TARE TO THE TENTE OF THE TENTE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	AEROSPACE STRUCTURAL DYNAMICS							
Course Code	AAE01	AAE015						
Programme	B.Tech							
Semester	VII	VII AE						
Course Type	Core							
Regulation	IARE - R16							
	Theory Practical					cal		
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits		
	3		1	4	3	2		
Chief Coordinator	Dr. Sudhir Sastry .Y.B, Professor, AE							
Course Faculty	Dr. Sudhir Sastry .Y.B, Professor, AE Mr. T Mahesh Kumar, Assistant Professor, AE							

COURSE OBJECTIVES:

	The course should enable the students to:					
I	Demonstrate the knowledge of mathematics, science, and engineering by developing the equations					
	of motion for vibratory systems and solving for the free and forced response.					
II	Understand to identify, formulate and solve engineering problems. This will be accomplished by					
	having students model, analyze and modify a vibratory structure order to achieve specified					
	requirements.					
III	Introduce to structural vibrations which may affect safety and reliability of engineering systems.					
IV	Describe structural dynamic and steady and unsteady aerodynamics aspects of airframe and its					
	components of space structures.					

COURSE OUTCOMES (COs):

CO 1	Understand the concept of vibrations, equation of motion, response to harmonic excitation, impulsive
	excitation, step excitation, periodic excitation (Fourier series), Fourier transform), Laplace transform
	(Transfer Function).
CO 2	Remember and describe the concept of Eigen value problem, damping effect; Modeling of
	continuous systems as multi-degree-of-freedom systems, equations of motion of undamped systems
	in matrix form, unrestrained systems, free and forced vibration vibration of undamped systems; using
	modal analysis, forced vibration of viscously damped systems.
CO 3	Determine and apply the concept of nonlinear vibrations physical properties of nonlinear systems
	single-degree-of-freedom and multi-degree-of-freedom nonlinear systems. Random vibrations;,
	single-degree-of-freedom response, response to a white noise.
CO 4	Describe about transverse vibration of a string or cable, longitudinal vibration of a bar or rod,
	torsional vibration of shaft or rod, lateral vibration of beams, the Rayleigh-Ritz method.

CO 5	Understand the concept of Collar's aero elastic triangle, static aero elasticity aero elastic problems at
	transonic speeds, active flutter suppression. Effect of aero elasticity in flight vehicle design.

COURSE LEARNING OUTCOMES (CLOs):

AAE015.01	Apply principles of engineering, basic science, and mathematics (including multivariate
	calculus and differential equations) to model, analyze, design, and realize physical systems,
	components or processes, and work professionally in mechanical systems areas.
AAE015.02	Become proficient in the modeling and analysis of one degree of freedom systems - free
	vibrations, transient and steady-state forced vibrations, viscous and hysteric are damping.
AAE015.03	Understanding the response to periodic excitation (Fourier series ,Fourier transform)
AAE015.04	Using Laplace transforms and the Convolutional integral formulations to understand shock
	spectrum and system response for impact loads.
AAE015.05	Become proficient in the modeling and analysis of multi-dof systems - Lagrange's equations,
	reduction to one-dof systems for proportionally damped systems, modal analysis, vibration
	absorbers, vibration transmission, Fourier transforms.
AAE015.06	Convert the physical domain to mathematical formulation and development of governing
	equation based on number of masses in the system.
AAE015.07	Understanding the phenomenon of generalized coordinates and generalized forces, Lagrange's
	equations to derive equations of motion.
AAE015.08	Apply the Eigen value problem and describe expansion theorem, unrestrained systems, free
	vibration of undamped systems; forced vibration of undamped systems.
AAE015.09	Understand the concepts of nonlinear vibrations, simple examples of nonlinear systems,
	physical properties of nonlinear systems.
AAE015.10	Formulate simple problem solutions of the equation of motion of a single-degree-of-freedom
	nonlinear system, multi-degree-of-freedom nonlinear systems.
AAE015.11	Understand the concept of random processes, probability distribution and density functions,
	description of the mean values in terms of the probability density function.
AAE015.12	Understand the concept of autocorrelation function, power spectral density function, properties
	of the power spectral density function, white noise and narrow and large bandwidth.
AAE015.13	Understand the concepts of transverse vibration of a string or cable
AAE015.14	Derive the equations longitudinal vibration of a bar or rod, torsional vibration of shaft or rod
AAE015.15	Solve the problems for lateral vibration of beams, and the Rayleigh-Ritz method.
AAE015.16	Understand the concepts of Collar's aeroelastic triangle, static aeroelasticity phenomena
AAE015.17	Understand the concept of dynamic aeroelasticity phenomena
AAE015.18	Calculate the aeroelastic problems at transonic speeds, aeroelastic tailoring, active flutter
	suppression. Effect of aeroelasticity in flight vehicle design.
•	

TUTORIAL QUESTION BANK

	UNIT – I						
	SINGLE-DEGREE-OF-FREEDOM LINEAR SYSTEMS						
	Part - A (Short Answer Questions)						
S No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Outcomes			
1	What is Vibration? Define natural frequency. Why is it important to determine the	Remember	CO 1	AAE015.1			
	natural frequency of a vibrating system?						
2	What are the three elementary parts of a vibrating system?	Understand	CO 1	AAE015.1			
3	Define the following terms: Free, undamped, damped and forced vibrations.	Understand	CO 1	AAE015.1			
4	Define the following terms: Resonance, phase difference, periodic motion, time period, amplitude and degree of freedom.	Understand	CO 1	AAE015.1			

Distinguish between free and forced vibrations. Remember CO 1 AAE015.1					
Distinguish between Rectilinear and torsional system. Remember CO 1 AAE015.1	5	Distinguish between free and forced vibrations.	Understand	CO 1	AAE015.1
What are the various elements of a vibratory system? Remember CO 1 AAE015.1	6	Distinguish between damped and undamped vibrations.	Remember	CO 1	AAE015.1
Define longitudinal, transverse and torsional vibrations. Remember CO AAE015.1	7	Distinguish between Rectilinear and torsional system.	Remember	CO 1	AAE015.1
What is Forced Vibration? Give one example. Remember CO AAE015.2	8	What are the various elements of a vibratory system?	Remember	CO 1	AAE015.1
Understand CO AAE015.2	9	Define longitudinal, transverse and torsional vibrations.	Remember	CO 1	AAE015.1
Define damping. What is damping ratio? Remember CO 1 AAE015.2	10	What is Forced Vibration? Give one example.	Remember	CO 1	AAE015.2
13 Give three practical applications of the concept of center of percussion. Remember CO 1 AAE015.1 14 What is the difference between a vibration isolator and a vibration absorber? Remember CO 1 AAE015.2 15 What is the function of a vibration isolator? Remember CO 1 AAE015.3 16 What is a vibration absorber? Remember CO 1 AAE015.3 17 Define the transmissibility. Write the expression for motion transmissibility. Remember CO 1 AAE015.3 18 What happens to the response of an undamped system at resonance? Understand CO 1 AAE015.3 19 Why does the amplitude of free vibration gradually diminish in practical systems? Remember CO 1 AAE015.2 20 Define the term magnification factor. Remember CO 1 AAE015.2 21 Indicate some methods for finding the response of a system under non periodic forces. Remember CO 1 AAE015.2 22 What is a response spectrum? And what are engineering applications? Remember CO 1 AAE015.2 23 How is the Laplace transformation of a function x(t) defined and advantages of this transformation method. The property of the transmissibility and transmitted force for a spring of the property of the property of the property of the propert	11	Write equation of motion for simple vibration system.	Understand	CO 1	AAE015.2
14 What is the difference between a vibration isolator and a vibration absorber? Remember CO 1 AAE015.2 15 What is the function of a vibration isolator? Remember CO 1 AAE015.3 16 What is a vibration absorber? Remember CO 1 AAE015.2 17 Define the transmissibility, Write the expression for motion transmissibility. Remember CO 1 AAE015.2 18 What happens to the response of an undamped system at resonance? Understand CO 1 AAE015.2 19 Why does the amplitude of free vibration gradually diminish in practical systems? Remember CO 1 AAE015.2 10 Define the term magnification factor. Remember CO 1 AAE015.2 11 Indicate some methods for finding the response of a system under non periodic forces. Remember CO 1 AAE015.2 12	12	Define damping. What is damping ratio?	Remember	CO 1	AAE015.2
15 What is the function of a vibration isolator? Remember CO 1 AAE015.2	13	Give three practical applications of the concept of center of percussion.	Remember	CO 1	AAE015.3
16 What is a vibration absorber? Remember CO 1 AAE015.2 17 Define the transmissibility. Write the expression for motion transmissibility. Remember CO 1 AAE015.2 18 What happens to the response of an undamped system at resonance? Understand CO 1 AAE015.3 19 Why does the amplitude of free vibration gradually diminish in practical systems? Remember CO 1 AAE015.2 20 Define the term magnification factor. Remember CO 1 AAE015.2 21 Indicate some methods for finding the response of a system under non periodic forces. Remember CO 1 AAE015.2 22 What is a response spectrum? And what are engineering applications? Remember CO 1 AAE015.2 23 How is the Laplace transformation of a function x(t) defined and advantages of this transformation method. The fine part of 0.2 AAE015.2 24 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 25 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 26 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 27 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 28 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 29 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 30 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.1 4 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.1 5 Derive and part of the damping coefficient if the frequency of demped oscillation CO 1 AAE015.2 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to	14	What is the difference between a vibration isolator and a vibration absorber?	Remember	CO 1	AAE015.2
Define the transmissibility. Write the expression for motion transmissibility. Remember CO 1 AAE015.2	15	What is the function of a vibration isolator?	Remember	CO 1	AAE015.3
What happens to the response of an undamped system at resonance?	16	What is a vibration absorber?	Remember	CO 1	AAE015.2
What happens to the response of an undamped system at resonance?	17	Define the transmissibility. Write the expression for motion transmissibility.	Remember	CO 1	AAE015.2
Why does the amplitude of free vibration gradually diminish in practical systems? Remember CO 1 AAE015.2			Understand		
Define the term magnification factor. Remember CO 1 AAE015.2 Indicate some methods for finding the response of a system under non periodic forces. What is a response spectrum? And what are engineering applications? Remember CO 1 AAE015.2 How is the Laplace transformation of a function x(t) defined and advantages of this transformation method. Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.2 Part - B (Long Answer Questions) Discuss the response of under damped , critically damped and over damped systems using respective response equations and curves. A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
Indicate some methods for finding the response of a system under non periodic forces. Remember forces.					
forces. 22 What is a response spectrum? And what are engineering applications? Remember CO 1 AAE015.2 23 How is the Laplace transformation of a function x(t) defined and advantages of this transformation method. 24 Define unit impulse, unit step and unit ramp functions? Remember CO 1 AAE015.3 25 Part - B (Long Answer Questions) 1 Discuss the response of under damped , critically damped and over damped systems using respective response equations and curves. 2 A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium positions. Find the coefficient of friction between the surface and the					
How is the Laplace transformation of a function x(t) defined and advantages of this transformation method. Understand CO 1 AAE015.2	21		Remember	CO 1	7 H LO13.2
transformation method. 24 Define unit impulse, unit step and unit ramp functions? Part - B (Long Answer Questions) 1 Discuss the response of under damped , critically damped and over damped systems using respective response equations and curves. 2 A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	22	What is a response spectrum? And what are engineering applications?	Remember	CO 1	AAE015.2
Part - B (Long Answer Questions) 1 Discuss the response of under damped , critically damped and over damped systems using respective response equations and curves. 2 A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	23		Understand	CO 1	AAE015.2
Part - B (Long Answer Questions) 1 Discuss the response of under damped , critically damped and over damped systems using respective response equations and curves. 2 A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	2.4		D 1	GO 1	A A E 015 2
Discuss the response of under damped, critically damped and over damped systems using respective response equations and curves. A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	24		Remember	COT	AAE015.3
systems using respective response equations and curves. 2 A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the			ъ .	GO 1	A A E 0 1 5 1
A machine part of mass 2.5Kg vibrates in a viscous medium. A harmonic exiting force of 30N acts on the part and causes resonant amplitude of 14mm with a period of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	I		Remember	COT	AAE015.1
of 0.22 sec. Find the damping coefficient if the frequency of the exciting force is changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	2		Understand	CO 1	AAE015.1
changed to 4Hz. Determine the increase in the amplitude of forced vibration upon removal of the damper. 3 A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
removal of the damper. A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
A damped system has following elements: Mass = 4 kg; k = 1 kN/m; C = 40 N-sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
sec/m. Determine: (a) Damping factor & natural frequency of damped oscillation. (b) Logarithmic decrement and number of cycles after which the original amplitude is reduced to 20. 4 In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	3	•	Remember	CO 1	AAE015.2
is reduced to 20. In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					1111201012
In a particular case of a large canon, the gun barrel and recoil mechanism have a mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
mass of 500kg with recoil spring stiffness 10,000N/m. The gun recoils 0.4m upon firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
firing. Find i) Critical damping co efficient of the damper. (ii) Initial recoil velocity of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	4		Understand	CO 1	AAE015.2
of the gun. 5 Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
Derive an expression for the transmissibility and transmitted force for a spring - mass-damper system subjected to external excitation. Draw the vector diagram for the forces. A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
mass-damper system subjected to external excitation. Draw the vector diagram for the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	5	=	Understand	CO 1	A A E 0 1 5 2
the forces. 6 A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	3		Understand	COT	AAE013.2
A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the					
initial displacement of 10cmfrom its equilibrium position. After five cycles of oscillation in 2s, the final position of the metal block found to be 1cm from its equilibrium positions. Find the coefficient of friction between the surface and the	6		Understand	CO 1	AAE015.1
equilibrium positions. Find the coefficient of friction between the surface and the					
metal block.					
		metal block.			

8 Find the equivalent stiffness, frequency and time period for the system shown in figure helow. If K ₁ =200 N/m, K ₂ = 100N/m, m= 20Kg, I= 2000mm, A= 100m ² , density is 7200kg/mm ¹ 9 A circular cylinder of mass m and radius r is connected by a spring of stiffness k as shown in fig. If it is free to roll on the rough surface which is horizontal without slipping, determine the natural frequency. 10 A wheel is mounted on a steel shaft (G = 8 3 * 10 ° N/m ²) of length 1.5m and 0.80 cm. The wheel is rotated 50 and released. The period of oscillation is observed as 2.3s. Determine the mass moment of inertia of the wheel. 11 Derive the convolution integral for a single degree of freedom subjected to an impulse. 12 In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10N/m and F=20 N. Find the response of the system. 13 Explain the terms generalized impedance and admittance of a system. 14 Find the undamped response spectrum for the sinusoidal pulse force using initial conditions x(0)=0.4 AAE015.2	7	Determine the frequency of oscillations for the system shown in fig. Also determine the time period if $m = 4$ kg and $r = 80$ mm.	Understand	CO 1	AAE015.3
figure below. If K ₁ =200 N/m, K ₂ = 100N/m, m= 20Kg, L= 2000mm, A= 100m ² , density is 7200kg/mm ³ A circular cylinder of mass m and radius r is connected by a spring of stiffness k as shown in fig. If it is free to roll on the rough surface which is horizontal without slipping, determine the natural frequency. A wheel is mounted on a steel shaft (G = 8.3 * 1.0 ° N/m2) of length 1.5m and 0.80 cm. The wheel is rotated 50 and released. The period of oscillation is observed as 2.3s. Determine the mass moment of inertia of the wheel. Derive the convolution integral for a single degree of freedom subjected to an impulse. Derive the convolution integral for a single degree of freedom subjected to an impulse. Derive the convolution integral for a single degree of freedom subjected to an impulse. Derive the convolution integral for a single degree of freedom subjected to an impulse. Derive the convolution integral for a single degree of freedom subjected to an impulse. CO 1 AAE015.3 the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. Remember CO 1 AAE015.2		$x \downarrow m$			
A circular cylinder of mass m and radius r is connected by a spring of stiffness k as shown in fig. If it is free to roll on the rough surface which is horizontal without slipping, determine the natural frequency. A wheel is mounted on a steel shaft (G = 8 3 * 1 0 ° N/m2) of length 1.5m and 0.80 cm. The wheel is rotated 50 and released. The period of oscillation is observed as 2.3s. Determine the mass moment of inertia of the wheel. Derive the convolution integral for a single degree of freedom subjected to an impulse. In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. Explain the terms generalized impedance and admittance of a system. Remember CO 1 AAE015.2	8	figure below. If $K_1=200 \text{ N/m}$, $K_2=100 \text{N/m}$, $m=20 \text{Kg}$, $L=2000 \text{mm}$, $A=100 \text{m}^2$,	Remember	CO 1	AAE015.2
shown in fig. If it is free to roll on the rough surface which is horizontal without slipping, determine the natural frequency. A wheel is mounted on a steel shaft (G = 8 3 * 1 0 ° N/m2) of length 1.5m and 0.80 cm. The wheel is rotated 50 and released. The period of oscillation is observed as 2.3s. Determine the mass moment of inertia of the wheel. Derive the convolution integral for a single degree of freedom subjected to an impulse. In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. Remember CO 1 AAE015.2 Explain the terms generalized impedance and admittance of a system. Remember CO 1 AAE015.2		$ \begin{array}{c c} & & & \\ & & & &$			
cm. The wheel is rotated 50 and released. The period of oscillation is observed as 2.3s. Determine the mass moment of inertia of the wheel. 11 Derive the convolution integral for a single degree of freedom subjected to an impulse. 12 In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. 13 Explain the terms generalized impedance and admittance of a system. 14 Find the undamped response spectrum for the sinusoidal pulse force using initial Understand CO 1 AAE015.2	9	shown in fig. If it is free to roll on the rough surface which is horizontal without	Remember	CO 1	AAE015.1
cm. The wheel is rotated 50 and released. The period of oscillation is observed as 2.3s. Determine the mass moment of inertia of the wheel. 11 Derive the convolution integral for a single degree of freedom subjected to an impulse. 12 In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. 13 Explain the terms generalized impedance and admittance of a system. 14 Find the undamped response spectrum for the sinusoidal pulse force using initial Understand CO 1 AAE015.2		1 vkw v			
impulse. 12 In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. 13 Explain the terms generalized impedance and admittance of a system. Remember CO 1 AAE015.2 14 Find the undamped response spectrum for the sinusoidal pulse force using initial Understand CO 1 AAE015.2	10	cm. The wheel is rotated 50 and released. The period of oscillation is observed as	Remember	CO 1	AAE015.2
impulse. 12 In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. 13 Explain the terms generalized impedance and admittance of a system. Remember CO 1 AAE015.2 14 Find the undamped response spectrum for the sinusoidal pulse force using initial Understand CO 1 AAE015.2		$k_{I} = \frac{JG}{L}$			
In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m, c=10Ns/m and F=20 N. Find the response of the system. Remember CO 1 AAE015.3 Explain the terms generalized impedance and admittance of a system. Remember CO 1 AAE015.2	11		Understand	CO 1	AAE015.3
Explain the terms generalized impedance and admittance of a system. Remember CO 1 AAE015.2 Find the undamped response spectrum for the sinusoidal pulse force using initial Understand CO 1 AAE015.2	12	In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is used to cause excitation. Assuming m=5kg, k=2000n/m,	Remember	CO 1	AAE015.3
	13		Remember	CO 1	AAE015.2
	14	Find the undamped response spectrum for the sinusoidal pulse force using initial conditions $x(0)=0,dx/dt$ (0)=0.	Understand	CO 1	AAE015.2

15	A compacting machine modelled as a single d.o.f system. the force on the mass m	Understand	CO 1	AAE015.2
	due to a sudden application of pressure can be idealized as a step force. Determine			
4.5	the response of the system.	5 1	GO 1	4.5045.0
16	Use the convolution integral to determine the response of an undamped 1- degree-of-	Remember	CO 1	AAE015.2
	freedom system of natural frequency ω_n and m when subject to a constant force of			
17	magnitude F_0 . The system is at rest in equilibrium at t=0.	Remember	CO 1	AAE015.2
1 /	Use the convolution integral to determine the response of an undamped 1- degree-of-freedom system of natural frequency ω_n , damping ratio and mass m when subject to	Remember	COT	AAE013.2
	a constant force of magnitude F_0 . The system is at rest in equilibrium at t=0.			
18	Use the convolution integral to determine the response of an undamped 1- degree-of-	Understand	CO 1	AAE015.2
10	freedom system of natural frequency ω_n and mass m when subject to a time-	Chacistana	CO 1	71112013.2
	dependent excitation of the form $F(t)=F_0e^{-\alpha t}$. The system is at rest in equilibrium at			
	t=0.			
19	Use the convolution integral to determine the response of an undamped 1- degree-of-	Remember	CO 1	AAE015.2
	freedom system of natural frequency ω_n and mass m when subject to a harmonic			
	excitation of the form $F(t)=F_0 \sin \omega t$ with.			
20	Use the Laplace transform method to determine the response of an under damped 1	Remember	CO 1	AAE015.2
	DOF system of damping ratio , natural frequency ω_n , mass m , initially at rest in			
	equilibrium and subject to a series of applied impulses each of magnitude I,			
	beginning at $t=0$ and each a time t_0 apart.			
	Part - C (Problem Solving and Critical Thinking Question	ons)		
1	The mass of a spring-mass-dashpot system is given an initial velocity 5_n , where	Remember	CO 1	AAE015.2
	is the undamped natural frequency of the system. Find the equation of motion for			
	the system.			
2	A mass of 20kg is supported on two isolators as shown in fig below. Determine the	Understand	CO 1	AAE015.2
	undamped and damped natural frequencies of the system, neglecting the mass of the			
	Isolators.			
	m = 20 kg			
	-			
	$k_2 = 3000 \text{ N/m}$ $C_2 = 100 \text{ N-sec/m}$			
	k_1 = 10000 N/m 1 C_1 = 300 N-sec/m			
	Fig Q (2)			
3		TIda.uata.u.d	CO 1	A A E O 1 5 2
3	A gun barrel of mass 500kg has a recoil spring of stiffness 3, 00,000 N/m. If the barrel recoils 1.2 meters on firing, determine,	Understand	COT	AAE015.2
	(a) initial velocity of the barrel			
	(b) critical damping coefficient of the dashpot which is engaged at the end of the			
	recoil stroke			
	(c) Time required for the barrel to return to a position 50mm from the initial			
	Position.			
4	A 25 kg mass is resting on a spring of 4900 N/m and dashpot of 147 N-se/m in	Understand	CO 1	AAE015.2
	Parallel. If a velocity of 0.10 m/sec is applied to the mass at the rest position, what			
	will be its displacement from the equilibrium position at the end of first second?			
5	A rail road bumper is designed as a spring in parallel with a viscous damper. What is	Remember	CO 1	AAE015.2
	the bumper's damping coefficient such that the system has a damping ratio of 1.25,			
	when the bumper is engaged by a rail car of 20000 kg mass. The stiffness of the			
	spring is 2E5 N/m. If the rail car engages the bumper, while traveling at a speed of			
	20m/s, what is the maximum deflection of the bumper?			
	[] k v.			
	m 00000000			
	andamananananananananananananananananana			

7 A ma Dam Find displ	ass of 1 kg is to be supported on a spring having a stiffness of 9800 N/m. The aping coefficient is 5.9 N-sec/m. Determine the intertaction of the support o	Understand	CO 1	AAE015.2
Dam Find displ	ass of 1 kg is to be supported on a spring having a stiffness of 9800 N/m. The			
Dam Find displ				
Dam Find displ		Remember	CO 1	AAE015.2
	also the logarithmic decrement and the amplitude after three cycles if the Initial lacement is 0.003m.	Remember	CO 1	74 L013.2
Follo	damped vibration record of a spring-mass-dashpot system shows the	Remember	CO 1	AAE015.2
FOIIC	owing data. Amplitude on second cycle = 0.012m; Amplitude on third cycle =			
0.010	05m; Spring constant $k = 7840$ N/m; Mass $m = 2kg$. Determine the damping			
const	tant, Assuming it to be viscous.			
	ass of 2kg is supported on an isolator having a spring scale of 2940 N/m and	Remember	CO 1	AAE015.2
	ous damping. If the amplitude of free vibration of the mass falls to one half its			
	nal values in 1.5 seconds, determine the damping coefficient of the isolator.			
	stem of beam supports a mass of 1200 kg. The motor has an unbalanced mass of	Understand	CO 1	AAE015.2
	located at 6 cm radius. It is known that the resonance occurs at 2210 rpm. What			
_	litude of vibration can be expected at the motors operating speed of 1440 rpm if			
	lamping factor is assumed to be less than 0.1?	D 1	GO 1	A A FO1 7 2
	eccentric mass exciter is used to determine the vibratory characteristics of a	Remember	CO 1	AAE015.2
	eture of mass 200 kg. At a speed of 1000 rpm a stroboscope showed the ntric mass to be at the bottom position at the instant the structure was moving			
	nward through its static equilibrium position and the corresponding amplitude			
	20 mm. If the unbalance of the eccentric is 0.05 kg-m, determine, (a) un damped			
	ral frequency of the system (b) the damping factor of the structure (c) the			
	alar position of the eccentric at 1300 rpm at the instant when the structure is			
_	ing downward through its equilibrium position.			
	kg machine is supported by four springs each of stiffness 250 N/m. The rotor is	Remember	CO 1	AAE015.3
	lanced such that the unbalance effect is equivalent to a mass of 5 kg located at			
50mi	m from the axis of rotation. Find the amplitude of vibration when the rotor			
rotate	es at 1000 rpm and 60 rpm. Assume damping coefficient to be 0.15.			
13 A ve	ertical single stage air compressor having a mass of 500 kg is mounted on	Remember	CO 1	AAE015.3
_	ngs having a stiffness of 1.96×105 N/m and a damping coefficient of 0.2. The			
	ing parts are completely balanced and the equivalent reciprocating parts have a			
	s of 20 kg. The stroke is 0.2 m. Determine the dynamic amplitude of vertical			
	on and the phase difference between the motion and excitation force if the			
	pressor is operated at 200 rpm.	D :	CO 1	AAFOITC
	support of a spring mass system is vibrating with amplitude of 5 mm and a	Remember	CO 1	AAE015.3
_	pency of 1150 cpm. If the mass is 0.9 kg and the stiffness of springs is 1960			
	Determine the amplitude of vibration of mass. What amplitude will result if a ping factor of 0.2 is included in the system?			
	springs of an automobile trailer are compressed 0.1 m under its own weight.	Remember	CO 1	AAE015.3
15 Th	the critical speed when the trailer is travelling over a road with a profile	Kemember	COI	AAEUI3.3
	oximated by a sine wave of amplitude 0.08 m and a wavelength of 14 m. What			
Find	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	ı		

16	A heavy machine of 3000 N, is supported on a resilient foundation. The static	Remember	CO 1	AAE015.3
	deflection of the foundation due to the weight of the machine is found to be 7.5 cm.			
	It is observed that the machine vibrates with an amplitude of 1 cm when the base of			
	the machine is subjected to harmonic oscillations at the undamped natural frequency			
	of the system with an amplitude of 0.25 cm. Find (a) the damping constant of the			
	foundation (b) the dynamic force amplitude on the base (c) the amplitude of the			
	displacement of the machine relative to the base.			
17	The time of free vibration of a mass hung from the end of a helical spring is 0.8 s.	Understand	CO 1	AAE015.2
	When the mass is stationary, the upper end is made to move upwards with			
	displacement y mm given by $y = 18 \sin 2\pi t$, where t is time in seconds measured			
	from the beginning of the motion. Neglecting the mass of spring and damping effect,			
	determine the vertical distance through which the mass is moved in the first 0.3			
	seconds.			

	UNIT - II					
	MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS					
	Part – A (Short Answer Questions)					
1	Write the frequency equation for the two DOF spring mass systems.	Remember	CO 2	AAE015.4		
2	Write the frequency equation for the two DOF torsional systems.	Remember	CO 2	AAE015.4		
3	What is the main disadvantage of a dynamic vibration absorber?	Understand	CO 2	AAE015.5		
4	What is coordinate coupling?	Remember	CO 2	AAE015.5		
5	What are static and dynamic couplings?	Remember	CO 2	AAE015.6		
6	Define mass coupling.	Remember	CO 2	AAE015.4		
7	Define velocity coupling.	Understand	CO 2	AAE015.4		
8	Define elasticity coupling.	Remember	CO 2	AAE015.4		
9	What is semi definite system?	Understand	CO 2	AAE015.4		
10	Write a short note on principal mode of vibration.	Remember	CO 2	AAE015.6		
11	What are generalized coordinates?	Understand	CO 2	AAE015.6		
12	What are principle coordinates?	Remember	CO 2	AAE015.4		
13	Write a short note on Orthogonality principle as applied to two degree freedom	Remember	CO 2	AAE015.4		
	system.					
14	What is the basic working principle of a dynamic vibration absorber?	Remember	CO 2	AAE015.5		
15	How can we make system vibrate in one of its natural modes?	Remember	CO 2	AAE015.6		
16	In a two D.O.F spring mass system, explain how Dynamic coupling exists.	Understand	CO 2	AAE015.4		
17	What are principal co-ordinates when the system h subjected to linear as well as angular displacement?	Remember	CO 2	AAE015.6		
18	Under what conditions a tuned absorber exists?	Understand	CO 2	AAE015.6		
19	Explain conditions that are to be satisfied for a Ring tensional vibration absorber.	Remember	CO 2	AAE015.4		
20	What in the principle of working in a Houdille unturned damper?	Remember	CO 2	AAE015.4		
	Part - B (Long Answer Questions)	I				
1	Obtain the frequency equation for the two DOF spring mass systems. Also determine the natural frequencies and mode shapes. Assume m_1 , m_2 , k_1 and k_2 for governing equations.	Understand	CO 2	AAE015.5		
2	Obtain the frequency equation for the two DOF torsional systems. Also determine the natural frequencies and mode shapes. Assume J_1 , J_2 , kt_1 and kt_2 for governing equations.	Understand	CO 2	AAE015.4		
3	A diesel engine, weighing 3000 N is supported on a pedestal mount. It has been observed that the engine induces vibration into the surrounding area through its pedestal mount at an operating speed of 6000rpm. Determine the parameters of the vibration absorber that will reduce the vibration when mounted on the pedestal. The magnitude of the exciting force is 250 N and the amplitude of the auxiliary mass is to be limited to 2mm.	Remember	CO 2	AAE015.4		

4	What is meant by static and dynamic coupling? How can coupling of the equations	Understand	CO 2	AAE015.4
4	of motion be eliminated? Derive the governing equations through Lagrange energy approach.	Onderstand	CO 2	AAE013.4
5	Determine the natural frequency of torsional vibrations of a shaft with two circularises of uniform thickness at the ends. The masses of the discs are M1= 500 kg and M2 = 1000 kg and their outer diameters are D1 = 125 cm and D2 = 190 cm. The length of the shaft is $l = 300$ cm and its diameter $d = 10$ cm as shown in fig. $G = 0.83 \times 10^{11} \text{N/m}^2$	Understand	CO 2	AAE015.6
6	A slender rod of length L and mass m is pinned at O as shown in figure below. A spring of stiffness K is connected to the rod at point P while a dashpot of damping coefficient c is connected to the rod at point Q. Assuming small displacements; Derive a linear differential equation governing the free vibration of this system. Use the displacement of the point P, measured from the systems equilibrium position as the generalized coordinate.	Understand	CO 2	AAE015.4
7	Solve the problem shown in figure. $m1=10kg$, $m2=15kg$ and $k=320$ N/m.	Remember	CO 2	AAE015.4
8	Two pendulums of different lengths are free to rotate y-y axis and coupled together by a rubber hose of torsional stiffness $7.35 \times 103 \text{ Nm}$ / rad as shown in figure. Determine the natural frequencies of the system if masses m1 = 3kg, m2 = 4kg, L1 = 0.30 m , L2 = 0.35 m .	Understand	CO 2	AAE015.4

9	Determine the modes of vibrations for the system shown in figure.	Remember	CO 2	AAE015.6
	k_1 k_2 k_3 k_4 k_2 k_3 k_4 k_4 k_5 k_6 k_8 k_8 k_8			
10	A counter rotating eccentric weight exciter is used to produce the forced oscillation of a spring-supported mass as shown in Fig. By varying the speed of rotation, resonant amplitude of 0.60 cm was recorded. When the speed of rotation was increase considerably beyond the resonant frequency, the amplitude appeared to approach a fixed value of 0.08 cm. Determine the damping factor of the system.	Understand	CO 2	AAE015.6
11	Derive the frequency equation for a double pendulum shown in figure. Determine the natural frequency and mode shapes of the double pendulum when $m_1=m_2=m$, $l_1=l_2=l$.	Understand	CO 2	AAE015.5
12	Determine the natural frequencies of the coupled pendulum shown in the figure. Assume that the light spring of stiffness 'k' is un-stretched and the pendulums are vertical in the equilibrium position. $ka(\theta_1-\theta_2)$ $ka(\theta_1-\theta_2)$ m m m m	Remember	CO 2	AAE015.4

13	Derive the equation of motion of the system shown in figure. Assume that the initial tension 'T' in the string is too large and remains constants for small amplitudes. Determine the natural frequencies, the ratio of amplitudes and locate the nodes for each mode of vibrations when $m_1 = m_2 = m$ and $l_1 = l_2 = l_3 = l$.	Remember	CO 2	AAE015.4
	m m m m m m m m m m			
14	Derive the equation of motion of a torsional system shown in figure	Remember	CO 2	AAE015.4
	θ_1 θ_2 θ_2 Figure Two Rotor System			
15	For the system shown in fig find the two natural frequencies when $m_1=m_2=9.8$ kg	Remember	CO 2	AAE015.4
	$K_1=K_3=8820N/m$, $K_2=3430N/m$. Find out the resultant motions of m_1 and m_2 for the following cases. The displacements mentioned below are from the equilibrium positions of the respective masses. Both masses are displaced 5mm in the downward direction and released simultaneously both masses are displaced 5mm, in the downward direction and m_2 in the upward direction and released simultaneously.			
16	Explain the working principle of Bifilar Suspension absorber with a neat diagram.	Remember	CO 2	AAE015.4
17	A diesel Engine weighing 3000N, supported on a pedestal mount. It has been observed that the engine induces vibration into the surrounding area through L'ts pedestal mount at an operating speed of 6000rpm. Determine the parameters of the exciting force in 250N and amplitude of the motion of the auxiliary mass in limited to 2mm.	Remember	CO 2	AAE015.4
18	With a neat sketch, derive the governing equation of the Ring Tensional absorber.	Remember	CO 2	AAE015.4
19	Explain the absorber principle in the case of centrifugal pendulum absorber from the first principles.	Remember	CO 2	AAE015.4
20	Draw and explain the amplitude and phase plots in a dynamic Vibration absorber.	Remember	CO 2	AAE015.4
	Part – C (Problem Solving and Critical Thinking)			
1	Determine the normal mode of vibration of an automobile shown in figure. Simulated by a simplified two degree of freedom system with the following numerical values $m = 1460$ kg, $L1 = 1.35m$, $L2 = 2.65$ m, $K1 = 4.2x105$ N/m, $K2 = 4.55x105$ N/m and J=mr2 where $r = 1.22$ m.	Understand	CO 2	AAE015.4
2	Determine the natural frequencies and made shape of un demand according to	Understand	CO 2	A A E 0 1 5 /
2	Determine the natural frequencies and mode shape of un-damped coordinate coupling system with two degrees of freedom.	Understand	CU 2	AAE015.4
	M _{K₁}			

3	Determine the natural frequencies of undamped dynamic vibration absorber.	Remember	CO 2	AAE015.4
4	Determine the frequencies and the location of oscillation centres of an automobile with the following data: $m=1000 kg$, $r_g=0.9 m$, distance between the front axle and centre of gravity=1m, distance between the rear axle and centre of gravity =1.5m. Front spring stiffness, $k_1=8 \ K/m$, rear sprig stiffness $k_2=22 KN/m$.	Remember	CO 2	AAE015.4
5	Derive the equation of motion of the system shown in figure. Assume that the initial tension 'T' in the string is too large and remains constants for small amplitudes. Determine the natural frequencies, the ratio of amplitudes and locate the nodes for each mode of vibrations when $m_1 = m_2 = m$ and $l_1 = l$, $l_2 = 2l$, $l_3 = 3l$.	Understand	CO 2	AAE015.4
6	Determine the natural frequencies, the ratio of amplitudes and locate the nodes for each mode of vibrations when $m_1=m_2=m$.	Remember	CO 2	AAE015.5
7	Figure shows a vibrating system having two DOF. Determine the two natural frequencies of vibrations and the ratio of amplitudes of the motion of m1 and m2for the two modes of vibrations.	Understand	CO 2	AAE015.6
8	Solve the problem shown in figure. m_1 = 20kg, m_2 = 35kg and k= 360 N/m.	Remember	CO 2	AAE015.6
9	Find the natural frequencies of the system shown in figure. Assume that there is no slip between the cord and cylinder. K_1 = 40 N/m, k_2 = 60N/m, m_1 = 2kg, m_2 = 10kg.	Understand	CO 2	AAE015.6

10	For the system shown in fig find the two natural frequencies when m ₁ =m ₂ =9.8 kg	Understand	CO 2	AAE015.6
	$K_1=K_3=8820N/m$, $K_2=3430N/m$. Find out the resultant motions of m_1 and m_2 for the			
	following cases. The displacements mentioned below are from the equilibrium			
	positions of the respective masses. Mass m1 displaced 5mm downward and mass m2			
	is displaced 7.5mm downwards both masses are released simultaneously. Mass m ₁			
	displaced 5mm upward while m2 is held fixed. Both masses are then released			
	simultaneously.			

	UNIT-III			
	NONLINEAR AND RANDOM VIBRATION			
1	Part - A (Short Answer Questions)	D 1	GO 2	1 A F015 5
1	How can we make a system to vibrate in one of its natural made?	Remember	CO 3	AAE015.7
2	Name a few methods for finding the fundamental natural frequency of a multi degree of freedom system.	Understand	CO 3	AAE015.7
3	What is the matrix iteration method?	Understand	CO 3	AAE015.8
4	Can we use any trial vector in the matrix iteration method to find the largest natural frequency?	Understand	CO 3	AAE015.7
5	What is the difference between the matrix iteration method and Jacobi's method?	Understand	CO 3	AAE015.8
6	Using the matrix iteration method, how do you find the intermediate natural frequencies?	Understand	CO 3	AAE015.8
7	What are the different methods by which a vibrating system having several degrees of freedom can be analysed?	Remember	CO 3	AAE015.9
8	State Maxwell reciprocal theorem.	Remember	CO 3	AAE015.8
9	Distinguish between flexibility influence coefficient and stiffness coefficient.	Understand	CO 3	AAE015.9
10	Define stiffness influence coefficient as applicable to multi degree freedom vibrations.	Remember		AAE015.9
	MID-II			
11	Write short notes on matrix iteration method as applied to multi degree freedom.	Understand	CO 3	AAE015.9
12	Write short notes on orthogonality principle.	Understand	CO 3	AAE015.9
13	What is mode shape?	Remember	CO 3	AAE015.7
14	State orthogonality principle in case of multi degree freedom system.	Understand	CO 3	AAE015.7
15	Write short notes on modal analysis.	Remember	CO 3	AAE015.8
16	What is the difference between vibiometer and Velometer?	Understand	CO 3	AAE015.4
17	What is the need for vibration measuring instruments?	Understand	CO 3	AAE015.4
18	Draw the sketch of a seismic instrument and label the parts.	Understand	CO 3	AAE015.4
19	Write the governing equation for the instrument we the low natural frequency and Name the instrument.	Understand	CO 3	AAE015.4
20	An instrument having high fundamental frequency. What is the governing equation and name of the instrument?	Understand	CO 3	AAE015.4
	Part - B (Long Answer Questions)			
1	A seismic instrument is fitted to measure the vibration characteristics of a machine running at 120rpm. If the natural frequency of the instrument is 5Hz and if it shows 0.004cm. Determine the displacement, velocity and acceleration assuming no damping.	Understand	CO 3	AAE015.7
2	A vibrometre having a natural frequency of 4 rad/s and ζ =0.2 is attached to a structure performs a harmonic motion. If the difference between the maximum and minimum recorded values is 8mm, find the amplitude of motion of the vibrating structure when its frequency is 40 rad/s.	Remember	CO 3	AAE015.7

3	A simple model of a motor vehicle can vibrate in the vertical direction while travelling over a rough road. The vehicle has a mass of 1200kg. The suspension system has a spring constant of 400KN/m and a damping ratio of ζ =0.5. If the vehicle speed is 20km/hr, determine the displacement amplitude of the vehicle mounted with vibrometre. The road surface varies sinusoidal with amplitude Y=0.05 and wave length of 6m.	Remember	CO 3	AAE015.7
4	Obtain the approximate fundamental natural frequency of the linear spring system shown in Fig. using matrix method.	Understand	CO 3	AAE015.8
5	Find the response of the spring damper system shown in figure. Subjected to a periodic force with equation of motion. Rigid bar (no mass) Rigid bar (no mass) $x(t)$	Understand	CO 3	AAE015.8
6	Determine the response of a spring mass damper system subjected to a periodic force with the equation of motion given by $m\ddot{x} + c\dot{x} + kx = F(t) = \frac{a_0}{2} + \sum_{i=1}^{\infty} a_i \cos j\omega t + \sum_{j=1}^{\infty} b_j \sin j\omega t$ Assume the initial conditions as zero.	Understand	CO 3	AAE015.9
7	Find the lowest natural frequency of the cantilever rotor system shown in Figure by matrix method. Take m1=100 kg, m2=50 kg.	Understand	CO 3	AAE015.9

8	In the vibration testing of a structure an impact hammer with a load cell to measure	Understand	CO 3	AAE015.9
	the impact force is used to cause excitation as shown in fig. Assuming m=5Kg,			
	k=2000N/m, c=10N-s/m, and F=20N-s. Find the response of the system.			
	А			
	Load cell			
	signal, →x(t)			
	F(t)			
	Impact			
	hammer $\frac{k}{2}$ $\frac{k}{2}$			
	F h			
	0 +t 111111 111111			
9	Find the total response of a viscously damped single degree of freedom system	Remember	CO 3	AAE015.9
	subjected to a harmonic base excitation for the following data m=10Kg c=20N-s/m,			
	$k=4000N/m$, $y(t)=0.05\sin 5t m$, $x_0=0.02 m$, $\dot{x}_0=10 m/s$			
10	The schematic diagram of a marine engine connected to a propeller thro gears as	Remember	CO 3	AAE015.9
	shown in fig. The moment of inertia of the flywheel =9000kg-			
	m ² ,engine=1000kg-m ² ,gear1=250 kg-m ² ,gear2=150 kgm ² ,propeller=2000kg-			
	m ² .find the natural frequencies and mode shapes of the system in torsional vibration.			
	Considering inertia of the gears Considering inertia of the gears.			
	SH engine GEA AFT R-1,			
	-1,D			
	IA 0.1m			
	0.8m·			
	fly wheel 1.0m			
	GEA			
	R-2,/ 20-T shaft2,dia=0.15			
	m			
	propeller			
	MID-II			1
11	Explain principle of orthogonality of modal vectors.	Understand	CO 3	AAE015.9
	libition			
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
	м			
	12			
	m			
	13			
	m3			
		**	~~ -	1
12	A commercial type vibration pick up has a natural frequency of 6cps and a damping	Understand	CO 3	AAE015.8
	factor ζ =0.6.calculate the relative displacement amplitude if the instrument is subject			
10	to motion x=0.08sin 20t.	TT. 1	CO 2	AAFO17.0
13	A seismic instrument is mounted on a machine running at 1000 rpm. The natural	Understand	CO 3	AAE015.8
	frequency of the seismic instrument is 20 rad/sec. The instrument records relative			
	amplitude of 0.5 mm. Compute the displacement, velocity and acceleration of the machine. Damping in seismic instrument is neglected.			
	machine. Damping in seisinic instrument is neglected.			

14	Seismic instrument has natural frequency of 6 Hz. What is the lowest frequency beyond which the amplitude can be measured within 2% error? Neglect damping.	Understand	CO 3	AAE015.8
15	Seismic instrument has natural frequency of 6 Hz. What is the lowest frequency	Understand	CO 3	AAE015.7
13	beyond which the amplitude can be measured within 2% error?	Onderstand	CO 3	AAL013.7
16	A vibrometer with a natural frequency of 2 Hz and with negligible damping is	Remember	CO 3	AAE015.7
	attached to a vibrating system which performs a harmonic motion. Assuming the			
	difference between the maximum and minimum recorded value as 0.6mm, determine			
	the amplitude of motion of the vibrating system when its frequency is (i) 20Hz (ii)			
	4Hz.			
17	An accelerometer having natural frequency of 1000cpm and a damping factor of 0.7	Understand	CO 3	AAE015.7
	is attached to a vibrating system. Determine the maximum acceleration of the system			
	when the recorded amplitude is $\omega^2 Z=0.5$ m/s ² when the system performs a harmonic			
	motion at (i) 400 cpm (ii) 800cpm.			
18	An undamped vibration pickup having a natural frequency of 1Hz is used to measure	Remember	CO 3	AAE015.7
	a harmonic vibration of 4Hz. If the amplitude recorded is 0.52mm, what is the correct			
	amplitude?			
19	A seismic instrument is mounted on a machine running at 1200 rpm. The natural	Remember	CO 3	AAE015.8
	frequency of the seismic instrument is 30 rad/sec. The instrument records relative			
	amplitude of 0.7 mm. Compute the displacement, velocity and acceleration of the			
	machine. Damping in seismic instrument is neglected.			
20	A commercial type vibration pick up has a natural frequency of 6cps and a damping	Understand	CO 3	AAE015.9
	factor ζ =0.8.calculate the relative displacement amplitude if the instrument is subject			
	to motion x=0.1sin 30t.			
	Part – C (Problem Solving and Critical Thinking)			
1	It is desired to measure maximum acceleration of a machine part, which vibrates	Understand	CO 3	AAE015.7
	violently with a frequency of 700cycles/min. An accelerometer with negligible			
	damping, 0.5 kg mass and 18 KN/m spring constant is attached to it. The total travel			
	of the indicator is found to be 8.2 mm, find the maximum amplitude and maximum			
	acceleration of the part.			
2	Determine the natural frequencies and mode shapes associated with the system shown	Remember	CO 3	AAE015.7
	in Figure for $m1 = 10 \text{ kg}$, $m2 = 20 \text{ kg}$, $k1 = 100 \text{ N/m}$, $k2 = 100 \text{ N/m}$, and $k3 = 50 \text{ N/m}$.			
	k_1 k_2 k_3			
	$ - f f f_{p} m_1 - f f f_{p} m_2 - f f f_{p} $			
3	An elastically supported machine tool with a total mass of 4000 kg has a resonance	Remember	CO 3	AAE015.7
	frequency of 80 Hz. An 800 kg absorber system with a natural frequency of 80 Hz is			
	attached to the machine tool. Determine the natural frequencies and mode shapes of			
	this system.			
4	One model that has been used to study the vibratory motion of motor vehicles is	Understand	CO 3	AAE015.8
	shown in Figure. The body of the vehicle has a mass $m1$ and a rotary inertia J_G about			
	an axis through the center. The elasticity of the tires is represented by springs k_2 , and			
	the elasticity of the suspension by springs $k1$. The mass of the tire assemblies is m_2 .			
	a) Determine the matrix form for the governing equations of the system.			
	b) Obtain the natural frequencies and mode shapes for the case where $m1 = 800 \text{ kg}$,			
	$m_2 = 25 \text{ kg}, k_1 = 60 \text{ kN/m}, k_2 = 20 \text{ kN/m}, L = 1.4 \text{ m}, \text{ and } J_G = 180 \text{ kg} \text{ m}2.$			
	↑x ₁			
	$m_1, J_G \qquad \theta \qquad G$			
	← 2L →			
	k_1 k_1			
	$x_2 \uparrow m_2 \qquad x_3 \uparrow m_2$			
	₹ k ₂ ₹ k ₂			
	3 3			
				1

5	Determine the characteristic equation for the system shown in Figure .and solve this equation for the special case when $k1 = k2 = k3 = k$ and $m1 = m2 = m3 = m$. Determine if the system has any rigid-body modes.	Understand	CO 3	AAE015.7
	m_1 k_2 m_2 m_3 m_3			
	*			
6	MID-II Determine the modal mass, modal stiffness, and modal damping factors associated	Remember	CO 3	AAE015.8
0	with the system whose mass matrix, stiffness matrix, and damping matrix are given by the following:	Remember	CO 3	AAEU13.8
	$[M] = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, [K] = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix},$			
	$[C] = \begin{bmatrix} 3 & -2 \\ -2 & 6 \end{bmatrix}$			
7	The base of a spring mass damper system is subjected to the periodic displacement shown in fig. Determine the response of the mass using the principle of superposition.	Remember	CO 3	AAE015.9
	m k $y(t)$			
0		II. It I	60.2	A A E 015 0
8	An instrument for measuring accelerations records 30 oscillation/sec. The natural frequency of the instrument is 800 cycles/sec. What is the acceleration of the machine part to which the instrument is attached if the amplitude recorded is 0.02mm? What is the amplitude of vibration of the machine part?	Understand	CO 3	AAE015.9
9	Consider the system shown in Figure E8.10 in which the three masses $m1$, $m2$, and $m3$ are located on a uniform cantilever beam with flexural rigidity EI . The inverse of the stiffness matrix for this system, which is called the flexibility matrix, is given by $ [K]^{-1} = \frac{L^3}{3EI} \begin{bmatrix} 27 & 14 & 4 \\ 14 & 8 & 2.5 \\ 4 & 2.5 & 1 \end{bmatrix} $ If the masses of the system are all identical; that is, $m_1 = m_2 = m_3 = m$, then determine the response of this system when it is forced sinusoidally at the location of mass m_2 with a forcing amplitude F_2 and an excitation frequency v .	Understand	CO 3	AAE015.9
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

10	Derive the equations of motion of the vehicle model shown in Figure	Understand	CO 3	AAE015.9
	Automobile body Suspension k_1 m_1 y_1 Absorber m_3 y_3 Axle and wheel mass Tire stiffness and damping k_2 y_2 y_2			

	UNIT-IV	EG		
	DYNAMICS OF CONTINUOUS ELASTIC BODI Part – A (Short Answer Questions)	ES		
1	Why vibration analysis is important to monitor the condition of machine?	Understand	CO 4	AAE015.10
2	Write a short note on fast Fourier transform Theory?	Remember	CO 4	AAE015.10
3	What is complex fast Fourier transform theory?	Remember	CO 4	AAE015.10
4	Name some signal measurement and display units?	Remember	CO 4	AAE015.11
5	Name few vibration and acoustic measurement sensors.	Remember	CO 4	AAE015.11
6	Name sources of vibrations in mechanical systems.	Remember	CO 4	AAE015.11
7	Explain the vibration phenomenon due to mechanical motion and force.	Understand	CO 4	AAE015.11
			CO 4	AAE015.11
8	Reciprocating linear motion machinery causes vibration why?	Understand		
9	Write a short note on root cause analysis.	Remember	CO 4	AAE015.10
10	Explain flow induced vibrations in mechanical systems.	Remember	CO 4	AAE015.11
11	Write a short note on machine train monitoring parameters.	Understand	CO 4	AAE015.12
12	Monitoring the overall mechanical condition of machinery for more than 20 years. In	Understand	CO 4	AAE015.12
13	this case what type system to be used for analysis? What types of instrumentation systems are used for condition monitoring of	Remember	CO 4	AAE015.11
13	machines?	Remember		717112013.11
14	Change in vibration amplitude in an indication of a compounding change in operating	Remember	CO 4	AAE015.12
	system. Name the type of analysis technique to be used and explain.			
15	Name different types of data types acquired and displaced in a vibrating system.	Understand	CO 4	AAE015.10
16	Write a short note on computer based instrumentation system.	Understand	CO 4	AAE015.10
17	What is the major limitation of the velocity transducer indicate the range.	Remember	CO 4	AAE015.11
18	Write short notes on time domain analysis.	Remember	CO 4	AAE015.11
19	What are the factors to be considered for acquiring data in a vibration system?	Remember	CO 4	AAE015.11
20	State three methods of representing frequency response data.	Understand	CO 4	AAE015.12
	Part – B (Long Answer Questions)			
1	Explain trending analysis.	Remember	CO 4	AAE015.10
2	Explain failure node analysis.	Understand	CO 4	AAE015.12
3	Explain root cause analysis.	Remember	CO 4	AAE015.12
4	Explain signature analysis.	Understand	CO 4	AAE015.11
5	Explain machine monitoring parameters.	Remember	CO 4	AAE015.10
6	Explain vibration data acquisition.	Remember	CO 4	AAE015.10
7	Explain briefly frequency domain analysis.	Remember	CO 4	AAE015.10
8	Explain bode plots for amplitude and phase to represent the seismic and	Understand	CO 4	AAE015.11
	accelerometer range.			
9	Explain what is a seismic Instrument and frequency range?	Remember	CO 4	AAE015.14

10	Explain what is the advantage of experimental modes Analysis?	Remember	CO 4	AAE015.14
11	Explain how are a bit used in machine diagnostics.	Remember	CO 4	AAE015.13
12	Explain the principle of mode Superposition. What is its use in model Analysis?	Understand	CO 4	AAE015.13
13	Name two frequency measuring instruments. Explain any one instrument's working principle.	Remember	CO 4	AAE015.14
14	State the three types of maintenance schemes used for machinery.	Understand	CO 4	AAE015.15
15	Time-domain wave farms can be used to detect dushate damages of the machinery. Explain.	Remember	CO 4	AAE015.14
16	A spectrum Analyser is a device that analyses a signal in the frequency domain. Explain in detail the working.	Remember	CO 4	AAE015.14
17	Compare theoretical and Real-time harmonic profiles of the vibrating systems with explanation.	Remember	CO 4	AAE015.13
18	Draw and explain working of accelerometer for vibration pickup in a mechanical system.	Understand	CO 4	AAE015.14
19	Name the factors that must be considered for acquiring the data in a root dynamic system.	Remember	CO 4	AAE015.14
20	How the vibration data measurement is carried a out for machine characterization?	Understand	CO 4	AAE015.13
	Part – C (Problem Solving and Critical Thinking)			•
1	Determine the frequency of vibrations for the system shown in figure using stodola method.	Remember	CO 4	AAE015.12
	0.10 m 0.10 m 0.10 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
2	Explain the consequences of misalignment and pre loaded shafts on the performance of the machine assembly with plots.	Understand	CO 4	AAE015.12
3	Explain faults in rolling element of the bearing.	Remember	CO 4	AAE015.11
4	Explain the procedure to find out natural frequency of vibrations by Dunker leys method for simple supported beam subjected to three point loads at equidistance along the span	Understand	CO 4	AAE015.11
5	A shaft of negligible weight 6 cm diameter and 5 meters long is simply supported at the ends and carries four weights 50 kg each at equal distance over the length of the shaft as shown in Figure. Find the frequency of vibration by Dunkerley's method. Take E = 2 x 106 kg / cm2 if the ends of the fixed.	Remember	CO 4	AAE015.12
6	Explain different types of data acquisition systems with compression to merits and demerits of each other.	Remember	CO 4	AAE015.12

7	Derive the equations of motion for system shown in fig below	Understand	CO 4	AAE015.12
	$- \underbrace{ \begin{pmatrix} c_{t_2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
8	What conclusion can be drawn during condition monitoring of mechanical systems	Remember	CO 4	AAE015.11
	using failure mode analysis?			
9	Explain signature analysis of a mechanical system subjected to forced vibration.	Understand	CO 4	AAE015.11
10	Root cause analysis is very essential for introducing to implement using fishbone	Remember	CO 4	AAE015.12
	chart. Explain.			

	UNIT-V			
INTRODUCTION TO AEROELASTICITY				
	Part - A (Short Answer Questions)			
1	Write short notes on Stodola's method.	Understand	CO 5	AAE015.13
2	Write short notes on Rayleigh-ritz method.	Remember	CO 5	AAE015.13
3	Write short notes on Holzer's method.	Remember	CO 5	AAE015.13
4	Write short notes on matrix iteration method.	Remember	CO 5	AAE015.14
5	Which numerical method is particularly used for torsional vibrations of shafts?	Remember	CO 5	AAE015.14
6	Which numerical method is usually applicable for solving for beam problems?	Understand	CO 5	AAE015.14
7	Which method is used to determine fundamental natural frequency of free undamped vibrating systems?	Remember	CO 5	AAE015.13
8	What are the disadvantages of stodola's method?	Remember	CO 5	AAE015.13
9	Write a short note on sweeping technique.	Understand	CO 5	AAE015.14
10	Write equation of motion of a vibrating system of n DOF in matrix form.	Remember	CO 5	AAE015.15
11	Write down the fundamental natural frequency equation for Rayleigh Energy method applied for "n" masses.	Remember	CO 5	AAE015.14
12	Dum Kerly's method used for determining natural frequency of 3 Rotor systems E X	Understand	CO 5	AAE015.14
	plain the procedure.			
13	Distinguish between 3 to dole and Holzer methods.	Remember	CO 5	AAE015.13
14	Write any three numerical methods for obtaining fundamental frequency.	Remember	CO 5	AAE015.13
15	What are node points and mode shapes in case of matrix iteration method?	Remember	CO 5	AAE015.14
16	Which numerical method is used to finding torsional vibrations of shaft?	Understand	CO 5	AAE015.15
17	Write down the form in which frequencies are obtained using Rayleigh's Energy method.	Remember	CO 5	AAE015.14
18	Which method is most commonly used for determining fundamental frequency when the system me end in free and other end in fixed.	Understand	CO 5	AAE015.14
19	For solving beam problems, which numerical method is applied?	Remember	CO 5	AAE015.13
20	Explain node points and mode shapes. What is its physical significance?	Remember	CO 5	AAE015.13
	Part - B (Long Answer Questions)			
1	Find the natural frequencies and the free vibration solution of a bar fixed at one end and free at the other.	Understand	CO 5	AAE015.15
2	Determine the natural frequencies of vibration of a uniform beam fixed at x=0 and simply supported at x=1.	Understand	CO 5	AAE015.15
3	Explain the Rayleigh Ritz method for vibration analysis?	Remember	CO 5	AAE015.14
	,			•

4	Find the lowest natural frequency of vibration for the system shown in Fig. by	Remember	CO 5	AAE015.15
	Rayleigh's method			
	$E = 1.96 \times 10^{\text{Ti}} \text{ N/m}^2$; $I = 4 \times 10^{-7} \text{ m}^4$			
	M,=100kg M ₂ =50kg M ₂ =50kg i ₂ = 18 cm i ₂ = 30 cm			
	719. 00			
5	Find the natural frequency of the milling cutter shown in the figure when the free end of the shank is fixed. Assume the torsional rigidity of the shank as GJ and the mass moment of inertia of the cutter as I_0	Remember	CO 5	AAE015.14
	Shank Milling cutter			
6	Deduce the governing equation for semi definite torsional vibratory multi DOF	Remember	CO 5	AAE015.13
	System. Using Holzars method. Assume j1=j2=j3=1, kt1=kt2=1 (as shown below)			
7	Determine the frequency of vibrations for the system shown in figure using stodola	Understand	CO 5	AAE015.15
	25 kg 30 kg 0.10 m 0.10 m 0.10 m			
8	Find the steady state response of a pinned-pinned beam subject to a harmonic force	Remember	CO 5	AAE015.16
	$f(x,t)=f_0\sin \omega t$ applied at x=a as shown in the figure.			
	$\int_0^{\infty} \sin \omega t$			
	-177. ← a → ← l →			
	I I			

9	Find the natural frequencies of the tapered cantilever beam by using Rayleigh-Ritz	Remember	CO 5	AAE015.15
	method.			
	- V			
	<u>†</u> /			
	0 x			
	<i>l</i> → <i>l</i> · · · · · · · · · · · · · · · · · · ·			
10	Find the time it takes for a transverse wave to travel along a transmission line from	Remember	CO 5	AAE015.16
	one tower to another one 300 m away. Assume the horizontal component of the cable			
11	tension as 30,000N and the mass of the cable as 2Kg/m of length. For the system shown in Fig. find the lowest natural frequency by holzer's	Understand	CO 5	AAE015.17
11	method(carryout two iterations)	Oliderstalid	CO 3	AAL013.17
	~~~~			
	₩ 3K			
	4m			
	▼ x ₁			
	¥κ			
	<b>2</b> m <b>▼</b> × ₂			
	₩ K			
12	×3	Remember	CO 5	AAE015.14
12	Find the lowest natural frequency of transverse vibrations of the system shown in Fig. by holzer's method. E=196 GPa, I=10-6 m4, m1=40 kg, m2=20 kg	Kemember	CO 3	AAEUI3.14
	$m_1$ $m_2$			
	A B			
	160 80 180			
13	With suitable assumptions derive the Rayleigh's equation for determining the	Remember	CO 5	AAE015.13
	fundamental natural frequency of a multi mass system.			
14	Explain Holzer's method of analysing multi degree freedom system.  Explain stodola's method to estimate the natural frequency and mode shapes of multi	Remember Understand	CO 5	AAE015.16 AAE015.16
13	degree freedom system.	Understand	CO 3	AAEUI3.10
16	For the system shown in the Fig, obtain natural frequencies using Holzar's method.	Remember	CO 5	AAE015.15
	$J_1$ $J_2$ $J_3$			
	$_{9}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$			
	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
17	Daniers the constitut of College contact of from "" when the College contact of the College	Dores 1	CO 5	A A E O 1 5 1 2
17	Derive the equation of Collar's method for "n" number of masses in systems.  Derive the equation of Rayleigh's Energy method for determining the natural	Remember Remember	CO 5	AAE015.13 AAE015.15
	frequency of "n" masses of a system.			

19	Derive the governing equation of the Collar's method when both ends of the system are free.	Understand	CO 5	AAE015.16
20	When both ends of the rotor system are fixed, use Holzer method for determining the	Remember	CO 5	AAE015.15
	natural frequency.			
	Part – C (Problem Solving and Critical Thinking)	Τ		T
1	Find the lowest natural frequency of transverse vibrations of the system shown in Fig.	Remember	CO 5	AAE015.13
	by matrix iteration method. E=196 GPa, I=10-6 m4, m1=40 kg, m2=20 kg			
	$\frac{m_1}{m_2}$			
	1 2			
	В			
	160 <b>T</b> 80 <b>T</b> 180			
	<del>1                                      </del>			
			~~ ~	
2	Estimate the approximate fundamental natural frequency of the system shown in Fig.	Understand	CO 5	AAE015.13
	Using stodola's method. Take: m=2kg and K=1000 N/m.			
	and the second s			
	<b>₩</b> 2K			
	2m -			
	$\mathbf{x}_1$			
	¥κ			
	<b>2</b> m <b>▼</b> x ₂			
	i κ			
	▼ x ₃			
	A steel wire of 2 mm diameter is fixed between two points located 2 m apart. The	Remember	CO 5	AAE015.14
3	tensile force in the wire is 250N. Determine the fundamental natural frequency and the			
	velocity of wave propagation in the wire.			
4	For the system shown in the figure estimate natural frequencies using Collar's Method.	Remember	CO 5	AAE015.17
	<b>3</b> ^{3K}			
	2K K			
	<u></u>			
	J 21 🛄			
	<b>2</b> 3J			
5	Find first natural frequency and modal vector of the system shown in the Fig. using	Remember	CO 5	AAE015.14
	Matrix iteration method. Use flexibility influence coefficient.			
	I W			
	I vv			
	<u> </u>			
	^ D			
		** *	G0	
6	Find the fundamental natural frequency and modal vector of a vibratory system shown in Fig. using Stodala's method	Understand	CO 5	AAE015.17
	in Fig. using Stodola's method.			
	W			
	xb			
	<del></del>			
	l l	l .	<u> </u>	<u> </u>

7	Determine the fundamental frequency and first mode of the system shown in Fig. using matrix Iteration method	Remember	CO 5	AAE015.18
	3K  x ₁ Am  x ₂ 2m  X ₃ M  x ₃			
8	Determine the natural frequencies of the system shown in Fig using Collar's method.	Understand	CO 5	AAE015.18
	X X X X X X X X X X X X X X X X X X X			
9	When one end is fixed and other end in free derive from the first principles for	Remember	CO 5	AAE015.18
	obtaining natural frequency using Collar's method.			
10	A cord of length 1 is made to vibrate in a viscous medium. Derive the equation of	Remember	CO 5	AAE015.18
	motion considering the viscous damping force.			

Prepared By: HOD, AE

Dr. Sudhir Sastry .Y.B, Professor, AE

Mr. T Mahesh Kumar, Assistant Professor, AE