LECTURE NOTES

ON

AIRFRAME STRUCTURAL DESIGN

IV B. Tech I semester (JNTUH-R15)

Ms. M. MARY THRAZA
Assistant Professor

Mr. G.RAM VISHAL
Assistant Professor

AERONAUTICAL ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING
(AUTONOMOUS)

UNIT-I Cont n. 7
BASIC DATA ROR STRDCTURAL DESIGN - EJTRRNAL LOAOS ESTIMATION - MA TORIAL PROPERTES: AIRWORTHINESS REQUREMCi
\rightarrow Arrwormaners:-
Aivusaltincer of an swayoft is concosend with the standubs of sately incarpmated in all erpects of contawhins. These divge from strmulueal streogh to the poovision of cestan stepures in the wert of coosh landings and indube dersn sequweats sedating to acoudynames, pepemonce and elatood and hydraal Systens.

The following are the signoftioness equibements talen into consideations such as
i) Tynes of loods
ii) safchy magins
in) Matrinal perpeotios
iv) Estimation of laods
v) opeatiry Altihdes
(iii) Mantenance
(ii1) Pollowed proceduce in constioution.
\rightarrow Loads.
Atucest Lands wer thase freces and lonbyy applerd to the asplane staubual componests to crtublish the sherath lead of complete auplane. These Lands may be Cased by ais pectses, inehre foces oe ground secechory dury lendiy. The defumiations of shates derign lands
 cortan montaves.

The anoul of arafyer used in dervins of the sisceapt leady is dependent on siac complisily and the dale avallable. The stowhtral woight is digendent on lend Andlasis bine hos magar inpact in an qivecest dargn. The kire aosilabilly govery the amount of Lond analysis that con be mads.
Sofefy mativi :-
The costexl of seight in asconft desgn in of majer ingotance. Inceases in woght requile streaje shemhares to sypmest olich intuen learly to forthey. inceases in moght Exien of shawhud tregit meant lewee amount of peyblond theriby equatioy the ciomonie viabivity.
 of sydy ent slädt
\rightarrow Loads.
Atucest Lands wer thase freces and lonbyy applerd to the asplane staubual componests to crtublish the sherath lead of complete auplane. These Lands may be Cased by ais pectses, inehre foces oe ground secechory dury lendiy. The defumiations of shates derign lands
 cortan montaves.

The anoul of arafyer used in dervins of the sisceapt leady is dependent on siac complisily and the dale avallable. The stowhtral woight is digendent on lend Andlasis bine hos magar inpact in an qivecest dargn. The kire aosilabilly govery the amount of Lond analysis that con be mads.
Sofefy mativi :-
The costexl of seight in asconft desgn in of majer ingotance. Inceases in woght requile streaje shemhares to sypmest olich intuen learly to forthey. inceases in moght Exien of shawhud tregit meant lewee amount of peyblond theriby equatioy the ciomonie viabivity.
 of sydy ent slädt
(40)

* materiel propertio:-

1) Ductitity: The abitity of the materal to becale. down int wises due to load eppliatims.
a) Malleability:-

The obitify of the matuid to breceledion into shacts due to the lood applotion.
3) Toughness -

The abiiting to withstand the sholle hoads of the impact loade is Toushness.
4) Hachess :-

The pappory aribited by the natual fom the scotuly and the indertations.
5) Buitlenes:-
sudden beakage of the malceral due to the apstuati of lood. The streain pertulage will be lenthen 5%
Estimation of load:-
An aroutt is sibibuted to a varidy of londs dary its opeatinal bfe, the man classes of wheh are manewver loads, gust loods, undu coarye lads, cabin paessur. loods, buffety londs and indured vibsations. of there, mencure
(40)

* materiel propertio:-

1) Ductitity: The abitity of the materal to becale. down int wises due to load eppliatims.
a) Malleability:-

The obitify of the matuid to breceledion into shacts due to the lood applotion.
3) Toughness -

The abiiting to withstand the sholle hoads of the impact loade is Toushness.
4) Hachess :-

The pappory aribited by the natual fom the scotuly and the indertations.
5) Buitlenes:-
sudden beakage of the malceral due to the apstuati of lood. The streain pertulage will be lenthen 5%
Estimation of load:-
An aroutt is sibibuted to a varidy of londs dary its opeatinal bfe, the man classes of wheh are manewver loads, gust loods, undu coarye lads, cabin paessur. loods, buffety londs and indured vibsations. of there, mencure
undacerige ant cahn pacsure Lads are delermined with seasonable simplidy since mentures Lnads are controlled. design sates cases undecorverge are designed for gime mandaum descent rates and certan prossury are eprecfed The serantry coods dependect iv a lage extent on the atmupheve conditions encombued daudy flyst.

Eslinales of magritudes of such loods are only pasisble therepue if in-pleght dota on there land is awalable. It agwiey a greel number of howes of thyter. if the expeimatd dala are to include passible catrem of atmesphecie conditions. Basing on thas biet q ultimate londs are costinated.
Sandwich Constewtion :-
thes has spooiol chasaterstiy and is vay impostent. in aloceept desizn. A shewhisal sondwath is copposel of two "fars sheets" bonded to and sepeaded by a cor.

The fou shuels $c o n$ be of any mateul, but are typlically alumisum, fiber-glas eppory (na) groplite-epary. The cre is usuelly on diusinum os pheadio hanay comb moteral for commucal and mitity asest. Many of the areoust stwuchers ore consturethel by toon. Cur structure with fiber-sloss compusite sbins.
undacerige ant cahn pacsure Lads are delermined with seasonable simplidy since mentures Lnads are controlled. design sates cases undecorverge are designed for gime mandaum descent rates and certan prossury are eprecfed The serantry coods dependect iv a lage extent on the atmupheve conditions encombued daudy flyst.

Eslinales of magritudes of such loods are only pasisble therepue if in-pleght dota on there land is awalable. It agwiey a greel number of howes of thyter. if the expeimatd dala are to include passible catrem of atmesphecie conditions. Basing on thas biet q ultimate londs are costinated.
Sandwich Constewtion :-
thes has spooiol chasaterstiy and is vay impostent. in aloceept desizn. A shewhisal sondwath is copposel of two "fars sheets" bonded to and sepeaded by a cor.

The fou shuels $c o n$ be of any mateul, but are typlically alumisum, fiber-glas eppory (na) groplite-epary. The cre is usuelly on diusinum os pheadio hanay comb moteral for commucal and mitity asest. Many of the areoust stwuchers ore consturethel by toon. Cur structure with fiber-sloss compusite sbins.

Maicosat Eelection:-
If is a compromitie
finnolving
NTh
Varsour
Considat and also akocleted mub papp.

$$
\rightarrow \quad \text { fatigue }
$$

\rightarrow Prectux toughness \& crack grouths
\rightarrow Corrosion \& embarillement
\rightarrow Envinonmantel sicutit
\rightarrow Other costense which is qusceited basie materiel in the osith poducing The
gime replixd and recouelin cost
aी a rect

$$
\rightarrow \quad \text { Aroilutity \& proderisiot }
$$

\rightarrow "9atand cherectenstics.
$u \rightarrow$ In addition to thue, thes ad some Epeci-lixad exprixmaile :

$$
\rightarrow \text { Erosion of chencteristice }
$$

\rightarrow Compit. ivity with ether ments \rightarrow Thernd \& clefincel clachtaris.

Stitii ditrength t/fictency: -
\rightarrow. for stroitune appliation, the ivetid evoluction of varnous mitericle is Comperimon क) Mitle 7 Bfingth effreiney. which is a miens ? mencuring The mitenel xदlive
\rightarrow for aidio appliations, the effect of temp Should be const dired.
ic., the lowes stexngth of A a.lloy 2024701 has better stregth retention at Rleveted temp that $7075-$ TG .lloy.

Fatigue:-
\rightarrow The behuriour of metental under condtif con be cuelueted at tollotes.
loed \rightarrow the Conctic Cond"s regutad to initich ance \rightarrow " 1 " \rightarrow propofíh \ldots
frectux foughous of Crete ? roesth:
\rightarrow Thiy bere becone incexerifly impsitent in Eveluetion of high 大itangth melcosile.
\rightarrow It \rightarrow depmed a The abiaty of apent with (ruex (6) difeit to aden loed without cetaltutophie ferlure.

\rightarrow As slxigh Eो the met ting, If is Fhond thot mat telerence to the phenomenan has been redused.
\rightarrow Maodificio fiode to heat Hexotment hava been able to offer stetis) rectory string af restitance.

\rightarrow of the mot tro जtion ite oniginel phypled and mechericel prop ajer ixpoewer to the gpenting envinonvit. pesticulidy lemp \&icixes. \rightarrow In alloy \&ys, thex is a dendncy
for micro atroturl chorges to oocur \&t Jo Qtevitel temp
\rightarrow tr the precipltition - Cherdened klloys, omporux to tomp equel to a bat $80-50$ '/ ? a.ging temp will result in progzerise overying loes of Stxith
Arvilesity \& prosucibiver :-
\rightarrow the mat mat ectro be avilleble in all forme repuind to Aelnitet the sivich
\rightarrow the Tems repuixd may baclude conlinuos Bhat, lary size plete, close to tornce terivoions
\rightarrow the aveilobity of a meterial in lage questitia will depend on produen Qepe bift and indesing wide bened.
 m / c wit हो xperetty be bared on whrltheres
 applicetion.
\rightarrow Dew mil a monytectiva coll will be \therefore be imp cencidention.

$$
\begin{aligned}
& 5^{8,5^{9}, 6,61^{67}} 6^{68} \\
& \left.6^{8}, 6^{4} 1^{6}-3^{3}\right)^{x 5} 1^{76} 1 \\
& x^{0}, x^{-3^{3}} 8^{x-}, x^{x}, 8^{2}, 83,
\end{aligned}
$$

-7 the balic sivy th
Tor a psitisur
Qtsucthince suthortius es ? तुकर envelope
(8)
aiven $\mid+1 \quad a x$ pey)S.mene $1 / 1$ vis 1 an Gor a pestitulir

Fllak Envtope
\rightarrow Che Curra of Corrupben to the gtathd coest n v| the $n \mid c$ on it as elitaind

$$
L=n \omega=\frac{1}{2} 8 y^{2} S_{2}+x x
$$

Bov soses betew if (poritive reigg Inchesing)
-7 ? mostive wing then ave the
 mer Oi? an goverts by Clmex.
\rightarrow Ate The speed its, it is porible to apply
the tive a -ve limit louds, ctterponding to nien repraint more opentionel cod fector for The a / c.
\rightarrow Abore the dine $C D, g l_{D \in \text { condsing spad } V_{C} \text {, the }}^{T}$ cot off line $C O, Q \quad D_{2} \in$ reling the desi ne cones to lo covered sinte it is ref exputed Whet limit loods will be applie d e^{-1} moxsped.
 aisouthinue autbittres for pertíalix =1c.
 with 1 in atfitod ond speed of Sor is redur with atititude thenty reducing the the conticel pack No. \& hente the derijn diving spadlb:
\rightarrow Ppiput erelops ar \therefore drewen for a
 ses liw th The
$V_{\text {mion }} \rightarrow$ stall cund a
anote.

Factor of selety:-
\rightarrow the control \&f est in a/c dulin is most impilunt.
\rightarrow Ne in wi xpuines stronoer struckere to suppettion, which in tom ko doober to nes in wot \rightarrow Excer of stroctund wat mean lever ementos of paylad,
\rightarrow To . Couux the grexl min stindude of Striyth \& safety, airwothenie requition ley down Seven Efecor whicith the primey stroe of a/c mut setisdy.

1) Limit coodir It is the mex land rthet a)c is expeted to TTP in nimel opern.
(1) Proor cono:- It is the product of Inmit laad a proof tiluor (1.0-1.25)
(1ii) UCTrame CDAD:a utlinete fector (unally 1-F).
\rightarrow the ale must wirthetian the proof lond withort detrimental distlition shadd not
दोil wrilit दeil with the oltimote lead is achired.
\rightarrow the proel \& allimot \&betes $a x$. apooded as fictor हो xjदा

Wing Pisiog In in：
\rightarrow Deish，wint to－is comit of sheor，bending momemiti ？ Horioses wote as a retuit of at pres as trexili a looey
 could loy ght
\rightarrow ethed FHily const ar whese ateneited with costol

＊tindikg
78 Lindikg a Dír thisd eqen wist pistrobetioos：－
\rightarrow the aix cond $\mathrm{bN}=$ aing［aneti y， 2 pests
A）addition louting
a）$H+=a i z \quad$ Lesding is cavsed by A O．A leading \rightarrow On－Nspeil vita $(\geqslant 3)$ tho i th \＆distinta verois divelly w．Th AIOA

 -2 Cto is 2.0 tift corll
\rightarrow the distrikti is cownad to $-\mid p$ ciate line
 wenired wing aza

Cite denote atistribution of wing c, of $1: 0$
Bavin Ift ．Dretic
at a the tad vite of wól with tin ver foliskd dian

if tome singe inn o 岁荷

Bavi हift
Datikn
D) Aivetige, Nhecalle 21 wiy troun \rightarrow Stem loited Hor Th

\rightarrow 80Th ot riend it mat C.P nol bend
\rightarrow the thp tone it 1 to Agat atit
-9. the radome "t mone Ceets "high h.OA und ount in Ayber toande on ouvtoond tern of hige
i) Dyamis Gut (0.4i:-

(i4). Undly \& Texi:- lendy wif loid ar Af imp beazg

v) whin tontel Suferes:-

 mut te invistigated tे there cortol serpmes cureniled
\rightarrow Then coed's an not contical for with bendig the mefor sintial for wing towion, sheer in rar ker bor dren -411 loadr
\rightarrow the oft perition of the wing, whirh tem 44 thep

 \rightarrow tpllt

2) Whane
englad ation slit to defleted ailfays
vi) wig winht Testributim:-
\rightarrow tio datomin the suajn lowigs, ut हो tang

\Rightarrow NHikT lond", the ad is 3 celing lond atlention is givo to platimet \& cile tiake teld

\Rightarrow Thir loudt inturet tolion the mometh coutd
 -5) proide contal abit Thety ayis
 सHAC क्या

Propusion lanes:-

\rightarrow the propotsire sys if ore of the mofor sys-(ht) reprie \rightarrow Hise we comider the midd loeds that pypet
 - these loods ar uroelly aperat to al engine moint
loads. $\overrightarrow{T r i s t i}$ the migor coriderntion an . Thenet londs, A to lomse,

1) Thoost:-

\rightarrow the चrmonil volus ar used for laytelletion on a/c.
 \rightarrow These depend on parenties as temp, bleed sir, althonds, Mack ro.

1) Alfito' Nivondir
\rightarrow thew xpex to v-rious afd force destoped onimgelt 1 \rightarrow The inet potion af pod is a highly loaded potlion \& 7 Ptroetore sinte tis tune is to streighter The ainflow into
The erinse \rightarrow The intet is chayif The momentore of ablow inbe the enfine a thes develops high londs a prurres.
(ii) Inverin lookt?
 when the estatig pots of prop ys ax wiok abot

$$
\text { Hy }= \pm N \dot{\psi} \quad \text { है tapic apher nel }
$$

\rightarrow (the us) ast used for tatis the rotheti cluctiont

Tusctege Coodri-
\rightarrow loids apfecting furelege desing con wisult from ofíght monemy londingr cons oroud hording con^{n} ns.
\rightarrow fuckeve louts on promerty : prob of deTorming the distrobs की ut, पat low os, noir londing geer luad.
\rightarrow w disinto is imp as loyi pert of felay conde stem from the inestia of mis prims acted spon by the accelevition, both recritotionol \& rotitimel.
\rightarrow Thil louds an viry berge, contriboty hienty to bonding
\rightarrow - corke aft body नrosons.
\rightarrow Sime ne T.ill loest, the locds atting on note grev VL continbut to net losds on Febedy.
\therefore The alp is Ahided ite $3 \mathrm{sec}^{n} \mathrm{~s}$. ic it inelyzed Seperifity. trowern whele stroeter need to comiderd for Qffuts of lodi from ore $\operatorname{Sec}^{n} T_{0}$ other lat for discurion,

? forebosy: the poition so ducelye forwn. की की the - Ponured melo body: the petion of detey? oft of the yt min A.jus Inclutal ampenerie
3) C.onter boxy: poituon if ifvulye beto mein remes.

Pestabut of wot si fired ast it strue gepuipmont of romovile fad
\rightarrow It cositt of percedl in micitary typers

gide (oode (in y-dinur) ex coused by stde \& towing nicc \&
 lome rat tonds a connot is re.peted
 bosd

 contial carbis.
\rightarrow Astosd on Ausetye eftbsy ax gemnly nuglected both in
 digtsobulion in the usposclictest Joud behost the wing is
imposible to detumies
Arimet prus.'.
\rightarrow II II on Juelye, ox signifiant only around protefermy \rightarrow the axes of woing, the prusty theicin the
\rightarrow in prow on tho Fixely aill be if ond of marg of pin on th -ov

- Thimal pars ir (ELion Tim):
 combeot dxind So the eckupants.

 Cond x^{n}

 ond the puecyl is desigact to meinlin?

Empenay: loodi:
\rightarrow ineluse both nizoritel $f+l$ a voitial boide and are checrstred ar Sollow:

- The beizonted $18 i$ \&s pot on an al.plee for 2 ramy
 A) other paete of alp. control abost the pithity orts.
i) provid
\rightarrow loeds on the vertial till ax coused by
() Roddrer delleen
ii) niteron idten?
ii) Artien Ithe?
(ii) |eten| गit
- Hevzontal Leil loid -
$\rightarrow 70$ extermine lousts on Krizontal $48 i$ in this cond?
 other tomporants of the ofp.
\rightarrow This is)o is obteires by mentit they forle \& month in the sited torrell whits hifizortal 1 il x moved.
\rightarrow this is shown in \vec{r}^{2}
 Leat is that हो olp lie the tifi. (cmat \rightarrow ing cin coud -oll
\rightarrow It is imp ven celedity the

$\mathrm{CrHA}_{\mathrm{A}} \rightarrow$ sin phlch maxntitis Hil-o\|.

For quehth: \quad EF $=0$.

$$
\begin{aligned}
c i & \frac{c}{2 s} \\
= & \frac{n \omega}{25}
\end{aligned}
$$

when lift cacell on antixe apir

$$
c_{l A}=c_{l A T}+c_{L t}
$$

$$
\varepsilon_{A}=\frac{n-\frac{\omega}{2}}{2}
$$

$$
\begin{aligned}
& C_{1 A t}+C_{1 t}+C_{L=O} \\
& C_{\text {LA- }}+C_{1 F}+\frac{n-\frac{10}{5}}{2}
\end{aligned}
$$

$11 y \cdot S m=0$.

$$
=C_{m+t}-C_{\text {lat }}\left(\frac{x_{a}}{c}\right)-c_{1+}\left(\frac{1+}{c}\right)
$$

$$
\begin{aligned}
& C_{(t}=C_{\text {miAt }}-C_{L_{A-t}}\left(\frac{x_{a}}{c}\right) \quad\left(\frac{n_{A \omega}}{2 s}\right) \quad \text { porat } \\
& \left(\frac{t_{t}}{C}\right) \\
& \cdots(2)
\end{aligned}
$$

\rightarrow The $C_{0-t}\left(\frac{x_{x}}{c}\right)$. Can be ctirnineted by meripoleting the are 7) Cryat us Clat Corre.
\rightarrow sb,H ही =xis it shown in fig.
\rightarrow Ex: the rue oris, tha expi porell to $-H_{t} \mathrm{l}$ lift co-gif berom.

$$
\begin{align*}
C_{L} & =\frac{\left(C_{m A t}\right)}{(w / C)} \tag{3}\\
C_{1 A} & =\frac{\eta \frac{\omega}{s}}{2}=C_{A A A}+C_{4}
\end{align*}
$$

 fificontel $+\mathrm{H}_{1}$ mo $\| C_{\text {Lat }}$ vs

- vertial lad on hbilontolthil is

$$
\text { f(exicontel }+1 \text { - }=0 \| C_{\text {Ledys }}
$$

$$
\left(a_{1}=\frac{1}{2 s}\right) \quad \text { b } \text { lad } \quad \begin{aligned}
& c_{1}=\frac{p}{a s} \\
& p=c_{12}
\end{aligned}
$$

1) Steedy mencumu: Cmane plea

$$
p=c_{1+}^{a s \cdot q \cdot s}
$$

\Rightarrow A Stinary pixh menerex such os stendy form, stecaly pull up (心) sindy pute onr lave ctudy vilu of 10
\Rightarrow Thiu
-n The velue of 0 is pyen of memever lond feitr ह! u -lype of revenourer.
i= $\frac{g(n-1)}{v} \rightarrow$ for pult T at peit over fram lowel golkt. $9(n-1) \rightarrow$ for siroty line (tum

Qur angur wi in pitch

$$
\begin{aligned}
& V=\text { app eformendul } \\
& N==1 p \text { tow tut }
\end{aligned}
$$

 a) wech viries linescy from atell to the nore sith a deat et cy
\rightarrow the offot \& $\hat{\text { of }}$ कn ankend redistribut. is
small. \because tift axopp
on cithas side of cqg (ift
\rightarrow bot the o/fet of of
 Runंes thuy ix atting in seme dialn on either sidi of cq.
2) Toontint menuews, In dremitent mentures, the
\rightarrow. interat of hsizontet til loed. die to

 C)

$$
A C_{H}=(\operatorname{CoN}) \times \pm
$$

8) fitekin manevissi:
\Rightarrow thi pich erentury involve a. ec-pid molion in 7 elentor

 to the $\mid \mathrm{FNT}=$ phat
\rightarrow. Mhè fien be astimetrad

$$
\begin{array}{cc}
I i \dot{\theta}= & \Delta P_{2}(1+) . \\
P_{21} & \frac{I \dot{\theta}^{\circ}}{1+}
\end{array}
$$

4) Unsymmetitric

Lathir
$T k a_{t}$
argerg Lon hrilo 1.1431

\rightarrow Rell a पain
ar.k大imbitit
\rightarrow Bughe a mis. thamat nit net dilumind andytially. and ax telom hante aceurit arsitivily.

- Poll imatuen a dimping load on táll MCH-4 detemied of serre o doing

8) Gust:-

Gat lot on tribizoriti til it same to that of rolug (on Nrizicel th? 1.

Verercal Tall LoANt,-
\rightarrow The teeds fimpered. by rudder dylicen $a x$ a diait poner of rudate power.
\Rightarrow the ruddir power comiti, of ment adv built in the continol sye betn pilst \& surft.
\Rightarrow rocter eqfectius whorieed do be inclubed.
\rightarrow the 30016 pedil toen it the mer pedel fart Coretituved For Frovernl then.
\rightarrow the truddr a.ples ont $=\mathrm{my}$ gpod mighte determind fromen

$$
C_{r}=\text { mowir } \quad \text { in-0.coppot }
$$

 Sis illp $(c h \beta)$.

$$
\begin{aligned}
& y=m x+C
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[8]{\text { cot }} \\
& \text { Cms Cms.s }
\end{aligned}
$$

$$
C_{m} \frac{m}{\frac{1}{2} p y^{2} s c} \frac{H \cdot m}{q}=\frac{H \cdot s c}{q} .
$$

H.m $=$ is $\mathrm{s} \cdot \mathrm{C} \cdot \mathrm{Cm}$

$$
\begin{aligned}
& \text { H.m }=\text { q.s.c.Cm } \mathrm{C}^{H} \delta
\end{aligned}
$$

Other peometar need to find out in siderlip (ß).
 \rightarrow Mace roment if nowtr $=$ Vew mont of of pr
Core $\frac{m}{q .5}$

$$
q \cdot s \cdot b \cdot C_{m} 8 \cdot=C_{m} \cdot \beta \cdot q \cdot s \times b .
$$

$$
\begin{aligned}
& B=\frac{\operatorname{cms} 8}{C_{m \beta} \beta} \\
& \text { sile ing in } \\
& \text { sing }
\end{aligned}
$$

(2).

Cmpennage lorde - inclode both holzontel teil a veiliol tell loads and are descbbet as tollurs.
\rightarrow the hbizortel hill is pot on an airpline fof 2 promey rewom: moment coused by on D and i) Botanes the mement ports of por porestere. inest - Pees की acha poxt of pitch axis
11) prorides conte t Mil ax Caused Sy Loads on icu-tial tiil axe Cansed Sy
iv) Asymentic evire
\rightarrow خothowiy!
i) filean

H(B)20ntel litl louts:-
\rightarrow To beamint louts on. The knowis a ke Stu Cond of the othir componim of ci-plere. S momuts isto i obtiond by measthol the sith hitizentil \&. monnar amored.

Seil smoved vilue of C_{L} meswid in chase lest is that
\Rightarrow the vilue of C_{L} rexeriel. the in is impilohen e) the IP lix the hailontel hit loud of laluy. Gleater \quad the If equitron: $S F=0=C_{L_{A-t}+C_{L t}}+\frac{n \frac{W_{2}}{S}}{q}$

$$
C_{i}=\frac{1}{25}: \frac{n c}{8} .
$$

$$
\begin{aligned}
& \sum M_{c g}=0 \\
& =C_{m A-t}-C_{c a-t}\left(\frac{x_{0}}{c}\right)-c_{1+}\left(\frac{l_{t}}{c}\right)
\end{aligned}
$$

(8).

$$
C_{4}=\frac{C_{A+}-C_{L+}+\left(\frac{n}{C}\right)}{\frac{q_{1}}{c}}
$$

$$
\begin{aligned}
& w=q^{200 s} \text { oot }
\end{aligned}
$$

$V_{s}=\operatorname{sink}$ spend (-H/a)
ti: the spring \cos ($14,4-4$)
It. hector to ant for $\left(r^{2} \cdot z+k \cdot z+p \cdot t=\omega \cdot n\right)$.
lite deglen
$x_{t}=$ tix inflen

$$
\begin{aligned}
& t=\omega i n g n t \\
& X_{S}=\text { stast stoke } \\
& \text { Is stat } P_{s}=\text { vestiel lad } \\
& \text { Is stati 2 } \\
& \text { L.g loed fector } \sum_{G}-\frac{P_{v}}{\omega} \\
& \eta_{-1}=\frac{\frac{1}{2} \frac{v_{2}^{2}}{g}-\frac{\nu_{+} k_{t} x_{t}^{2}}{2 \omega}+\left(1-\frac{L}{\omega}\right)\left(x_{t}+x\right)}{n_{s} x_{5}}
\end{aligned}
$$

\rightarrow If insupficint streke and vivilesie low hijh is prics as exprexien, poor η and high load foesten xuote. LawDING CONDITIONI':

-? The varbous consts comidenid ox oxfenand to at the lendicy congt?. क Hpial cet of lendin condl if $-/ \mathrm{P}$ ath ton y, is shown.
\rightarrow lext lendiay, 3 point
\rightarrow It 2 poivt
\rightarrow Tent dow londi!
\rightarrow Ens - whes "
\rightarrow Dist bendy

Geor atzat boude:-
\rightarrow. The ground hendling 10.4 au based on the aqumith
 (xith appopprst limat 8 anguer iraiti- lade.

1) Grand bundie\{ dry a fide lous a-z applied at apoond al veation lacal ar eppliad at it axhe
2) landन ding lads at "

 whes londs.
() Gerer whes! lads with o let fixs.
e) Geor whal louds woth no feet tixy.
dendig Geo louti-
\rightarrow for a \rightarrow Bigcie giex, the lending ger loses \rightarrow Berouit vith quored mention an defined
\rightarrow Breles of - 2 wheels

- Breleat il -2 whetle.
\rightarrow Visymentrial bueleigy
\rightarrow Retreve Srele.
\rightarrow Turnivg.
\rightarrow proviting
Reinceition tonde:-
\rightarrow The glixyth of the veltraction sys mat bo cock ther in any porn top to the adepres ith The gier in any porn up to the
dolojn ipued tor strution dopip puat नor setrution

bandiog Gear los de i-
\rightarrow toubs impsed on vaśous afirneere components during on cherectestrita of ayp landing geor.
\rightarrow A conventional it.g cemporme 2 basie funst,
\rightarrow It diringeter the crexpy areocietel vith vestial deat
 manuevisg the alp on graine (toeling)
\rightarrow fectuiv of atp beheviour dusóg lendiy impert is

 1) ether somponets ax invetigigitd for eveny
posibish diygn cod
\rightarrow Lendi-g impeet lody ax depurdent on a number verbilses, arnorg whax applarding contact vel oif atinus mose, distribart of afp P man ho the Uoriow geoss and mag of U/ acting on al $1 P$ at time ferimerts \rightarrow Thet ax geal they fix a pround supice.

 Aprumic spring becte loods.
 enesty geverst Ther v-lue ofrici coould if the lending loed - offor
\rightarrow The simplest sievia coould is a spring, colac Varciation of virical loond on The gres isior spring deter is lineor \rightarrow The antrgy abitbed woidd $b e \quad \frac{1}{2} \quad P_{v} X_{s}=\frac{1}{2} k_{1} X_{5}^{2}$
 vi abos the 8 km emply to $P_{\text {yrax }}$
\rightarrow the mat conmon type of strot ie air-oil oleo.
 onftic in the priston.

क) offtis gosemis the t of reo.

loud-troke

Dyromit xepore
\rightarrow the lasd fut or is approtimalad sustreeted toern the k.en of datext ple the p.e loed stroke cme $2)$ apuetel to the asen under ine

$$
\begin{aligned}
& k \cdot E_{1}=\frac{1}{2} m v^{2} \\
& k \cdot q=\frac{1}{2} \frac{\omega}{g} v_{3}^{2} \\
& \text { Tixtory }=\operatorname{Vit}_{2} k_{t} x^{2} \\
& p \cdot \hat{\varepsilon}=(\omega-L)\left(x_{t}+x_{s}\right)<\binom{n}{\omega}
\end{aligned}
$$

Miscellanear lo.di:-
the tum misceilonton lo,d is usulty applies to loods apcied to desifn non. promery aiz) rime Hevetix.
\rightarrow It incluser meny we.pe of aispliee componate asystexy
\rightarrow Fäpe of misullimenos locti: :-
\rightarrow Groind kenatij bu ce
\rightarrow contal supecs lo.gs
\rightarrow Do8 loeds (pauryir, cor o, bandy $y^{a_{r}}$)
\rightarrow Prus loids (cobin, fuel tent, q locelsinfue)
\rightarrow Noil to dome loade.
\rightarrow Pluid sytim apvixant
\rightarrow 8.at 2 floor loces
\rightarrow Avrillay pown unit lo.ds
\rightarrow frviromiril contol eys loids
\rightarrow Fired lecty d, Co.a.
\rightarrow Engine हर brer bxelacky
\rightarrow Per air todine loud.

Unit 7
Design of Wing, Tail Unit sluectures
Wing = role - Summary of Wing loads:

* Wing is evsentially a beam which transmits and gathers all of the applied airlock to the central attachment to the fuselage. Wing requires longitudinal members to withstand the bending moment which are great at during flight upon landing * The aline of the wing, both in plan-form and the crosesectional shape, must be ruitable for housing a structure which is capable of doing its job.t preliminary layout of wing structure must be indicated to a sufficient strengths, stiffrees. and
* There are several types of wing. etructure for modern, high speed airplanes, Thick box-beam struclanes-For high $A R$

2) Mutti-Spor box structure - for Low $A R$
3) Delta- Wing bor

* For preliminary design sizing r and loading purposes, it is generally assumed that total wing load equals the weight of aircraft times the limit load factor times for (1.5).
* Additional loads = Internal fuel pressure handing gear attachment loo + Wing leading \& Trailing loads

Structural Components -

1) Wing - Box:

Primary structural design problem is one of general structural layout.
First - Whether a large \% \& wing bending shall be carried by spars, or whether the cover should be utilized reg Second - In which direction should the primary wing vibe run

Leading and Trailing edges:-
Leading edges:
The increased circulation arnosciated with the deflection of an effective trailing-edge device induces an upwash at nose The local suction peak increases on airfoils which are liable to leading edge stall. Leading-esge and high lift devices are intended primarily to delay the

Requirements:

* Must delay How separations to large angles of attack
* Must stow in mat forcuord portion of the wing.
* Either in retracted or extended positions the clevices should not be deflected beyond the required gaps uncler air load or bending

Trailing edges:-
There are many types of trailing edges. Flaps used to increase the maximum lift coefficient to shoran airplane take-off and landing. The flap applied to the trailing edge of a section composts of a wing section unially from 25 -35's of the chord length.

Hing logout:-
Wing design has to allow for no many factors platform, sApor and stringers location, landing-gear attachment i and retrotion, power plant, ailerons, flaps and host of others. It is desirable to make preliminary studies to make sure that every design feature has been property incorporated
\rightarrow Drow phanform of wing with the necessary dimensions to sale, to satisfy aupet ratio, ares and sweepback.
\rightarrow Determine Eleometric chord and check that the relation of wing to fluclage is such that the center of gravity lies in lateral plane $\perp^{\text {br }}$ to mean geometric chord at the mean aerodynamic certes.

Location of Spars:-
\rightarrow Locate the front spar at constant y_{e} of chord from root. to the tip. The frost spar is located at between 12 to 13% of the chard. Note that constant \% line of chord many not paralkl to leading edge of wing.
b) Locate the rear spar at constant t of chad for root to tho. This is basted at 555 to 68% of chord usually 60% to accomodate a $30 x$ of chord ailenon. Nether fort nor reason ser reeds to be extended to erfreme wing tip, since eitreme coingtis is usually rigid and in a position to transmit bade to adjacent sinecure.

Ailerons and flaps:-
\rightarrow Mark out aileron. The leading edge of aileron may b parallel to the rear spar. If the rear spar is located at 60\%. of the chord, then aileron should be not exceed about 30% of the chord, since rome allowance must be made for rear spar cap width, aileron gap, space for control systems,
\rightarrow If a flap is used for a high' lift device, it may extend the entire flap distance inboard of aileron. Here, some additional studly may be necessary if a considerable flop arris derived

Rib spacing and direction :-
The wing rib racing is based on pane size. Ribs are likely to be located at each aileron and lap hinge. Sane adjustments in rib spacing may be derivable to get hinge-rib Locations to coincide with rib stations. Reinforced ribs are also called engine-mount. attachments.
Root rib bulkhead:-
Rib bulkheads are used for joining Ribs ad support the structure

Spanwise Stringers:-
Spancolse stringers may be placed parallel to each other. or at constant percentages of a wing chord. There spancuise stringers are not normally cared out to it p, but are rather discontinued at intervals inboard of tip.

Wing Cover:-
In the consideration of bending material it is convenient to classify wing structure according to the deposition of bending-load renitent material
a) All bending matemal is concentrated in rear apps
b) Bending onaterial is distributed around periphery.
c) skin is primarily bending material.

Wing bending loads which cause compression at the upper surface of wing. The torsional loads/moments are primarily resisted by the skin and frond and rear spans.

The upper panels on a coming structure are also derigned to be fail-safe, but since only structural separateno that on occur is. dining ground apeathons.

The following loads must be considered in the design of a compressive surface.
a) Direct compression induced by bending of entire section
b) Shear Hows
c) Aeradynamle Pressure loads
d) Wing tank that loads
e) Wing bending Crushing loads.

Skin-Stringer Panels:-
The most common wing covers of transports are skin stringer panels. Wing skins are mostly machined from a thick plat to obtain required thickness at different locations.

a) Z-shape

b) J-shape.

The machined skins combining with machined stringer are the most efficient structures to save weight. There are many advantages in using machined skis. The skins can be tapered spanuise and chordwise, thickened around holes and to produce rib lanels

Integrally Stiffened Panels:-
Proent trend toward higher performance levels in machines and equipment continue to place more exacting demand on the design of structural Components. In $\mathrm{alc}_{\mathrm{c}}$, Weight is always critical problem, Integrally stiffened structural sections have proved effectively as light weight, high strength Construction Composed of skin and stiffeners formed Ram same unit of raw stock, this one piece panel sections can be prodered by several diff techniques.

a) Integral Hade section

a) Integral z-section

Advantages I integrally stiffened structures
(1) Reduction of amount of sealing material for tank structures
(2) Increase in allowable stiffener compression loads
(3) Increased joint efficiencies under tension loads
(4) Light weight structures
\rightarrow Integrally stiffened structures have greatest advantage in highly loaded applications because of their milium section size.

Access Holes:-
The techniques selected for installation of vanlows access hols contained in the wing loo structure presents one or more critical deriogs challenges. Stxiclural integrity and aircraft maintainability are prime considerations. Load eccentricities and stress concentrations are held to a minimum. Lightning protection has increasingly influenced the elesign of modern jet aircraft and tests. There are two major designs of access holes, with stressed door (carried loads) or non-stresped door (Mot Camped For accas hole with stressed door:

* Increased stiffness
* Reduced fretting Corrosion between door and door landing.
* Improved tank seal
* Improved electisical bonding
* Lighter structure.

For access hole with non-stresed door:-

* All doors are designed for clamping, du to this it elimino es the installation problems

Attachment of leading edge and Trailing edge Ronetss.
Any notch at the wing skin such as at the front and rear repair where the leading edge, trailing edge, control resurfaces are attached to will result in a stress concentration.

Stress Concentrations in wing box structures will result at end fasteners where trailing edge and leading edge skins such as fined leaching and trailing edge panels, rivet to the wings spar caps or wing skins.
Several approaches are introduced as follows:-
(1) A corrugated splice strap called wiggle plate is developed to support and splice the edge panels to the wing box. The wiggle plate acts like an accordion.
(2) A second approach is to use a sacrificial doubler to attach interchangeable leading or trailing edge panel. The design allows the use of interference attachments in the heavier spar flanges and avoids degradations in the spar cap if replacement of edge panel.
(3) A Third approach is used for aerodynamic loads
(4) Another approach for gooseneck hinges. (to govern bending astral

For strength/weight efficiency, the beam(spay) ap should be designed to make the radius of gyration of the beamsectio as large as passible and at the lame time maintain a cap section which will have high crippling stress. These cap sections are generally of the extruded type

Typical spar cap sections
These cap sections are almost always used with a bean web composed of flat shed, which is stiffened by vertical stiffeners.

General rules of spar-design:-
(1) Add doubles to the web around spar web to reduce local siren
(a) It Is strongly recommended to use double rows of fasteners between spar apps and wets.
(3) Tension fittings is required wherever appreciable concentrated loads exist such as engine pylon.
(4) Do not allow any fired leading or trailing edge panel to be dirco riveted to usparcap to aveld cracks.
(5) Careful detailed design should be given to critical areas
(6) Clips, provided for support should be fastened to spar vertical. stiffeners only.
(7) Fastener spacing abri vertical stiffeners should not be too abase to make local web ret area shear cortical.

Ribs and Bulkheads:-
For aerodynamic reasons, The wing contour in the chord direction. Therefore, ribs are used to hold the cover panel to contour shape and also limit the length skin-stringor on integrally stiffened panels to as efficient column compressive strength. The rib also has another major purpose, to act as a transfer or the ctritribution of loads.

Basically, there are many types of rib construction simile to the spar. The aircraft industry generally uses shear web
change, eliminating load Concentrations.
Functions of Wing ribs:-

1) Wing bulkheads are frequently constructed as solid webs.
2) Wing ribs carry the following loads
a) Primary loads -acting on rib are external air loads and Frankest of them to spars
b) Inertia loads
c) Crushing loads due to bending
d) Redistritantes concentrated loads
e) Supports members
f). Diagonal tension loads fam skin.
3) The manner in which the ribs structure resists external loads and reaction forces acting on ribs depend on type of construction. * In the trues-type rite, the distributed external loads and the reaction forces are applied as concentrated loads at Joints and the structure is analysed as a simple truss. The outer mems are mabjecter to combined bending and tension.

- In shear-web lope ribs, they are employed either to distribute concentrated, loads, mich as nacelle to the shear beams
* Webs with lightening holes and stiffeners ore applied to resist bending moments by rib app members and shear by wet

4) Analyn's of ribs are
*) Shear in web

Rib Spacing and arrangement:-
The spacing of the wing ribs uneally has to be established early in derign phase. Since the weights of the ribs is a rignificant amount of total box structure, it is impi to include the ribs in the overall optimization of structure.

Above graph relates ribropacing \& structural Weight. It is advantageous to select a larger rib spacing; for equal ismestural weight it leads to cont, savings and less fatigue hazards.

Wing rib spacing will increase with the depth of wing box. Thus, considering the typical wing which is tapered in plantorm and in depth, the optimum wing structure wald have a variable rib spacing with maximum spacing.

Wing rib arrangements outside of wing root joist is critical for designing the compression Anctural stability, The rib spacing here is considered as important as root joint
(6) Wing Root Joint:-

Wing joint design is one of the most critical area in aircraft design, especially for fatigue Consideration. Basically two types of wing joint design, ie., fixed joint and rotary joint The best fatigue design is accomplished in modern airorafts, which have no joints across the load path except at the side of fuselage king sweep plus dihedral and manufacturing joint requirements make the Joint at the side of funsloge.

At stringer ends, the local skins are padded to reduce the beaning stresses and tension stresses around fastener hole thole sizes should be held tight as practical and close ream holes are used in those joints
Carry through Structure:-
One of the peculiar designs is in the area of swept bach and dihedral break of the transport wing box: spar caps are fabricated from machined forgings. The frost spar forged op extends from airplane contenlline to outboard of fleselage: the rearspar forged cap extends fam airplane centaline to qaosodymamte break where there is a slight change in the sweep angle of rear spar. Spar webs are continuous in the high load transfer region of the sweep break. Most of the lightly loads wings for general aircraft adapt a single main font spar and an aunillany tear cigar construction. Therefore wing root Jolt unneally is

Fighter Wing Design:-
High speed fighters usually require thin wings which, from structural stand pant and internal space, the cong covers are dentgred for without access holes. One of the requirements is to repair the tank seal extemally without removing wing covers

Problems with swept Wings:-
Sweep allows an aircraft to fly throughout a broad regime of speed and altitude efficiently and ushant excessive power requirements. Tailored lift drag, improved ride quality, Less fatigue damage and advantoges. Structural problems fall into two Categories:
A) Because of the number of wing positions, the equivalent of many fixed-wing aircraft must be investigated, analyzed and test B) Unumeal problems which are not considered in conventional design
\longrightarrow One of the obitack of swept wing is the change in stability, control charecteristiss and structural stiffness. This

The effect of swept wing result in the engineer to have the awareness of the following.
a) Pivot Mechanism
b) Structural Dynamics
c) Fatigue strength
d) Poirot materials
e) Fail-safe Considerations

Wing Bor:-
The outline of the wing, both in platform and in the croscrectional shape, must be suitable for housing a STructure which is capable of doing its job. As soon as the wing shape is decicled, a preliminary byout of the wing structure must be indicated to sufficient strength, etiffines and Light weight structure with min. of manufacturing problems.

There are several types of wing structure for modes high speed airplanes: thick-bor beam structure, mult-spar box structure for lower aspect ratio of this airfoil

Wing Box Structure

Two basic types of shear beam construction are
a) Shear-renistant (non-buckling)
5) Diagonal - Tension beam (buckling)

LA shear resistant is ore that carries its design load with act buckling of web (or it remains flat). Sloping of spar ops relieves the beam web of considerable shear load

The behaviour of spar web Consurdion
Two primary conditions which determine the overall efficiency of the spar. are its construction roast and its efficiency as a load carrying member. Semi tension type beams have a better strength to weight ratio and are much stiffer than truss -tope

Leading edge and Trailing edges:-
Leading edge:
The increased circulations avosciated with the deflect' of an effective trailing-edgy device incluces an upwash at nose. The local section peak increases on airfoils stich are liable to leading edge dial. Leading edge and high lift devices are intended primarily to delay the stalling to higher tot.

Requirements:

* Must delay flow separations to longe angles of attack
* Must stow in most forward positions of wings.
* either in retracted or extended positions the devices should not be deflected beyond the required gaps under airload or bending.

Trailing edges:-
There are many types of trailing edges. flaps used to increase the maximum lift coefficient to shorts airplane takeoff and landing. The flop applied to the trailing edge of a section consists of wing section unally from $2 \mathrm{C}-35 \%$ of the chord length

Mechanical Design Considerations:
The Wing leading and trailing edges tail-safe philoroply must be selected so as to maintain the safety conditions and seriteria. The aircraft must be shown by analysis, tests or both to be capable of 'continued tate flight and landing within the normal flight envelope after any of the tailwe or jamming in control surfaces/eystems.

They are :

* Any single failure or disconnection of a mechanteal or structural element, hydraulic components.
* Any probable combination of failures such as dual hydraulic systems facture, any single tailure in combination with any probable hydraulic or electrical failure eterne,
* Any Jam in control position.
* Physical loss of retraction of all slats or the autbooed flaps on both sides of the airplane may result pitch-up.
* Physical loss of an inboard flap could result the potential catastrophic damage to horizontal tail.
\rightarrow madverent extension of any one flap or any combination o of flaps at high seeds.
\rightarrow Flaps asymmetry during the extension or retraction could resit in loss of roll control and tail-rafe back-up syetero of the asymmetry detection and lock-aus should be Divided
* All moving leading edges and trailing edge flaps shall remain effectively locked in the retracted position during the design of high speed lift.
\rightarrow Physical reparation of an inboard aileron and artboard aileron from the airplane results in possible unacceptable loss of roll control Capacity
* Multi-hinge design remits in the requirement of stiffrese
* Reduce flutter
- Spoilers tree to deploy at all seeds up to v_{p} may result in flutter or excessive dynamic loading of the wing structure.

Horizontal Stabilizer :-
The conventional horizontal tail consist of fixed tail box or an adjustable incidence box on movable box and elevators. The horizontal stabilizer is usually a two r spar structure consisting of a center structural box-section and two outer sections. The stabilizer assembly is interchangeable as a unit at fuselage attach points.

A pivot bulkhead is located at juncture of center box and outer section at each side of the fuselage. Each bulkhead contains a pivot bearing at the aft end and an actuator attach point at the forward end. This provides a foux-point, fail-sofe report arrangement for the stabilizer assembly.

The center box and the main bor structure of the outensection are derigned with primary bending material distributed in sparcaps and cover panels or in spars only.

The leading edge structure of the horizontal stabilizer outer sections is composed of several segments and each segment is removable without disturbing adjacent segments.

Access doors are provided in leading edge structure, front spar usb, and aft closing shear web for impection and maintenance of internal structure. The stabilizer assemblios are weather seated with drain holes provided on lower surface

Vertical Stabilizer:-
Structural devin of vertical stabilizers is essentially same as for horizontal stabilizers. The vertical stabilizer box is a two or multi-xpar structure with cover panels. The root of the box is terminated at the oft teseloge juncture with fittings or splices or the bor spars terminate on bulkheads in the oft funclage that are swepted.

The T-tail arranged places The horizontal stabilizer is a favourable tow held during low-epeed, high angle of attack Opes Mounting horizontal stabilizer on the top has significant effect on torsional frequency. Flutter coupling is reduced.
\rightarrow The span of T-tail $f i n$ is approximately oxethird starter than the conventibal tails.

* Nay air superion'ty fighters, such as F-14, use two vertical fins because of limited vertical apace as camions were require * $S R-71$ uses movable vertical stabitraess for directional stabil \rightarrow Main adiañoge of twin or triple vertical tail surfaces for a proper driven airplanes is that it is possible to place then en directly behind popettrs of twio-engire amplases. This allows djpliteam to strike with full tore, giving a good rudder control.
* The horizontal sartoces should be situated sufficiently wighon the fuselage to clear wing wake.
* The use of twin or triple tail san foes introckees additional structural problems to the design of stabilisers.

Elevator, rudder - Configurations, structural layout and Design
Considerations:-
The FAA (Federal Aviation Administration) sets forth certain requirements for the deslog and construction of tail and control surfaces for an airplane, as such technician has to design with conformity of regulations.

Movable tailsurlaces should be so installed that there is no interference between the surfaces or bracing when any one is held in its extreme position.
$\rightarrow \quad$ Elevator Trailing-edge tab systems must be equipped with stops that limit the tab travel to values not in excess of Those provided for in structural report. The range of tab movement must be sufficient to balance airplane under all speeds
\rightarrow When separate elevators are used, they must be rigidly interconnected so that they cannot operate independently of each other, All control surface mast be rigid dynamically and statically balanced to degree necessary to prevent flutter at all speeds upto betimes derign dive speed. The installation of trim and balancing tabs must be much as to prevent any free movement of tab. \rightarrow When Trailing edge tabs are used to onset in moving the main surface, the areas and the relative movements must be proportioned that main surface is not over balanced.
\rightarrow. The design of both elevator \& rudder is similar to that of aileron construction and wedge derign.
\rightarrow The skins \rightarrow bonded scalloped doublows for the reinbrement in the area of spar and rib attachments. The addition of bonded and scalloped doubles for reinforcement increase the fatigue life for skin panels subjected to aerodynamic turbulence(Sonic fatigue)
\rightarrow Hinge bearings are derigned for long tuff, anti-ficicko roller types which an be easily lubricated in service and man be replaced without removing the surface.
\rightarrow All holes in the hinge support fittings for hinge pis bolt are bushed with Cadmium plated stainless steel bushings installed with wet primer to guard against corrosion.
\rightarrow The surfaces are mass balanced and the balance weights (the derign of 'neritia load faction) are canily accessible through hinged panels.
\rightarrow The surface assemblies are weather sealed with drain holes provided in lower surfaces to prevent moisture.
\rightarrow Access doors and panels are provided for inspection and service of all intemal Inuctures and mechemitums

The structural deign for both the elevator and rudder are similar in construction, front and rear spar and the stin form a box beam which is the structural member of the elevator or rudder. closed spaced ribs are provided to stabilize skin strength due to high torsional load and local aerodynamic pressure.
a) Rudder

b) Elevate

\rightarrow The control actuator hinge is located underneath the very inboard end hinge of the elevator or located at the side of the bottom hinge of the redder structure. therefore all torsional loads ad at the hinge.
\rightarrow From the structural stand point, some transport elevators are divided into two segments lie., inboard elevator and adbeard elevator.
\rightarrow At high speeds, inboard elevator is used to operate because of the itrectural effectiveness.
L The advantage of the derrign is to save weight
\longrightarrow The honeycomb panel structure is commonly applied in The elevator and rudder surface. in order to strengthen surface buckling and to meet torsional stiffness.

Tail Unit:
Tail structure evolves essentially as does the wing. The aspect ratio of cither a vertical surface of a horizontal surface unially tends to be smaller than a wing aspectual The type of consimuction employed in fired control muefares, stabilizer and fin is usually similar to type of wing constructic

* Single spar construction with auxiliary rear spar
* Single spar with pivot at rod which can be rotated as flying (Tailewon)
* Two-sper construction with all bending materials concentrated in spar caps.
* Multi-Spar construction with apars roristing all bending loads.

Typical Arrangement of trans Tail:

a) Conventional Tail

b) + tail

c) T-tai

Brief Summary of Tail loads:-

1) General

* Fatigue
* Failsate
* Control Surface

UNiT - 4
FASTENERS AMD STRVEFURAL JOLTS
Fasteners and Fittings:
23
Fattener is a hardware deulce that meshantcolly joins of affixes two or move objeds together. Fastoness can also be wed to close conilainess.

The ideal airframe sitmethere would be a single Complice unit of same matatal involving are manufacturing operation. Ats, the requirement of repair and maintenance dictate a structure of several main units held together by fastened Joints utilising many rivers, bolts, bindings, luge and fittings etey, the cost of fitting fabrication and axumbly varies greatly with type of fitting, shape and required tolerance.
Fastener Symbol cos de:
A fastener ropmiat uystam, based on the NAS S_{23} atandard, is used an engineering drawings. The symbol consists of a roiggle cross wist code letters or numbers in The quadrants identifying fatten features.

Fitting factor:-

- An ultimate fitting factor of his as per FaR teal kc used for joint axalyn's.
* For each integral fitting, the part must be treated as a fitting up to the point at whin the section properties become typical of the member
General design Considerations:

1) Fastener Spacing and edgedistince $\binom{e}{b}$:

In normal metallic siring, the minimum foutioner spooling (pitch) is 40 and edge edistante in the direction of lond is $\frac{e}{0}=2.1$ (D) is diameter \& Cis distance form the center of the fotstrent to edge of port h pis additional maxy'n an tach tolerance).
3) Fats gus Convideratuas
3) Overall efficiency
a) Elevated Tempentione strangle
5) Magnetic permeability
6) Availability
4) Soroge
8) Extallation

Fasterer kionreationy systims (Tipe) : There are batcilly feur groos of fuctiner mpiemst
They one

1) Permanent fugtumes
2) Remorible focturns
3) Nod inut-pities
4) Watres

In mating fastencer mletion, the engineer most consdis all the conditions to be intounteres hy the overall dexign as wall the dllowable strengts requivil. Bind tastaness which are pant of promsanerh foature gioup.

Permonent fayturors:

Removable fostiners :

$$
\longrightarrow \text { Soncurs }
$$

Not and Mut-plats

$$
\left[\begin{array}{l}
\text { Tenston nut } \\
\text { Sheter NuA }
\end{array} \rightarrow\right. \text { Net plales }
$$

4) Wlashors :

a) Pexmanent foptiras:

- Soled abmisimi stuth o.s mate Enmanty heril
- Tenstontype: Qecules when tession limet dae to greater head depth
- Sher type Use thather counteciunt head fastorct
 is imparsible.
b) Prenmalle fustormes:
* Tato hogn conientmisd lands

4 standord aiveraft batts have rotled thereseds

* Sorew identificlles:
- AH - Mrfarcel Nawy Htandind

NAS - Nathonal aiven⿻ft stondoud.
c) $\mathrm{Nu}+\mathrm{lis} \mathrm{d}$-plates
\rightarrow Hove high tratk ditoglt
*. Nit pintas one allather by twin suds
a Cimearlly than sines if culs-tonsion \& sheen ouds.
d) phithere enplitstions =

- Whatres ave uned undor outs.

Thens ane tined undos high traslin preloeded balts

Design Consedrations:
4 Met applicatiass for hinge derigns use mymmetrisal dautle Nheor hags ar multeple rhear luge.

* A fitting fuctor of $A=1.15$ should be besel.

2 Iog trizing thall thaw a minimum margin of rafecty of 20%

* The rotio of lig thelones to bele dimeter should be greeter then 0.3
s To imprione fatigue life une forging matuntal.
Benxing boding:
Frulure sensists of sheer teor out of the lug olowng a 40° angle on bribsides of the pin, chile beoning friture invaives crutting of the log by the pin beoring. The uttimate lood \& this tyge of farlure is given by the equation

$$
P_{\text {kiu }}=K_{\text {tor }}-F_{\text {tug }} f_{\text {for }}
$$

Phos = Ulimate load for stroor teor-and and the beoing fatues
$k_{b r}=$ Strear-beering efficienty fation

$$
\text { Abr }=\text { Rrajedded bearing siea }(0 t)
$$

$f_{\text {tor }}=$ Uthinate tronie sivees in A-direciton.

Bushing Analyys:-
Yield faiture:-
Lug yreld load attributable to sheer-heoring is given by

$$
\begin{aligned}
& P_{y}=C\left(\frac{F_{\text {tyx }}}{F_{\text {toxe }}}\right)\left(P_{0}\right) \text { inn } \\
& P_{y}=\text { Yeld load } \\
& C=\text { Yeld factor } \\
& F_{\text {tyx }}=\text { Tension yileld streys }
\end{aligned}
$$

Frux $=$ Uthimate tensile strees
(Po) min $=$ The smaller Pbra
Yield-faikere - bushings
Bushing gield beerring load attribulable to shearbearing is given by:

$$
P_{\text {rny }}=1.85 \text { FcyAbrb }
$$

Pory - Bushing gield bearing load

$$
\begin{aligned}
& \text { Pory - Bushing } \\
& F_{\text {cy }}=\text { Comprestion yield alrees }
\end{aligned}
$$

$A_{b r b}=$ smaller of beoring areas of bosling.

Dimes ions of fastener:-
elenerel dimerions that ave corvidened for a fogtiress are

1) Rivet dlamelor
2) Head diameter
c) heed height-

Materials:
Most of the rivet matrials ane made of aluminium and steel as they are conotion resistance and gives effective streyth ont high tampenations

Fastener strength Allowables:-
The allowable loads are bused on the low rs values of the fallowing criteria.
a) Fativer sheer - off load:-

$$
P_{S}=F_{S U}\left(\frac{\pi 0^{2}}{e}\right)
$$

$F_{\text {si }}=$ Allocable ultimate sheer stree
$D=$ Nominal fastener shank diameter
b) Sheet bearing load:-

$$
P_{D}=F_{\text {hay }} D t
$$

$F_{\text {bu }}=$ Allowable ollmate bearing load
$D=$ Nominal shank diameter
$t=$ Nominal whet thickness.
Dry pin bearing allowatles ave higher than wet pin allowaties.
c) Tension allowable:

$$
P_{t}=F_{\text {to }} A m
$$

F to = Allowable ultimate ensile stress
$A_{m}=$ Mhos area of first thread.

Criteria for allowable strength :
Allowable values are based on the lowest values of the following criteria.

1) Fearing lond: Furdt
$F_{\text {br }}$ - Allowable climate bering stress
d - Nominal shank diameter
1 - Nominal whet thickness
2) Sheer inf load $=\operatorname{tsu}\left(\frac{x d}{4}\right)$
$F_{\text {si }}$ - Ultimate sheer allowable stress
d - Nominal shank diameter
3) The calculation of ultimate and yield lads is Compulby for the fasteries which are already toked.
4) We trow Yield Atreng $=$ Limit load $\times 1.5$.

Margin of Safety:-

* We have

$$
\text { UHimate land }=\text { iss } \times \text { limit hoad }
$$

* Structure must be able to support ultimate loads without facture
\rightarrow General procedure is to devin a structure to Zeno maze
\rightarrow Margie of safety $(M 3)$ for stress analysts is equal. to zero or greaten, bat should not be negative
a) First stop - Under ultimate load care.

$$
\begin{aligned}
(M:)_{\text {max }} & =\frac{F}{f}-1 \geqslant 0 \\
F & =\text { Allowable stress } \\
f & =\text { Ultimate Ares }
\end{aligned}
$$

$x \times x=$ Qtion for showing critical Conditions Tension, Compression, shear et.,
b) Second step: check for yield Condition
c) Third sting: Final Ms is the smallest Ms either of above 2 slops.

Rivet (Sizing and detailed deatgn):-
a) Web to Cap:

* Initilly rolvet sixing and xpacing are dedermined by when * pitch 4-80 is maistainad.
* Inter rivet tuckling is checked.
b) Weh-to-stiffener:-
* Theorettally there is no load tramfer between the web and the stylenizs for a sfrom sesistant web unless the weh sheor How changes behween bay and the the rivets muest reist chonge in shear \$low
* While weh-to-cap attachmornts cowy a ruming lond per inch,
c) Stitfiner to Gyp :-
- Minimuen of two sivets

4. Hiे-loks which begir high sheer Alvengt ane ewed.

Riels are low cost, permanat fisteners is the ottin term for rivets, The primay reason for riveting is low and mactising time is aho lest.

Adventags:
(1) Revelty have vasiecly of fonither
(1) Matostas of vertano thictences can be joined by vively
(1) Pu.ts that our painks and athe Anders $\mathrm{com}_{\mathrm{on}}$ be thathed by vincts
\rightarrow Few tajes of rives are vmitubuire rivels. Rind rivet,
Blind bolts, thisheer tasteners, ti"-lek festenas, Taper-lek fastonoss
Bolts \& Screws (Removable fastinerg) :-
A bolt is an extimally threaded fostonor derigned for inaurtion through holes in assmbled parls and is mormally intended to be tightened or released by torquing a nut.

Aircroft bo'ts ace esed primanily to tromple relatively lorge shear of tinsion boads fram one anemboe to athen

Nuts \& Washors!
Nute and Washas are the removable fartorens which wee widely uned in the applications where the disauxmbly of the strectuces is inpertant.
woubers are paced for taling the londs which are kighly concentratel. They take the sheer londo whech are pared by the different lounding Conditions.

Fostener Selection:
In making thasteres Necetion, the engineer must comsides all the condritions to be encountrened by the overall detion asiwell as the allorable Atsongth repuived. Blind toatroess whech are past of the permanent fixderer group and are anly uned in blind aress eohere the conventional intallation or assentiy is impassible.

Basing upon the crieterin of the rivet applokion the type of fadteren netection is clane. In gerneal we have tour groops of fustenor kytums,
(1) Permanent faskens
(2) Pamevable faterers
(B) Nuts lovuts-plates
(4) Washers

Fittings
Lug Analyes :-
The lug aralydis and the sising methods combders botk the luy and pin acting togther, since the strespth of one can irestance the itrougth of the othesa. Luge sibuld be fiord converatively, as their weight is umally amall relative to their importance, and inaccuracies in marufacture are difficult to control.

This method is applicable only to alumintuess and steed alloy double stree lags of uniform thickness

Lug shapes
Typical applications require rotation movement and the transfer of highly concentrated loads.

* Landing gear joints
* Engine pylon mount pin
* Doer hinges

A lug under axial load can fill diu e to following case,
a) Axtal load case $\left(\alpha=0^{\circ}\right)$

* Shear tar out and bearing failure
* Hoop tension failure at the lug tip.
* Pin bending failure.
b) Transverse load case $\left(\alpha=10^{\circ}\right)$ Same as above
c) oblique care loading ($0 \lll<0^{\circ}$)
* Sting liwiture is base an interaction equations

Joints,
Any surfaces which are mated together, we can define them as joints. Joints ave majorly cursdelered in the design of structure. Joints result in the failure of the structure and atm fatigue considerations. Joints are daxhifed into In majorly basing on the design comiderations taken. They are

1) Eccentric joints
2) Splice joints
3) Cusec joints
4) Brazed joints
5) Bonded joints
6) Welded joints

Spliced joints:
Splice is define as joining of two materials or two members end to end, Splices ave mostly in the arroneft applications (ie., wings). Then types of joints are mostly used in places where the lounth of the member is not inefficient.

Spliced joists are davinfed into three lopes

They are
i) that lap spliced joint:

3) Revel lap raised Joints:

3) Double bap spited joints:

Thew are conventionally uncut at places Where the long of the element of the adjustment of the heaths is necessary.

Eccentuic Jaintis
Cnectivic rivated cometions which cavy no momet ave are qummed to be loaded evenity hiry laod is disgribitiod equally to the rivels. All fastaned joing arust be checked for \rightarrow thear valie of foiseners
\rightarrow Eraving value of fuitines in athached rferets Faiterer dustus mus be mairsing hove riuses as 1) Fotence mecterids are the same
\& foterer bearing on tame motsulat and twetrots Q fitionen should be plared on the xame Btraight line

Eccentulc joints

Guscet yoints:
 Howror thene tygre of Eswlineen are very saltion used in aisfame contration thdey due to poliens of coift, cort and rapoir dufficuly eacely hy apectal appliatiso.

Destgn Consideration:
i) All load prith if mambes honid pous thoyk iood cerite
3) को moviontum of tuo teloress is requieed for cach mexober.
3) As geubels are not dowed to burlile, reduce the aroned of tries forgs,
4) Do net uace single rood frestrens.

Fiunct joint
The follocing guset logpes whech ane seacu-ting thaed by istiney of tross istictio.

1) Dighomal mention in Teritan
2) Dragend womber In Couprecoling

Welled joind :-

The strogith of welded joits depords groath on the still of the wellere. The stress corrtitions are cusally unecrbin and 's cuntomary to dougs wext johty. It is preferatle to dorign johts no that the wild is in sheer or comprestion rothe thoo in temton.
Typlal Welded connections are trlaw:

a) 7abe Conrections

b) Welled boints of Goned tho ant Tubes
\rightarrow Buh 4inh -

jat fouth $=A \times$ alonst tuld doe
\rightarrow Ley Jout

Braved joint:-
Brazed joists is the method of joint two members using tithe material. Erenolly formed Joint ore reb-divided into thou trope. They are

1) Brazing
2) Soldering.

Browning:
This is the method in which the members are hake and by using the nineffercos metal Filler for joining of the structure.

Soldering:-
This is the method in which the embers aus cooled then to male the changes in the propertio of mativilal and by the floor maturad of bong the atruetwe

Bonded Jointh:-
Mast of the kanding aquilotions on airkiome structures are eccondary tonting using odterivto wach as joining of stios Frigetion or tandry wreyst th Nin. The moin pumpore f ave:
1). To improve fotge the

1) Une boding of multide thedencos to replace eyprosile machined akin pands

Generel preonutions for athoive bonding,

1) Acherives that are prevnure Nonsitise whould never be lused the applications
a) No compencent should incorporats a doris? that reults in perling.
2) Bonclang dianimilor metals or moterials with cade Variations in thermal coffieinhti of Hnerr eparivion should be avpidrad wherever pospbie. Fatigus Design Considerations:

To roed tridoys requizenerd of log lufe strutional
 by fuitige requiremetis in fitige aritiol arman. bod
mint do be capoble of cornging whinots toads wothot
 than the limit looing twhich is toithio the matertal elastic of proportional rang. hrefoes, when the load dratribstion for a group of furanons in a xpliee joint is based on poung, modulus
Q. Bress Concentralion - Causes, Methods of redtection it

Siress Concentrotion (Stras riser) is the prinsony freter which offecto stractural thatigut life and theresper, good detail devicn is a major factor in improuing fretigus performand. The most tajpion Shers concentrations are candor is

* Fatiners
* Eccentrlatis

4 Ascupl Cros-rectional damoge

- Loose fattrer it
* Ciper fogtiner tole
- Notehes
* Goarp edges

4 Around connars of restanpilar
Fastion poltor goik lines:

66

Therefe, the following goveal derign guidelos thalt the bllowind during saing to prooch tatione protiens.
a) Geranl guidelios:-

* Erge distome must be velacted curgatly to mact thatic shength and fitigus quality requiremernos
The mbimimim upracing is is whbich is net rection onstical for batb troxion and shieer effecleny
\rightarrow The immalmum Apacing is approumstity $G D$ to to to prevert. frilure die to intor-vivet eompression
b) Single row poitern
c) Dacte tew pathen
d) Stageried no protton
c) Tripe rowis pottem

Fattom load intarthulioo:

Joint mitarial underyen platic defpomplino and the remitaxt yicleling causs all the tarituness to load up. But tets ond thery show that at aponating loud kuels (matly
 fasternes will army moat of the load. At operiting load buels the molaual is beirg soremed coltive the elaotic

Variations of load distributico with fatemes and pistic stiffromes

It is chependent on

- $\frac{+}{t}$ ratio
* fastoner flaxibity
* Fastener fit
- plate tepering
, Matertals if fateres \& bit
1 Festcher pre-load
* A mearly Lanitron athizbistro is dednined hom tarring, flemible fateroms ets,

By pass load, Severity faith, shartival joint lite prediction:
The fatigue quality indea(X) mast be detiominat
 life. The ruveity factor (sf) is the local pent stress caused by lows tramper and bypass loud on shawn in fig

d) Loads in a Dastinces

a) Local vies by Ropers lond
c) Local sties Caned by load That a th
and is recessony to determine fatigue quality index k.

$$
\begin{aligned}
& S F=\left(\frac{\alpha \rho}{\sigma}\right)\left(\sigma_{1}+r_{i}\right) \\
& S F-\left(\frac{\alpha \rho}{\sigma}\right)\left[\left(\frac{k+6 \Delta p}{p^{+}}\right) \theta+\frac{k_{1 g} p}{\Delta j t}\right)
\end{aligned}
$$

$\alpha=$ Fastener hole condition favor.
Stander d drilled hole $=1.0$.
reamed $=0.9$
$\beta=$ thole filling factor
open tale $=1.0$
Sled lock tort $=0.75^{\circ}$
$\sigma=$ Reprence atreus (in Ahmeture)
$P=$ Fy -pans load
$\Delta P=$ Load tease. Thro fostered
$t=$ Splice plate thatetrees
$D=$ fartann aimencter
Improvement of fatigue life:-
Good detail design is the mast important means to decrease the stress concentrations fetors which usill signs featly increase the frifgue life of joint. The trade-ift between increasing fall goes life and cont depends on how critical on area is for fatigue. The following melhads can improve the falmue lip of joint:-
a) Reduce sires Concentration
b) Sesenference fit fastener bole condilturs
c) Reduce end-fistener longed
d) Cad fastener hole.
e) Fattener preboad (claup-up) effect on -f.houe.

Shim Control and requirement:
A shim is a thin and tapered wedged piece of matexid, used to kill small gaps or spaces between abjectly. Ships are Jppicilly used for supporting. Slims may alpo be used for spacers.

Materials:
Materials depend on the content like wood, stone, plash ic.

Application:
Ls Automobiles
\longrightarrow Fixheres
Ls NMP Magnets

Fane anions
The furstinos if the stringers and skins of fueslage and wing ave same. They tate compressive loads (stringers), Skin take

- the ster mods of the ration.

2) Lnaeros and stringers cant the axial loads induced by bending.
3) In fuselage, transverse shan loads are carried by skins.m.
-) Fuselage firms may be influenced by the loads rovulting from the equipment of mounting.

Seni-monocoque structure has a high strenglb to Weight ratio.

Loading :-
3) Ultimate design Conditions
\rightarrow Flight loads.

+ Cabin pressures
* Landing and ground loads

2) Failsofe design loads
3) Fatigue

* Due to flight Profile
* Design flight hours of service life

4) Special Conditions

* Depressurization of ane Compentwrent
* Bird strike
* Hail stake etc.,
structure has cylindrical cross-section.
\rightarrow Aerodynamic smoothness has to be maintained.
\rightarrow Passenger requirements (doors to load luggage etc.,) has to be maintar
\rightarrow Configuration mostesigned must be possible to determine primary structural requirements.

Whimate Strength of stiffened Cylindrical structure:-
The design of a semi-monocoque structure involves
a solution of two major problems.
a) Stress distribution in the structure under all bad Conditions
\rightarrow The repeated tension loading is a critical fatigue Condition; Theretofore it must have failnafe-denign
\rightarrow Two most common faitrafe design concepts are breaking the component down into several small overlapping pieces where, if one fails, its bad can be carried by adjacent parts or utilizing a restrainer or fail-sofe strap that will contain a failure within controllable tamils

Frame and Floor Beam:-
Fuselage frames perform many diverse functions such as

* Support shell Cormpressioolshear
* Pishistoute Concentrated Loads
* Fail-rafe (Crack stoppers)

They hold the fuselage-Cross Sectors to contour shape and limit the colon length of longerons or stringers. Frames also act as circumferential tear strips to ensure fail-safe design against skin crack, frame spacing can have an effect on compressive skin panel design.

Skin and Stringers:-
\rightarrow The largest single item of the fuselage structure is the skin and its stiffeners. It is the most eribical structure since it carries all primary loads due to bending, shear, torsion and Cabin pressure.
\rightarrow These primary loads are carried by fuselage skin and stiffeners with frames spaced at regular Intervalsto prevent buckling.

B-247

$C-141, C 5$

Typical Skin-stringer Panel.
\rightarrow Skin/stifferer Combination are light weight and strong structures
\rightarrow Mast efficient structure is one with least number of join's or splices, therefore skin panels are as large as passible.
\rightarrow Skin \& stringer should be spliced at same location. That maintains relative stifferes of skinlatringer Combination. which is desirable from fatigue stand point
\rightarrow The connection between the frame and stringer is attached by stringer clip.
\rightarrow The purpose of stringer clip are

* Transfers skin panel normal pressure loads
* Helps break ur excessive lard column length
* Provides some degree of compressive strength.
\rightarrow Bulkhead weight decreases as frames move farther apart.
\rightarrow Flooring weight uncally increases became the span increases between, the lateral floor beans attached to frames
\rightarrow An example of fail-sefe design k that every frame in fuselage, is attached to the horizontal floor beam which acts as tension ties across fuselage to resist the cabin pressure loads. As an additional path for distributing these loads, a longitudinal beam along side of fuselage is provided.
$\rightarrow \quad$ In the crown areas, where the contour is round, pressing loads are carried in hoop tension; the frames are secondary or the stabilizing members to maintain shape
\rightarrow Military cargo Wraneparits floor design is completely different from passenger transports because they will carry heavy military equipment. Floor surface should be close to the ground.

Pressure Bulkhead:
\rightarrow The cylindrical shell of a presurve-cation is closed at the rear by some bind of dome in preference to a flat bulthead, except for supporting rear furcloge engine mount, which would have to be heavily braced to coithstand Pressure.
\rightarrow From structural point of view, a hemispherical shell provic an ideal rear done because the membrane stresses for a given amount of material.

* The problem of choosing the most efficient, dexign/meth;) of joining hemispherical dome to the forward cabin shell and to rear fuselage is a challenging work
\rightarrow The design is guided by two baric considerations:
(i) Owing to the comparatively heresy membrane force employed it is desirable to aroid any radial aptest between shell and dime
(a) Longitudinal bending stiffness of fuselage wall is maintained.
\rightarrow The joint is made by sandwiching together the skins. - oft section fuselage
- dome
- aft body fuselage
\rightarrow The dome \& oft body theneloge wall are directly connected by fastening to the cuter-stub stringers.
\rightarrow In considering the derive of the rear dome of preserve cabin, *) The objective is to achieve a minimum weight for the done Itself and minimum stresses at junction of dome \& fuselage walls. Scanned by CamScanner

Wing and Fuselage Intersection -layout, loading, tres mays, sizing:
If the airplane is of low wing or high wing tope, the entire wing structure can continue in way of airplane body. In mid wing or sxmi-low wing type limitations may prevent extending the entire wing through the fuselage, and rome of shear webs as well as wring cover must be terminated at the sable of the turelage.

a) High bling

b) Low wing
d) Mid bling

Main frames (Bulk head) :-
Fuselage structures are large concentrated fores at the intersection with there airfoils and landing gears. The loads applied mast be distributed into fuselage shell. Loads imposed by wing and main landing gear. for redundant or multiple load paths through center of why and fuselage stivature.

Size of the fuselage cutouts region, which is governed by the wing chord and landing gear volume, has dived effect on the degree of penally to skin panels, frames, floor stree, Lower struete Vertical location of the wing on the fuselage has a bearing on related skin panel and frame weight penally. A low wing cuts through areas highly located in comprestioo and thus imposes a greater penalty to skin panels.

A high wing produces a greater penalty to frames than low wing, became wing down loads from the wing create compression load Wing and fuselage intersection:-

Wing connection to the fuselage presents intrexting dexign probler The lift and moment locals an be carried between the wing ane fuselage by simple shear, drag ξ thrust will be taken by web. It design allays the wing spar and fuselage bulkheads to deflect independently of each tither such that no spar moment is directly transferred to the bulkheads.

Wing and fuselage intersections are dose by links and Scanned by CamScanner
\rightarrow Typical design of modern transport coing:to-fuselage connection is to bolt the main frames to both front and rear spans. of wing
\rightarrow It must be capable of withstanding fatigue loads due to deflection imposed by wing bending.

pressure bulkhead
Integral unit of fuselage bulkhead and wing spar
$\rightarrow \quad$ Upper tame is a primary structure, which reacts shear loads into fuselage shells. It can accommodate the incluced rotation hoo the rear spar with delaited design.
\rightarrow Lower portion of the bulkhead is made up of rear par plus extensions (secondary structures).
\rightarrow Keel beam is the most highly loacled structure in the fuselage that the cooing box goes through the middle of the fuselage. \rightarrow

Forward Fuselage:-
The need for better visibility for the pilot of an aircraft has occupied the attention of derdgners. In addition to problems on structural considerations, streamlining requirements and the necest of providing comfort for occupants.
Flight station Design for transports
The cockpit is that portion of the airplane occupied by the pilot. From the cockpit, radiates all controls used in: flying and landing of an airplane. On a propeller-driven airplane the seats for the pilot and copilot and the primary control units for airplane exc ing cables, control rods.

The windows and windshield sections for the pilots compartment must be installed in such a manner that there will be no reflect I that will interfere the vision of pilot.

The developments of gatboses with pressurized cabins introduced complications in that the demand for increased mechanical strength to remist cabin pressures resulted in decreased win areas and in curved surfaces to obtain strength without excessive wets The development of the tricycle landing gear has greatly improved the forward visibility.

To give a dean aerodynamic, shape of rupersomic. transports during transonic and supertonic flight, a visor is raised to cover the wind shield. The visor dike provides protection from kinche beation. Scanned by CamScanner

The nose has three positions (up, intermestiate and dion) and is rated on lowered by hydraulic drop nose actuator, The visor and droops nose controls ave interlocked in such manner that intermediate and down drop selections for nose fairing can only be made after var, down seledion.

Design problems unique to transparent structures are mainly the remelt of three situations. The first, the phenomenal increase in airplane performance during recent years arverponding to Operating (om

The second major problem of designing with transparent materials centers around inherent properties of materials. Their strength is greatly effected by temperature, rate of load application, duration of loading, weather exposure, aging and other conditions.

The third problem deals with producibitily of parts. The - structural integrity of gloss, plastic or glass-plastic part and process used in forming, trimening, machining, cementing an edge reinforeaments-

The modern windshield uses the composite. cross-section that combines, the excellent abrasion meristance and thermal conductivity. of gloss with superior toughness of certain plastics.
Nose Randoms:-
The radome of airemoft constr of general purpose nose radome housing the weather radar, glideslope antenna etc, Following are design Considenat * electrical chorecteratics, optimum strength, carodynamla dog, min maistenary
\rightarrow Easily replaceable \& erosion protection motertols to be used

* Fluted-core-type radome construction ensures good electrical performance, ont corrida a high degree of hail protection

The typical design of complete passenger window has outerpani, which is primary pressure carrying pane. The mid-pane will carry the design presume load in the event of outerpone failure. The acoustic pare also serves the purpose of protecting the inner pare from damage from inside the cation.
Fuselage Doors:-
Cutouts for doors, often occur in regions where high loads must be resisted and there additional structure is required to :any loads around the openings. A study of panel modifications for large doors on rampart revealed the average ratio of material added to that removed was approximately is to 1.

The doors and special exits for passenger aircraft

Fuselage Opening:-
Transport fuselages contain numerous cutout areas of different sizes and shapes located in various regions of tody. However, cutouts for doors, such as those big passenger doors, cargo doors, service doors, emergency exits, windows etc., often occur in the regions where high loads must be recited and, there fore, additional structures are needed to carry lands around the openings. Such openings require the installation of jambs as well as strengthening of internal structure

In general, doors are classifies as stressed \& non-stressed plugged doors (Stressed) closes from inside to provide safety advantage: passenger entrance and service doors are the examples. The major portion of the tensile loads \& shear loads are carried by cutout structures.
Windows:
Three factors irrfluence window configuration: size, qua.' and shape. From suictural stand point, they should be small, few and round. From passenger stand point, They should be large, many and square.

The windrow cut oats fall in area of the highest skin shear from fuselage bending. Since vertical bending is flight Condition the cutait reinforcement must be designed bor combined bending and presses - Since pressure loads are involved, it is also fatigue cortical area

Aft fuselage Structures:-
Aerodynamically, it is very important that horizontal and vertical tail surfaces be so located that they are not Blanketed by the fuselos The vertical tail surfaces are mast likely to be blanketed not on by fuselage but also by horizontal surfaces. In order to minimize this effect, a position of horizontal tailmurtaces behind vertical tail surface, would clear both.

Horizontal stabilizer:-
The modern transport stabilizer may be adjusted through a small angular displacement by from the cockpit. The adjustable. stabilizes is used to change trim angle of airplane without elliplacing the elevator (the purpose to do this is to minimize the airplane trim drag. One of the structural problem is is design hinges with fail-rafe design. In high performance fighter design, the flying toil or taitenoss is used which acts as powerful elevator or the wing aileron.
Vertical Stabilizer:-
vertical stabilizer is generally mounted on the oft fuselage, it front and rear spars are attached to oft fuselage bulkheads by either a permanent joint or fitting. The vertical tail structure is completely integral with oft fuselage. The sours enter the fuselage and become past of fuseloge, frames and skins the directly to fuselage skins. A Three spar design is employed on some of tails to provide adequate fail-safe charecteristics.

Design Considerations:-
The following criteria shall be used for the design and analyn's of the fuselage plug-type door(resisting internal or cabin pressure only) and non-plug type door (Carrying fuselage shell loads in addition to resisting internal pressure)
a) Design ultimate factor for pressure.
b) Flight loads acting alone
c) Flight load shear distributions
d) Gust and random door loads
F) Actuator torque requirements
f) Door jammed condition
9) Design ditching pressures
h) Foil-sate design
i) Materials
j) Latching mechanism

UNIT-5
DESIGN OF LANDING GEAR, ENGINE MOUNTS
Landing gear - Purpose:-
Improvements in the aerodynamic charecteristics of the airframe led designers to make the conventional In ding gear with tail wheel ar skid and made retractable. The should bear in mind that the aircraft fitted with a conventional tail wheel has a considerable angle of incidence when on ground The great difference betiocen this angle and the minimum drag angle hampers the takeoff and also presents an clement. of discomfort.

The tricycle landing gear with nose wheel disposes of there disadvantages (1) It reduces ground roll at take-dff whirls a saving of corresponding energy.
(2) Eiveater stability
(33) Lateral freedom for the wheels to give steering ability.

Various functions of Landing gear:-
\rightarrow Damping of impact on landing
\rightarrow absorption of breaking energy
\rightarrow Eiround maneuvers
\Rightarrow Tripping Conditions

* Manufacture at a landing your necessitates close collaboration with aircraft designer. The collaboration provides joint present m, in addition th preitioning of the gear, such mitts as the veriace altitudes of the airemft, shock extorter travel, banting pean mounting paints, installation of staring controls, attraction circuits.

The search for a simple landing ger system - a question of lightness ant economy - is made difficult by the problem of suing the gat

The purpose of an aircraft landing gave arrangement is twa fold: to dosipite the kinetic energy of verkenl velocity on landing and to provide ease and stability for ground maneweving. The design of lansing geans is to performs there fuenctans efficiency has become quite complex with increasing bark and diminishing storage space.

The landing gear of a modern airplane is a complex machine, aypubte of racketing the largest loon loads - H. sidle H. fixation is Io convent a relatively
main bogies and although the fives of the same size. and the tire-pressures sue lower. The wing main gear on each side is attached to the wing rear spar and retracts inward. and the bogie is twisted to lie almost transverse in fuselage.
5) Lockheed C-5 :-

Lockheed C-5 Galaxy is equipped with four main geans and ore nose gear. The kneeling-type main goer for this giant airplane positions the cargo floor. The main landing gear consinists of two six-wheel bogies on each side of fuselage with the wheels in triangular pattern.
b) $c-141$:

C-141 main landing gear is a simple design which meets the flotation requirement by using 4 -wheel bogie. The oeo stunt has been so designed that it can provide a truck-bed-height cargo floor and can be extended several feet to provide adequate tail-chearance eluring landing and take off.
7) Fighter triplane Landing Gear:-

The landing gear design for a fighter aipbone is a very big challenge became its stooge retraction has to be in a fuselage which bras little room to spare.

Types of landing gear/Pieneral arrangements:-

1) Lockheed L-1011:

The $1-1011$ landing gear is one of the typal commercial tronyort landing gear examples. Each main landing gear includes fur wherlthroke/tive assemblies mounted an a truck beam (tagleli an airmail shock strut with supporting trunnion; and folding side braces connected to the hydraulic cerated retraction system
2) Transall-C160 and Brequet 941

Che of the important developments in landing gear for the sToL transport is the messier 'cocky' twin-whed main units as fitted to Baeguat 741, The general principle of this gear is the coupling of two wheels in tandom and independer. pivoted an trailing arms at each end of the double-aoting shock absorber fitted horizontally and parallel of axis of aircraft.
3) Lockheed C-180:

Lockheed c-130 transport handing gear consists of four single wheel units; two in tandem on each side of fuselage. each wheel is an an axle offset atbara foo separate destruct,
4) Boeing B747:

The grass weight of 8747 is well over twice of the heaylest 8707; the pavement bearing loads are not expected to very much higher. This has been achieved by having four Scanned by CamScanner

Design Considerations:-
Design :
In order to understand the varied devin considerations that face the landing gear engineer, a brief discussion pertaining to gear decrion is provided below.

Ground Handling:-
Towing provisions must be given, on the nose gear (the most) that permit towing and pushing the airplane at foll gross weight. Allowances must be made either for disconnecting the steering systion, depressurizing the steering system, or designing the steering system to withstand being overpowered repeatedly. Some airplanes have two fittings attached to nose gear by fuse bolts designed to fail bette damaging the gear or stecing systoro. The jacking balls must be so located as to permit rapid tire changes. These should be high enough to provide space for a jack with all tires flat and laterally deflected. It is general -practice to install ground safety locks. These prevent the gar from being inadvertently retracted on the ground and are commonly used during functional retraction tests.

If the airplane is backed out by means of tow ${ }^{-1} \mathrm{yg}$ and tow bar. The disconnecting of tow bar and restoration of steering system must be simple.

Braking:-
The landing stops are performed with predictable. regularity; the relove, smoothness, heat dissipation, brake life. and reliability must be accounted.

The landing stop is also performed on a variety of runway conclitions from dry, wet and icy. Most of the airerafts are fitted usith an automatic braking, anti-suldyste Pavement loading (flotation):-

The stresses induced into runways is a function of several variables over which designer has considerable control: strut load, tire spacing, number of tires per strut, tire size H prem * Tire sizes can be catimated by comparing with number of existing types with particular emphasis.

* Emassueight consideration can be estimated by the number of struts, the spacing and tire pressure an be selected.

Ground flotation on be improved by employing more tires, tire spacing and inflation pressure.

Support structure.: local loads on atrplane. For the's reason, transmitting such large local loads into a rems-monocoque stractine tach as wing $b_{0} x$ or fuselage shell requires citonsive local reinforcement.

Since the landing gear "loads are large, there can be severe weight penalties in un of indeterminate ETructura
load paths. An indeterminate structure is one in which given loo may be reacted by more than one load path; the distribulio being subject to the total stiffness of path loads

Support structure in the wing is deringned to higher locals than gear itself to ensure that in the event of impact with some obstack during landing or taxiing.

Stowage and Retraction:-

All gears are simply hinged to retract. It is preferable that the binge axis be parallel to the basic airplane axis. An aft retracting gear will not free-fall down because fo the air-force stream and requires extensive manual effort to extend in an emargany

There are no practical limits for the designer in designing stuarts, down-locks, up-locks and actuator systems. It is wise to establish a workable folding and locking system early in denis to avoid being forced to complex systems.
Precautions for the design are ;

1) Avoid tracks and rollers,
2) keep the mechanison simple
3) Allow adequate gear clearance
4) Provide spacing for oversized bearings.

* Completely pneumatic thoek umu.-<compat>...
* They are heavier, less efficient, tees reliable.
* Liquid rings and oleo-proumatic units have an inherent means of lubricating bearings.
AIRDE spring is made of nylon-tire-chord-reinforced neoprene rubble Oil (Liquid Spring):-
*. There have an efficiency of 75 to 90 percent.
* Reliable, slightly heavier due to robust design \&e high fluid pressures.
*advantages:
- Few fatigue problems
* Elimination of inflation
* Small size

Disadvantages?

* Fard volume changes at low temperature affect performance.
$*$ high mechanical friction.

The liquid spring uses compressive properties of the liquids as a springing medium. The same fluid vol. is used in dash-pot effect to control the recall stroke. Simple in construction comprising a cylinder, plato rod, gland. Spring motion is accomplished by forcing piston rod tint the cylinder.

Airfoil (Oleo-Pncumatic)

* Most Widely used.
* Purpose of shock strut is to alleviate load on airframe and to cushion impact.
* high efficiency under dynamic conditions. ($\eta=90 \%$)
* Best in terms of energy dissipation.
* Brood rebound control.
* More Complex
* Space above the oil is then pressurized with dry air or Nitrogen.
* They absorb energy by pushing oil in lower chamber and Coupreaning air in the upper chamber.
* Piston diameters are chosen on basis of max. strut pressure.

Gear lock - kinematic Design:kinematic efuidelines:
1.52
$*$ Use computer graphics to layout the kinematics

* Ensure that satisfactory moment arms are provided thayghest
* Use simplest possible kinematics
* Actuator dead length must be approximated
* Whenever passible, the landing gear dore should be moved by the gear actuator.
- Torque links should be denigred such that included angle is not more than 135°.

Gear lock Design Guidelines:

* Keep it simple, a complex lock increases manufacturing tolerances and assembly and installation errors, xenalting in poor reliability.
\rightarrow Minimize rigging because it can be misrigged
* structural and functional deformation must be recognized and appropriate allowances must be made.
* Up-lock must include a straight forward emergency release elevice to enure that lock can be selaned primarily.
$8\left(5^{3}\right)$
Shock absorbers - function, types, components, operation, loads, matertals and Design!

The airplane dining landing comprises the static and the dynamic loads and dividing dynamic loach by static loads to obtain the landing gar load factor. The load factor value ranges from 0.8 to 1.5 for large aircraft, to 3.8 for small utility aircraft and to 5.0 for fighters and military trainers. Dhs magnitude \& umally determined by the airframe structure design requirements. Therefore, the shock absorber must be denigne. such that, upon landing, the load factor is not exceeded.
Types:
There are essentially too types of shock absorbers:
\rightarrow Those using Redid spring such as steel or rubber * \rightarrow Those using flood sects as air, oil or airloil.

Light phones often use simple sing or rubber tyre shack abkeriers because of the econonve. As alveratt blue and weight inemene, steed and rubber type shock absorber become impovactioal the to weight penally and gear size.

Wheds and Erales:
An greend rehicie gererally has to have whecls to $r e .1$ and brake is stop ant ge . In airframe design, it a'wap hade tpace probems for stowing bonding gears; therefore the wheels and brakes have to be darigned Compadly, h aththo it resuives that kinette energy abroptres Capacity of berte.
Wher Deiz:
Wheels se wwaig made from forged aluminions allyy, s: $=-76$, it is importort to desics the forging xach that xitmon grsin thsw is setained. Photosiress and stress Lacquer techoizues the wed for thaing gererol trese dutribution
. The thoo whed traves are joned togetre by a number of Feleits. Bris ova if whel is doagoed for high ditfone:s. They are tbictei Nor to aurmbly to riocimetue borual toraims voriation, Fatione It I ofimined. The berng are is taper-roier type. A sodiad the intelth volve $t=$ instols. Thermonensithe preinare
 $i \mathrm{bes}$ thontrone suas a predhavired level.
Brike Decion\#atom

\rightarrow Loth Bry.jne a wed is sere worgt.

Tire Selection:-

* Determine the max. static load on main gear tire.
* 1 on nose geartire.
* List all load \& speed Conditions.
\rightarrow Based on floutation, determine man. pressure e.
* Degree of roughness to be specified.
\rightarrow Instantaneous peak load to be determined.

b) Box beam Installation

c) With upper mppont ans

Fig: Wing Pod (Wing pylon) mount Configurations.
This is basically applied on mibsorte jet transports. Engines are supported by box beams of aluminium, titanium. Doors are provided for accessing and impaction. The forward engine mount and lower spar act as firewalls and oft engine mount is secondary fire seal. The pylon (pod) lading edge is stiffened with tramserne ribs and is quickly removable for systems access. Phon structure is mode identical for left and right, thereby minimizing
spore parts required. Pylon loads are distributed to the wing structure in mech a manner that wing bole deformations are minimized.

Wing pylon structure is shown in $\mathrm{Fig}_{\mathrm{g}}(4)$ is a cantilever bore beam consisting of two upper and two lower lougerns. Two side skins transmit the vertical shears and laver ska primarily cares lateral shear and qutro act as firewall. Bulkheads are meant for transfer of engine loads. Rear drag strut is to transfer pylon lower longeron loads to a point blew wing frost and near spar.

Advantages of installation of redundant support structure:-

1) Mast efficient to react moment loads
2) Mast efficient in tranferning engine loads
-3) Design of engine position closer to wing bower surface due to which a good ground-clearance is maintained
3) Basing on structural ldeight engine position can be changed.

Disadvantages:

1) Complicated Aruclueral Analysis
-) Rigging problems
2) Complexity in mounting \&e demounting

Rear fuselage Mont:

a) Cowling Mans

b) Seppari frame mont

c) Bide support mount

Fig: Rear fuselage mourst Cases
Pga:- Lightest engine mount but rents in a heavy cowing. This is one \& best derign suits a dual engine mounds.
Figs! Heavier engine mount with lightest Cowling. Simple care of a conktever ratios. Engines are installed at three mistily points. for cary interchongeataility

Fine: Engine attached at side and supported by a brown extending part away over top of engine

Tail Mount
Tail mont is similar to that of wing mount with links \& fittings A torque box is cantilevered oft the fin and off fuselage bulkhead which picks up both engine forward and aft mounts. All tail mounts are derigred to withstand forward decelerations

Fuselage Mount:-
Mounting jat engines on alp structure is simpler. The gas turbine can be instilled within airplane Ruelage. This can reduce the usage of interconnecting structures.

The major portion of vertical loads is comes on trunnions located near engine C.G. Side loads ore taken up by frumnios. The froward mount is a universal joint capable of carrying vetted loads

NPTH hilg:
hHtp: llen. wikpedW.org / w. Li - Lanty gea
Witp: Ilen. wikipedix.org / wiki - Eyine manh

Real five Applications
The application of this is helphel in the derign of the landing goor and sugine mounts which is cat sffective. By Consideriyg all the loadl, Derynn paraude and armagements, we an detigs an airaaft which is a Areanlind ourodpramic shage

Engine Mounts:
There least affect the aerodynamic charecteristics of the wing, it would be desirable to locate the nacelle below wing. To reduce torsional loads imposed an wing structure by the eccentric thrust line position, it would be desirable to locate the nacelle with its axis in line.

For jet engines, the wing-pod mount is preferred; Sine fuel is carried in the wing. The location of jet pod below the wing is primary consideration.

Types:
Wing - pod (Pylon) Mount:-
The wing-pod mount structure is illustrated bettor,

a) Drag strut installation.

FATIGUE, DAMAGE TOLERANCE, FAIL-SAFE DESIGNWEIGH CONTROL AND BALANCE

Catastrophic effects of Fatigue Failure:
Fatigue is the major problem that it is unable to design a part without a fatigue failure.

Fail safe design must be incorporated such resat no failure can be seen until the existence of the port.

The structural element will be under fatigue when its strength is low and there are sore modes of failure how the structure fail.
Modes of failure - Design Criteria - Fatigue Stress:-
\Rightarrow Static strength of undamaged structure: structure must support ultimate loads without failure for 3 seconds There are the static properties.
Deformation of undamaged structure:
Deformation of the structure at the limit rack may not interfere with safe operation. static properties and creep properties for the elevated mperature : Conditions
\Rightarrow Fatigue Crack initiation of on undamaged structure:

1) Fail-safe structure must med t customer service life requirements for operational loading conditions
2) Safe life Components must remain crack frae in service. Replacement times must be specified for limited life Components
E) Fatigue properties:-

Residual static strength of damaged structures:-

1) Fail safe structure must support so-100\% Limit loads without catarteptric forluere.
2) A single member failed in redundant structure or a partial failure in monolithic structure.
a) static properties
b) Fracture toghunas properties.

Crack growth life of damaged structure:-

1) For fail safe structure inspection techniques and frequency must be specified to minimize risk of catastrophic failures
Scanned by CamScanner
2) For fail-safe sluecture must defigne inspection of the techniques, frequencies and replacement times so that the probability of failure due to fatigue cracking is extremely remote
a) evack growth properties
b) Fracture toughness properties
\rightarrow Fatigue performance variability:-
Besides. material variability, on encounters technological variability as reflected in the extent and accuracy of stress analysis and loading history. To define scatter factor these following considerations have to be mac * A confidence level factor due to the size of the test sample establishing the fatigue performance.
\rightarrow Number of test Samples

* An environment factor that gives rome allowance for environmental load history.
* A risk factor thor depends on whether the Elrectur has a safe-life (or) Fail-rafe Capability.
loading and physical envivonovolal exposure and commutative Pitiguen damage are specilianlly and audomationlly integrated. The development of fatigue performance beyond that gainat in service requires a laboratory comparison of the fatigue performance of the critical details and the proposed Improvediant. Improvement of a critical service detail in tams of ratios of laboratory fatigue performance is. The simplified form of a comparative fatigue analyn's.
- Inspection Intervals:

The inspection of the atc stricture is vital to the control of its integrity. In tail-safe structure the initial inspection time can be estimated on the barns of the calculated time to the first detectable crack at the specific location. At least factor of safety of two should be used to cover the, probability! that an inspection may miss a manginably detectable Grade.

Fatigue deslyn Philosophy:-
The design of the structure which tans a high degree of Atmatane netrability and safely during Portended service life. etracture.

The total life, to complete failure can be in the three stages
\rightarrow In the initial stage, complete failure can occur only when applied loads exceeds. the darin ultimate strength

* Life Interval: After sade life interval, Complete failure occurs even when load is below ultimate load
* Final life Interval: When even load is below the Ultimate load and reduction is a function of the fracture toughness

The fail-safe corresponds to the time interval between inspections. Structure which exhibits very low fail-safe interval are safe life structures

Performance \& Functions: Destg \& Mancituctaning :-
In are e of fatigue, designer cannot ignore, the potential influence of not only his work in the configuration but also details of the fabrication process

Fatigue desion philosophy

Fail -safe

- Structure has Capability to Curtain * Structure renter damisuiz fatigue or other types of damage
* Requires :
+Multiplicity of structural mem's load ranter Capability blew member
* Tear resistant material properties effects of variable hoad environment
* Requires knowledge of environment + Fatigue performance + Fatigue domoge accumals
* Limit to service is
slow crack propagation properties * Fatigue is nefety pert em.
* Inspection Controls
* Fatigue is maintenance problems

Both chemistry and remelting process output hov significant effects on potential fatigue

Material Selection:
First step for safe life is material selection. The main properties considered are

* Static strength
- Corrosion and stances corrosion
- Fatigue etrangh
* Crack growth
* Residual growth.

Joint Configuration:-
At holes, we get more fatigue. The stresses that occurs will be formed at the holes or fastener joints connected in 'a now have better perbomance, elimination of fasteners is better for fatigue even used, they should be able to transfer book.

Fasteners:
Tapered Shank fasteners provides beneficial effect on fatigue not through rigidity or flexibility.

Stress levels:-
The derign stress level selected for particular aiveroff is based on the. premix certain fatigue quality loads. The factors should be controlled are

Manufacturing damage, holes, repairs, normal scratches.
Fretting:
It 12 a wear and tearing down of frying surfaces by violative sliding motion of control surfaces Manufacturing:-

The parts should be machined and used h the ports such that they will have more service be.

Service behaviour of Aircraft Structures:-
Structural life Estimation:-
Load magnitude and sequence arse very important elements of the process. The simplest and most practice technique is the palmgrenminer hypothesis This method merely proposes that the fraction of the fatigue life used up in service is the ratio of the applied no. of the load cycles at a given level divided by the allowable number of load cycles to failure at the same variable stresses. When the cycles ratio sum equals to unity, all the potential service life has been used.

Palmgren-Miner method of Analysers:-
The palmeren-miner hypothen's is that the fatigue damage incurred at a given stress level is. proportional to the no. of cycles applied at that straus level divided by the total no. of aches required to cause failure at the same level. This damage is usually reformed to as the cycle ratio or the cummiative dan aye ratio.

Failure should still occur where the cate ratio Seise corals once.

$$
D=\sum_{i=1}^{H}\left(\frac{n_{i}}{N_{i}}\right)=1.0
$$

1.therse,
$n_{i}=$ no. of loading cycles at the $i^{\text {th }}$ stress level.
$N_{T}=$ No. of loading cycles to failure for the its stress level based on constr. Amplitude S-N data.

For the applicable material \& stree concentration factor: $k=$ No. \&f stress levels considered in the analyn's There are three -parameters which affect the magnitude of the summation of the cycle ratio's

1) First, there is the effect aced by the order - of load applications. Consider for example, two diff stress levels. Fr \& F_{2} and their cyclic lives, N_{1} \& H_{2} repp. If F_{1} is greater than F_{2} \& if it is applied font, the life will be shover er then if FL is applied first
2) The second effect on the summation of cycle ratio's is der to the amount of damage caused by continuous loading at the same level. The rimmativa Scanned by CamScanner
of cycle ratios for diff. Stress levels is accurate only it the no. of continuous cycles at each stress is mall.
3) The third parameter is the unnoticed part generally gives a summation les than one, while the notched part gives a summation greater than one.

Scatter factor:-
The fatigue strength requirements ore of very general nature without specifying life requirements or scatter factors

Requirement states those pants of the structure whose failure could remelt in Catastrophic failure of the airplane must be evaluated either for fatigue strength or fail-rate strength. For design certification, commercial transport ale structures, with the exception of landing gears, is usually derigned as fasi-safe. Aivoraft manufacturer design all structures for high structured reliability by derigning for both: crack inge life for economy and failuafe for softy, with respect to fatigue life verification tasting of the safe-lif structures. FAA adheres to the use of the following scatter factors

No. of teal Secrimeos
Scatler factors

1	2.1
2	2.51
3	2.43
9	2.36

Fril-sate design Requirements:
The usually policy for AC manufactorers is to derign the structure to provide ultirnate strongth for the persissible detent of fail safe damage of 100% limst load Cinclitions providing this sequivement doesnot incur undue weight penality or comploxity. The dymamic factur is to cover the effect of dyranic ovelonds due to damage which is suoldeng inflicted on the structione lite a turbine blade breating uf thying throyh structure. To insune that faterien or cerrosion oract, ore detected beture they reach finilrape damag limt, requirs the establismant of inppection intorvals based on previous Armice epperience or crack growth lustrines olteined the aralois unstuble

tolerences 's equiremerols.
Whe deross procedores followed to weet the fail. late deritys. sequiveremik o. hillows.

" Sproity fenitreafe daumge liails.
*Setect "rateriat. whith Wigh prasture toughers and Sleres arack prowth derectristes
4 epecify fart-rank. derion strems allowablos

* sereitg metroch of teiblempe anoligh
- EActhrs. failosade deriss berad lovelo.
 Sayinemochs

