipe is 0.25 m^3 /s. The diameter of the pipe which is 200mm is suddenly enlarged to 400 mm. The pressure intensity in the smaller pipe is 11.772 N/cm ² Determine (i) loss of head due to sudden enlargement (ii) Power lost due to enlargement.	Understand	CO3	AMEB08.11
10	Derive an expression for the ratio of Length to diameter of a compound pipe	Understand	CO3	AMEB08.11
	Part – C (Problem Solving a	nd Critical Th	inking)	
	a) Explain the sudden enlargement of pipe with neat sketch? b) A horizontal pipe of diameter 500 mm is suddenly contracted to a diameter of 250 mm. The pressure intensities in the large and smaller pipe is given as 13.734 N/cm ² and 11.772 N/cm ² respectively. Find the loss of head due to contraction if $Cc = 0.62$. Also determine the rate of flow of water.	Apply	CO3	AMEB08.10

 b) A pipe of diameter 20 cm and length 2000 m connects two reservoirs, having difference of water levels as 20 m. Determine the discharge through the pipe. If an additional pipe of diameter 20 cm and length 1200 m is attached to the last 1200 m length of the existing pipe, calculate the increase in the discharge. Take f = 0.015 and neglect minor losses. 3 a) Explain the sudden contraction of pipe with neat sketch? b) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of 	IEB08.10 IEB08.10
connects two reservoirs, having difference of water levels as 20 m. Determine the discharge through the pipe. If an additional pipe of diameter 20 cm and length 1200 m is attached to the last 1200 m length of the 	EB08.10
levels as 20 m. Determine the discharge through the pipe. If an additional pipe of diameter 20 cm and length 1200 m is attached to the last 1200 m length of the existing pipe, calculate the increase in the discharge. Take f = 0.015 and neglect minor losses.ApplyCO3AM3 a) Explain the sudden contraction of pipe with neat sketch? b) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height ofApplyCO3AM	IEB08.10
1200 m is attached to the last 1200 m length of the existing pipe, calculate the increase in the discharge. Take f = 0.015 and neglect minor losses.ApplyCO33 a) Explain the sudden contraction of pipe with neat sketch? b) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height ofApply	IEB08.10
existing pipe, calculate the increase in the discharge. Take f = 0.015 and neglect minor losses.ApplyCO33 a) Explain the sudden contraction of pipe with neat sketch? b) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height ofApplyCO3	IEB08.10
Take f = 0.015 and neglect minor losses.3 a) Explain the sudden contraction of pipe with neat sketch?ApplyCO3AMb) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height ofCO3AM	IEB08.10
3 a) Explain the sudden contraction of pipe with neat sketch?ApplyCO3AMb) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height ofCO3AM	IEB08.10
sketch?b) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of	LD08.10
b) A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of	
water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of	
length from the tank is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of	
diameter is suddenly enlarged to 300 mm. The height of	
water level in the tank is 8 m above the centre of the	
pipe. Considering all losses of head which occur,	
determine the rate of flow. Take $f = 0.01$ for both	
sections of the pipe, also draw HGL and TEL.	
	IEB08.10
contracted. b) A pipe of diameter 40 cm and length 1000 m	
connects two reservoirs, having difference of water	
levels as 40 m. Determine the discharge through the	
pipe. If an additional pipe of diameter 20 cm and length	
1200 m is attached to the last 1200 m length of the	
existing pipe, calculate the increase in the discharge. Take $f = 0.015$ and neglect minor losses.	
	IEB08.10
object with neat sketch	
b) A horizontal pipe of diameter 1000 mm is suddenly	
contracted to a diameter of 500 mm. The pressure intensities in the large and smaller pipe is given as	
13.734 N/cm ² and 11.772 N/cm ² respectively. Find the	
loss of head due to contraction if $Cc = 0.62$. Also	
determine the rate of flow of water.	
UNIT-IV FLUID MACHINES	
Part – A (Short Answer Questions)	
	Course
	earning
level Ou	utcomes
	IEB08.10
	IEB08.10
3 Mention different specific speeds for different Remember CO4 AM turbines.	IEB08.10
4 What is the purpose of draft tube? Remember CO4 AM	IEB08.10
	IEB08.10
5 Define unit speed and write its expression Understand CO4 AM	
5Define unit speed and write its expressionUnderstandCO4AM6Differentiate axial and radial flow turbines.RememberCO4AM	IEB08.13
5Define unit speed and write its expressionUnderstandCO4AM6Differentiate axial and radial flow turbines.RememberCO4AM7What are the different heads in turbines?UnderstandCO4AM	IEB08.13
5Define unit speed and write its expressionUnderstandCO4AM6Differentiate axial and radial flow turbines.RememberCO4AM7What are the different heads in turbines?UnderstandCO4AM8How governing of a turbine takes place?UnderstandCO4AM	IEB08.13 IEB08.13
5Define unit speed and write its expressionUnderstandCO4AM6Differentiate axial and radial flow turbines.RememberCO4AM7What are the different heads in turbines?UnderstandCO4AM8How governing of a turbine takes place?UnderstandCO4AM9How cavitation occurs?RememberCO4AM	IEB08.13

11	What is overall efficiency of turbine?	Remember	CO4	AMEB08.13
12	When do you use pelton wheel turbine?	Remember	CO4	AMEB08.13
13	Name different types of draft tubes	Remember	CO4	AMEB08.13
14	What is water hammer?	Remember	CO4	AMEB08.13
15	Draw O.C curves for turbines	Understand	CO4	AMEB08.13
16	Define unit power and write its expression	Remember	CO4	AMEB08.13
17	Define unit discharge and write its expression	Remember	CO4	AMEB08.10
18		Remember	CO4	AMEB08.10
	What are specific qualities? What is the formula for draft tube efficiency?	Remember	CO4	AMEB08.10
	-			
20	What is the power that is used in specific speed of turbine?	Remember	CO4	AMEB08.10
	Part – B (Long Ansv			
1	A Pelton wheel having a mean bucket diameter of 1.0 m is running at 1000 r.p.m. the side clearance angle is 150 and discharge through the nozzle is $0.1 \text{ m}^3/\text{s}$, determine power available at the nozzle and hydraulic efficiency of the turbine.	Understand	CO4	AMEB08.10
2	A turbine develops 18000 KW when running at 200 rpm. The head on the turbine is 60 m. if the head on the turbine reduced to 36m, determine the speed and power developed by the turbine.	Understand	CO4	AMEB08.10
3	Draw and explain in detail the velocity triangles of Pelton turbine.	Understand	CO4	AMEB08.10
4	A hydraulic turbine under a head of 50 metres develops 14520 kW running at 220 rpm. What is the specific speed of the turbine? What types of turbine is this. Find also the normal speed and output if the head on the turbine is reduced to 20 metres.	Understand	CO4	AMEB08.10
5	A Pelton wheel is having a mean bucket diameter of 1 m and is running at 1000 rpm, The net head on the Pelton wheel is 700 m. If the side clearance angle is 15^0 and discharge through nozzle is 0.1 m ³ /s find the power available at the nozzle and hydraulic efficiency of the turbine.	Understand	CO4	AMEB08.10
6	Derive an expression for unit discharge of a turbine	Understand	CO4	AMEB08.10
7	Determine the power given by the jet of water to the runner of a Pelton wheel which is having tangential velocity as 20 m/s. The net head on the turbine is 50 m and discharge through the jet water is $0.03 \text{ m}^3/\text{s}$. The side clearance angle is 15° and take C _v =0.975	Understand	CO4	AMEB08.10
8	What is the necessity of a surge tank in turbines. Explain different types of surges with the aid of neat diagrams.	Understand	CO4	AMEB08.10
9	Explain the working of Francis turbine with neat diagram	Understand	CO4	AMEB08.10
	A turbine develops 9000 KW when running at 100 rpm. The head on the turbine is 30 m. if the head on the turbine reduced to 18m, determine the speed and power developed by the turbine.	Understand	CO4	AMEB08.10
11	Derive an expression for specific speed of a turbine	Understand	CO4	AMEB08.10
12	How to govern the impulse turbines? Explain with a neat sketch.	Apply	CO4	AMEB08.10
13	Derive an expression for unit power of a turbine	Understand	CO4	AMEB08.13

14	A hydraulic turbine under a head of 25 metres develops 7260 kW running at 110 rpm. What is the specific speed of the turbine? What types of turbine is this. Find also the normal speed and output if the head on the turbine is reduced to 20 metres.	Understand	CO4	AMEB08.13
15	Derive an expression for unit speed of a turbine	Understand	CO4	AMEB08.13
	Explain the working of a Pelton wheel with neat sketches?	Understand	CO4	AMEB08.13
17	A Francis turbine works under a head of 8.5 m at a speed of 300 rpm. A power of 100 KW is developed with a discharge of 3 m3/sec. The runner diameter is 2.2 m. Find the speed, discharge and power if the head is increased to 18m.	Understand	CO4	AMEB08.13
18	A hydraulic turbine working under a head of 165 metres runs at 300 rpm, the discharge of the turbine being 0.60m ³ /sec. The overall efficiency of the turbine is 85%. Find the type of turbine.	Understand	CO4	AMEB08.13
19	A turbine is to operate under a head of 30 metres at 250 rpm. The discharge is 10.5m ³ /sec. if the efficiency is 85% determine i. Power generated ii. The specific speed of the turbine iii. Type of turbine iv. Performance under a head of 25 metres.	Remember	CO4	AMEB08.13
20	a) How do you achieve the governing of turbines? Explain with neat sketches.b) Discuss the different characteristic curves of turbines?	Understand	CO4	AMEB08.13
	Part – C (Problem Solving a	and Critical Th	inking)	
1	 a) Differentiate the impulse and reaction turbines. b) An inward flow reaction turbine has external and internal diameters as 1 m and 0.5 m respectively. The velocity of flow through the runner is constant and is equal to 1.5 m/s. Determine the discharge through the runner and width of the turbine at outlet if the width of the turbine at inlet is 200mm 	Apply	CO4	AMEB08.10
2	 a) Give the classification of turbines. b) A Kaplan turbine develops 20MW power at an average head of 69 m. assuming speed ratio of 4, flow ratio of 1.2, diameter of the boss = 0.35 x diameter of the runner and an overall efficiency of 90%. Calculate the diameter, speed and specific speed of the turbine. 	Apply	CO4	AMEB08.10
3	 a) Define the following; i. Unit speed ii. Unit discharge iii. Unit power iv. Degree of reaction b) A Pelton wheel having a mean bucket diameter of 2.0 m is running at 2000 r.p.m. the side clearance angle is 300 and discharge through the nozzle is 0.2 m³/s, determine power available at the nozzle and hydraulic efficiency of the turbine. 	Apply	CO4	AMEB08.10

4	a) Define the following efficiencies;	Apply	CO4	AMEB08.10
	i. Mechanical ii. Volumetric iii.			
	Overalliv. Hydraulic			
	b) A Pelton wheel is having a mean bucket diameter of			
	1 m and is running at 1000 rpm. The net head on the			
	Pelton wheel is 700 m. if the side clearance angle is 150			
	15° and discharge through nozzle is $0.1 \text{m}^3/\text{s}$, calculate:			
	i. Power available at the nozzle, and ii. Hydraulic			
_	efficiency of the turbine.	1	<u></u>	
5	a).Explain degree of reaction for reaction turbines.	Apply	CO4	AMEB08.10
	b). A turbine is to operate under a head of 90 metres at 750			
	750 rpm. The discharge is $31.5m^3$ /sec. if the efficiency			
	is 85% determine			
	i. Power generated			
	ii. The specific speed of the turbine			
	iii. Type of turbine and Performance under a head of			
	75 metres.	XX 1 / 1	004	
6	a) A Pelton wheel is to be designed for the following	Understand	CO4	AMEB08.13
	specifications. Shaft power = 735.75 KW, head = 200			
	m, speed = 800 rpm, overall efficiency = 0.86 and jet			
	diameter not to exceed $1/10^{\text{th}}$ of wheel diameter.			
	Determine i. wheel diameter, ii. No. of jets required			
	and iii. Diameter of jet. Take Cv=0.98 and Kv=0.45.			
7	b) Explain the function of draft tube.a) Draw and explain OC curves of turbines under	Understand	CO4	AMEB08.13
/	constant head.	Understand	004	AMLD00.15
	b) A turbine is to operate under a head 25 m at 200			
	rpm. The discharge is 9 cumec. If the efficiency is			
	90%, determine the performance of the turbine under			
	head of 20 m.			
8	a) How to govern the impulse turbines? Explain with a	Understand	CO4	AMEB08.13
Ŭ	neat sketch.	Charlotana	001	
	b) A turbine develops 9000 KW when running at 100			
	rpm. The head on the turbine is 30 m. if the head on the			
	turbine reduced to 18m, determine the speed and power			
	developed by the turbine.			
9	a) Explain the terms;	Apply	CO4	AMEB08.13
	i. Cavitation and ii. Water hammer			
	b) A Kaplan turbine develops 24647.6 KW power at			
	an average head of 39 m. assuming speed ratio of 2,			
	flow ratio of 0.6, diameter of the boss = 0.35 x			
	diameter of the runner and an overall efficiency of			
	90%. Calculate the diameter, speed and specific speed			
	of the turbine.			
10	a) Derive an expression for specific speed of a turbine.	Apply	CO4	AMEB08.13
	b) A Francis turbine with an overall efficiency of 75%			
	is required to produce 148.25 KW power. It is working			
	under a head of 7.62 m. the peripheral velocity =			
	$0.26\sqrt{(2gH)}$ and the radial velocity of flow at inlet is			
	$0.96\sqrt{(2gH)}$. The wheel runs at 150 rpm and the			
	hydraulic losses in the turbine are 22% of the available			
	energy. Assuming radial discharge determine; i. The			
	guide blade angle, ii. The wheel vane angle at inlet and			
	iii. Diameter of the wheel at inlet.			
	UNIT-'	V		
	DIMENSIONAL ANAL	YSIS AND PLU	MPS	
I				

	Part - A (Short Ans	wer Questions)		
S No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
1	What is the function of pump?	Understand	CO5	AMEB08.14
2	Draw the neat diagram of centrifugal pump.	Understand	CO5	AMEB08.14
3	What is static head?	Understand	CO5	AMEB08.14
4	What is Manometric head?	Understand	CO5	AMEB08.14
5	Define specific speed for centrifugal pump?	Understand	CO5	AMEB08.14
6	Draw the O.C curves for centrifugal pump.	Understand	CO5	AMEB08.14
7	Draw the Muschel curves for centrifugal pump.	Understand	CO5	AMEB08.14
8	How cavitation occurs in centrifugal pumps.	Remember	CO5	AMEB08.15
9	What water hammer?	Remember	CO5	AMEB08.15
10	What is NPSH?	Understand	CO5	AMEB08.14
11	Name different efficiency of centrifugal pump	Understand	CO5	AMEB08.14
12	What are the functions of multistage centrifugal pump?		CO5	AMEB08.15
13	Define priming of centrifugal pump.	Understand	CO5	AMEB08.15
14	How can you prevent cavitations?	Remember	CO5	AMEB08.14
15	Write expression for Thomas cavitation factor	Remember	CO5	AMEB08.14
16	Define slip of reciprocating pump	Remember	CO5	AMEB08.14
17	What is meant by indicator diagram?	Remember	CO5	AMEB08.14
17	Write an expression for work done by reciprocating		CO5	AMEB08.15
10	pump	Kemember	005	AMED08.15
19		Understand	CO5	AMEB08.15
20	Draw constant efficiency curves for centrifugal pump	Understand	CO5	AMEB08.14
	Part - B (Long Ans	wer Questions)		
	A centrifugal pump is to discharge $0.118 \text{ m}^3/\text{s}$ at a speed of 1450 rpm against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.		CO5	AMEB08.14
2	The diameter of an impeller of a centrifugal pump at inlet and outlet are 30 cm and 60 cm respectively. Determine the minimum starting speed of the pump, if it works against a head of 30 m.		CO5	AMEB08.14
	Derive an expression specific speed of a centrifugal pump.	Understand	CO5	AMEB08.14
4	Draw and explain characteristic curves for centrifugal pumps.	Remember	CO5	AMEB08.14
5	What will happen when the pumps are connected in series and parallel?	Evaluate	CO5	AMEB08.14
6	What is Cavitation. Explain how it is detected. What are the effects of Cavitation. Explain how cavitation can be avoided.		CO5	AMEB08.14
7	A centrifugal pump having an overall efficiency of 80% delivers 1850 liters of water per minute to a height of 20 meters through a pipe of 100mm diameter and 95 meters length. Taking $f=0.0075$, find the power required to drive the pump.		CO5	AMEB08.14

		** 1 1	a a a	
8	Draw and explain centrifugal pump working with neat sketch.	Understand	CO5	AMEB08.14
9	Explain different efficiencies of centrifugal pump.	Understand	CO5	AMEB08.14
	How number of vanes effects head and efficiency of a centrifugal pump.	Understand	CO5	AMEB08.14
11	A centrifugal pump is to discharge $0.118 \text{ m}^3/\text{s}$ at a speed of 1450 rpm against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.	Understand	CO5	AMEB08.14
12	The diameter of an impeller of a centrifugal pump at inlet and outlet are 30 cm and 60 cm respectively. Determine the minimum starting speed of the pump, if it works against a head of 30 m.	Understand	CO5	AMEB08.14
13	Derive an expression specific speed of a centrifugal pump.	Understand	CO5	AMEB08.16
	Draw and explain characteristic curves for centrifugal pumps.	Understand	CO5	AMEB08.16
	What will happen when the pumps are connected in series and parallel?	Remember	CO5	AMEB08.14
16	What is Cavitation? Explain how it is detected. What are the effects of Cavitation? Explain how cavitation can be avoided.	Remember	CO5	AMEB08.14
17	A centrifugal pump having an overall efficiency of 80% delivers 1850 liters of water per minute to a height of 20 meters through a pipe of 100mm diameter and 95 meters length. Taking $f=0.0075$, find the power required to drive the pump.	Understand	CO5	AMEB08.15
18	Draw and explain centrifugal pump working with neat sketch.	Understand	CO5	AMEB08.15
19	Explain different efficiencies of centrifugal pump.	Understand	CO5	AMEB08.15
	How number of vanes effects head and efficiency of a centrifugal pump.	Understand	CO5	AMEB08.14
	Part – C (Problem Solving a	nd Critical Th	inking)	•
1	 a) What is the necessity of priming in centrifugal pumps? b) A centrifugal pump is to discharge 0.118 m³/s at a speed of 1450 rpm against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller. 	Understand	CO5	AMEB08.15
2	a) Give the classification of centrifugal pumps. b) A centrifugal pump delivers water against a net head of 14.5 m and a design speed of 1000 rpm. The vanes are curved back to an angle of 30^{0} with the periphery. The impeller diameter is 300 mm and outlet width 50 mm. determine the discharge of the pump if manometric efficiency 95%.	Apply	CO5	AMEB08.14
3	a) Differentiate between centrifugal and reciprocating pumps.b) The diameter of an impeller of a centrifugal pump at inlet and outlet are 30 cm and 60 cm respectively. Determine the minimum starting speed of the pump, if it works against a head of 30 m.	Apply	CO5	AMEB08.14

4	a) Define MDCH in manage	I In denoten d	COF	AMED09.15
4	a) Define NPSH in pumps.	Understand	CO5	AMEB08.15
	b) The diameters of an impeller of a centrifugal pump			
	at inlet and outlet are 30 cm and 60 cm respectively.			
	The velocity of flow at outlet is 2 m/s and the vanes (450)			
	are set back at angle of 45° at the outlet. Determine the			
	minimum starting speed of the pump, if the			
_	manometric efficiency is 70%.		~~~	
5	a) Explain the importance of multistage centrifugal	Apply	CO5	AMEB08.14
	pump.			
	b) A four stage centrifugal pump has four identical			
	impellers keyed to the same shaft. The shaft is running			
	at 400 rpm and the total manometric head developed			
	by the multistage pump is 40 m. The discharge through			
	the pump is $0.2 \text{ m}^3/\text{s}$. the vanes of each impeller are			
	having outlet angle as45 ⁰ . If the width and diameter of			
	each impeller at outlet is 5 cm and 6 cm respectively.			
	Calculate the manometric efficiency.			
6	a) Explain the working of a reciprocating pump with a	Apply	CO5	AMEB08.14
	neat sketch.			
	b) A double acting reciprocating pump running at 40			
	rpm is discharging 1 m ³ of water per minute. The pump			
	has a stroke of 400 mm. the diameter of the piston is			
	200 mm. the delivery and suction heads are 20 m and 5			
	m respectively. Determine the slip of the pump and the			
	power required to drive the pump.			
7	a) What is the function of an air vessel in reciprocating	Apply	CO5	AMEB08.14
	pumps?			
	b) A single stage centrifugal pump with impeller			
	diameter of 30 cm rotates at 2000 rpm and lifts 3 m ³ of			
	water per second to a height of 30 m with an efficiency			
	of 75%. Calculate the no. of stages and diameter of			
	each impeller of a similar multistage pump to lift 5 m ³			
	of water per second to a height of 200 m when rotating			
	at 1500 rpm.		~~ -	
8	a) Determine the number of pumps required to take	Apply	CO5	AMEB08.14
	water from a deep well under a total head of 89 m all			
	the pumps are identical and running at 800 rpm. The			
	specific speed of each pump is given as 25 while the			
	rated capacity of each pump is $0.16 \text{ m}^3/\text{s}$.			
	b) Draw and explain characteristic curves of			
	centrifugal pumps.		<i>a</i>	
9	a) Derive an expression for work done by the	Apply	CO5	AMEB08.15
	centrifugal pump.			
	b) A single-acting reciprocating pump running at 30			
	r.p.m., delivers 0.012 m ³ /s of water. The diameter of			
	the piston is 25 cm and stroke length 50 cm.			
	Determine:			
	i. The theoretical discharge of the pump			
	ii. Co-efficient of discharge, and			
	iii. Slip and percentage slip of the pump.			

10	a) Define the following;	Apply	CO5	AMEB08.14
	i. Manometric efficiency ii. Mechanical efficiency and			
	iii Quarall officiancy			
	iii. Overall efficiency.			
	b) A single-acting reciprocating pump has a plunger of			
	diameter 250 mm and stroke of 350 mm. if the speed of			
	the pump is 60 rpm and it deliver 16.5 lps of water			
	against a suction head of 5 m and a delivery head of 20			
	m. Determine the theoretical discharge, coefficient of			
	discharge, the slip, the percentage of slip and the power			
	required to drive the pump.			

Prepared By: Dr. CH.V.K.N.S.N Moorthy, Professor

HOD, MECHANICAL ENGINEERING