

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

## **MECHANICAL ENGINEERING**

# **TUTORIAL QUESTIONBANK**

| Course Name    | APPLIED THERMODYNAMICS-I                   |
|----------------|--------------------------------------------|
| Course Code    | AMEB09                                     |
| Semester       | IV                                         |
| Branch         | Mechanical Engineering                     |
| Year           | 2019 – 2020                                |
| Course Faculty | Mr. Aravind Reddy, Assistant Professor, ME |

### **OBJECTIVES:**

# The course should enable the students to:

| Ι   | Visualize the construction and working of internal combustion engines, compressors and refrigeration systems. |
|-----|---------------------------------------------------------------------------------------------------------------|
| II  | Compare the ideal and real working of thermodynamic cycles for performance evaluation.                        |
| III | Understand the subsystems of internal combustion systems.                                                     |

#### **COURSE OUTCOMES:**

| CO 1 | Understand the working related to 2S & 4S and injection systems for SI and CI engines                |
|------|------------------------------------------------------------------------------------------------------|
| CO 2 | Explore the concept on working of combustion in SI and CI engines                                    |
| CO 3 | Classification of various testing performance balance sheet and compressors                          |
| CO 4 | Understand the concept related to rotary dynamic and axial compressors                               |
| CO 5 | Understand the working related to Mechanical refrigeration, COP, refrigerants and use of p-h charts. |

### **COURSE LEARNING OUTCOMES:**

Students, who complete the course, will have demonstrated the ability to do the following:

| AMEB09.01  | Understand main idea and importance behind the 2 - S and 4 - S IC engines.                         |
|------------|----------------------------------------------------------------------------------------------------|
| AMEB09.02  | Analyze the working of the basic components in the IC engines.                                     |
| AMEB09.03  | Understand the combustion process and also how it does affect the performance of the IC engines.   |
| AMEB09.04  | Apply the thermodynamic principles in the design of an IC engines.                                 |
| AMEB09.05  | Formulate and perform the procedures required for the maintenance and operation of IC engines.     |
| AMEB09.06  | Compare different IC engines and develop a system which meets the requirements.                    |
| AMEB09.07  | Knowledge of Fuel Requirements and Fuel Rating.                                                    |
| AMEB09.08  | Testing and Performance of I.C Engines.                                                            |
| AMEB09.09  | Analyze the working of the basic components in the Compressors and Refrigeration systems.          |
| AMEB09.10  | Apply the thermodynamic principles in the design of Compressors and refrigeration system.          |
| AMEB00 11  | Formulate and perform the procedures required for the maintenance and operation of compressors and |
| AMILD09.11 | refrigeration systems.                                                                             |
| AMEB09 12  | Compare different compressors and refrigeration systems and develop a system which meets the       |
| AMILD07.12 | requirements.                                                                                      |
| AMEB09.13  | Understand the process of pressure enthalpy charts that are used in the Refrigeration systems.     |
| AMEB09.14  | Introduction to concepts of power and refrigeration cycles. Their efficiency and coefficients of   |
| AMED09.14  | performance.                                                                                       |
| AMEB09 15  | Ability to use modern engineering tools, software and equipment to analyze energy transfer in      |
| AMILD09.13 | required air-condition application.                                                                |
| AMEB09 16  | Explore the use of modern engineering tools, software and equipment to prepare for competitive     |
| AWIED07.10 | exams, higher studies etc.                                                                         |

| MODULE – I                        |                                                                                                                                             |              |              |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--|
| I C ENGINES                       |                                                                                                                                             |              |              |  |
| PART - A (SHORT ANSWER OUESTIONS) |                                                                                                                                             |              |              |  |
|                                   |                                                                                                                                             | Blooms       | Course       |  |
| S. No                             | Ouestion                                                                                                                                    | Taxonomy     | Learning     |  |
|                                   |                                                                                                                                             | Level        | Outcomes     |  |
| 1                                 | What is valve timing diagram why the inlet valve is opened before TDC and closed after BDC?                                                 | Remember     | AMEB09.01    |  |
| 2                                 | What is combustion efficiency and combustion back duration?                                                                                 | Understand   | AMEB09.01    |  |
| 3                                 | What is fluid friction in an engine?                                                                                                        | Remember     | AMEB09.01    |  |
| 4                                 | What are the products formed during combustion process?                                                                                     | Remember     | AMEB09.01    |  |
| 5                                 | What is an internal combustion engine?                                                                                                      | Understand   | AMEB09.01    |  |
| 6                                 | What is scavenging?                                                                                                                         | Remember     | AMEB09.01    |  |
| 7                                 | What is meant by compression ratio?                                                                                                         | Understand   | AMEB09.01    |  |
| 8                                 | Define firing order.                                                                                                                        | Remember     | AMEB09.01    |  |
| 9                                 | What do you mean by SFC?                                                                                                                    | Remember     | AMEB09.02    |  |
| 10                                | Define mean effective pressure.                                                                                                             | Understand   | AMEB09.03    |  |
| 11                                | Obtain the expression for mean effective pressure of an Otto cycle.                                                                         | Remember     | AMEB09.02    |  |
| 12                                | List the three principal factors that influence engine performance.                                                                         | Understand   | AMEB09.03    |  |
| 13                                | What are the different kinds of fuels used in an IC?                                                                                        | Remember     | AMEB09.02    |  |
| 14                                | Briefly explain the petroleum refining process.                                                                                             | Remember     | AMEB09.03    |  |
| 15                                | What are the important qualities of SI and CI engine fuel?                                                                                  | Remember     | AMEB09.02    |  |
| 16                                | How are SI and CI engine fuels rated?                                                                                                       | Understand   | AMEB09.03    |  |
| 17                                | What are the functional requirements of an injection system?                                                                                | Remember     | AMEB09.01    |  |
| 18                                | How the injection system classified?                                                                                                        | Remember     | AMEB09.01    |  |
| 19                                | Define carburetion.                                                                                                                         | Understand   | AMEB09.01    |  |
| 20                                | With a neat sketch explain an induction coil.                                                                                               | Understand   | AMEB09.01    |  |
|                                   | PART - B (LONG ANSWER QUESTIONS)                                                                                                            |              |              |  |
|                                   |                                                                                                                                             | Blooms       | Course       |  |
| S. No                             | Question                                                                                                                                    | Taxonomy     | Learning     |  |
|                                   |                                                                                                                                             | Level        | Outcomes     |  |
| 1                                 | Give classification of IC Engines.                                                                                                          | Understand   | AMEB09.01    |  |
| 2                                 | Distinguish between SI engines and CI engines?                                                                                              | Understand   | AMEB09.01    |  |
| 2                                 | Sketch and explain the valve timing diagram of a four stroke Otto cycle                                                                     | Un donaton d | AMED00.01    |  |
| 5                                 | engine?                                                                                                                                     | Understand   | AMED09.01    |  |
| 4                                 | In what respect two stroke engines differs from 4-stroke engine Discuss.                                                                    | Understand   | AMEB09.01    |  |
| 5                                 | Explain fuel injection system of an SI engine?                                                                                              | Remember     | AMEB09.01    |  |
| 6                                 | What are the different lubrication systems available for IC engines?                                                                        | Understand   | AMEB09.02    |  |
| 7                                 | Discuss the importance of cooling system for an IC engines. Describe different cooling systems?                                             | Understand   | AMEB09.03    |  |
| 8                                 | List out the properties of fuel for (i) SL engine (ii) CL engine                                                                            | Understand   | AMEB09.02    |  |
| 9                                 | Explain lubrication system for IC engines?                                                                                                  | Understand   | AMEB09.02    |  |
| 10                                | Explain cooling system for IC engines?                                                                                                      | Remember     | AMEB09.03    |  |
| 10                                | What is the main difference between an Otto cycle and Diesel cycle?                                                                         | _            | 11,111007.02 |  |
| 11                                | Derive the expression for mean effective pressure of the Diesel cycle                                                                       | Remember     | AMEB09.02    |  |
| 12                                | Explain with a neat sketch the working principle of a mechanical governor.                                                                  | Remember     | AMEB09.03    |  |
|                                   | Explain why a rich mixture is required for the following                                                                                    |              |              |  |
| 13                                | <ul> <li>i. Idling</li> <li>ii. Maximum power</li> <li>iii. Sudden acceleration</li> </ul>                                                  | Understand   | AMEB09.02    |  |
| 14                                | Describe the essential part of a modern carburetor                                                                                          | Understand   | AMEB09.02    |  |
|                                   | What is the purpose of using a governor in CI engines? What are the two                                                                     | Chaorbaila   |              |  |
| 15                                | major types of governors?                                                                                                                   | Understand   | AMEB09.03    |  |
| 16                                | Draw a schematic diagram of fuel feed pump and explain its working principle.                                                               | Remember     | AMEB09.02    |  |
| 17                                | What are the different kinds of fuels used in an IC engine?                                                                                 | Understand   | AMEB09.03    |  |
| 18                                | How are SI and CI engine fuels rated?                                                                                                       | Remember     | AMEB09.02    |  |
| 19                                | Explain reversible and irreversible processes. Is it possible to realize these processes.                                                   | Understand   | AMEB09.02    |  |
| 20                                | Explain briefly the Diesel cycle with the help of p-v and T-S diagrams and derive an expression for the ideal efficiency of a Diesel cycle. | Understand   | AMEB09.03    |  |
|                                   | PART - C (ANALYTICAL OUESTIONS)                                                                                                             |              |              |  |

|        |                                                                                                           | Blooms     | Course    |
|--------|-----------------------------------------------------------------------------------------------------------|------------|-----------|
| S. No  | Question                                                                                                  | Taxonomy   | Learning  |
|        |                                                                                                           | Level      | Outcomes  |
| 1      | What are the homogeneous and heterogeneous mixtures? In which engines                                     | Remember   | AMEB09 02 |
| -      | these mixtures are used? Explain.                                                                         |            |           |
| 2      | What is the importance of additives in lubricants?                                                        | Understand | AMEB09.03 |
| 3      | Basic energy requirements for spark ignition engine.                                                      | Remember   | AMEB09.02 |
| 4      | What are the different variables that effects knocking in a CI engine can an                              | Remember   | AMEB09.03 |
|        | operator usually able to control hose effects explain.                                                    |            |           |
| 5      | Explain the process of ignition delay of CI engine while representing on                                  | Remember   | AMEB09.02 |
|        | pressure time diagram.                                                                                    |            |           |
| 6      | Illustrate with diagram the effect of ignition delay on the rate of                                       | Remember   | AMEB09.02 |
| 7      | pressurized in the CI engine.                                                                             | D 1        |           |
| /      | What is meant by crank case ventilation? Explain the details?                                             | Remember   | AMEB09.03 |
| 8      | Give a brief account of air pollution due to engine exhaust.                                              | Remember   | AMEB09.04 |
| 9      | What are the different variables that affects imported in an SL anging con                                | Remember   | AMEB09.05 |
| 10     | what are the different variables that effects knocking in an SI engine can                                | Remember   | AMEB09.04 |
|        |                                                                                                           |            |           |
|        |                                                                                                           |            |           |
|        | COMBUSTION IN STENGINES AND CLENG.                                                                        | INES       |           |
|        | PART - A (SHORT ANSWER QUESTIONS                                                                          | )          |           |
|        |                                                                                                           | Blooms     | Course    |
| S. No  | Question                                                                                                  | Taxonomy   | Learning  |
|        |                                                                                                           | Level      | Outcomes  |
| 1      | What is the normal combustion and abnormal combustion in SI engine?                                       | Understand | AMEB09.04 |
| 2      | What is called flame front and flame velocity?                                                            | Understand | AMEB09.05 |
| 3      | What is knocking in both SI and CI engines?                                                               | Remember   | AMEB09.04 |
| 4      | What decides severity of knocking in both SI and CI Engines?                                              | Remember   | AMEB09.05 |
| 5      | What is pre ignition and optimum ignition timing?                                                         | Remember   | AMEB09.04 |
| 6      | What is ignition delay period?                                                                            | Remember   | AMEB09.05 |
| 7      | Define suction induced swirl and combustion induced swirl?                                                | Remember   | AMEB09.04 |
| 8      | What is mixture strength? How it influences the combustion?                                               | Remember   | AMEB09.05 |
| 9      | What are anti-knock agents? Main difference between working of anti-<br>knock agent in SI and CI Engines? | Remember   | AMEB09.04 |
| 10     | What is a combustion chamber? What are the different combustion zones in combustion chamber?              | Understand | AMEB09.06 |
| 11     | What are the types of ignition systems                                                                    | Remember   | AMEB09.07 |
| 12     | Give the two methods of cooling systems?                                                                  | Remember   | AMEB09.06 |
| 13     | List the properties of lubricants?                                                                        | Remember   | AMEB09.07 |
| 14     | Factors affecting normal combustion in SI system?                                                         | Understand | AMEB09.06 |
| 15     | What are the properties of liquid fuels?                                                                  | Remember   | AMEB09.07 |
| 16     | What are the tests for identifying pre-ignition?                                                          | Understand | AMEB09.06 |
| 17     | Differentiate auto ignition and detonation                                                                | Understand | AMEB09.07 |
| 18     | What are the effects of detonation?                                                                       | Understand | AMEB09.06 |
| 19     | How to control detonation?                                                                                | Understand | AMEB09.07 |
| 20     | How to control detonation?                                                                                | Understand | AMEB09.06 |
|        | PART - B (LONG ANSWER OUESTIONS)                                                                          |            |           |
|        | ``````````````````````````````````````                                                                    | Blooms     | Course    |
| S. No. | Question                                                                                                  | Towonomy   | Looming   |
| 5. INO | Question                                                                                                  |            | Learning  |
| 1      |                                                                                                           | Level      | Outcomes  |
| 1      | State and explain different combustion stages in SI engine.                                               | Understand | AMEDOO 07 |
| 2      | Explain knocking, properties and its affects in CL engine.                                                | Understand |           |
| 3      | Explain knocking, properties and its effects in CI engine.                                                | Understand | AMEDOO 07 |
| 4      | Explain different types of combustion chambers in SI and CI engines.                                      | Understand | AMEBU9.07 |
| 5      | Factors influencing knocking in SI and CI engine.                                                         | Understand | AMEB09.06 |
| 6      | What are the requirements of fuel for a diesel engine?                                                    | Understand | AMEB09.07 |
| 7      | Differentiate between normal combustion and abnormal combustion phenomena in case of SI Engine.           | Understand | AMEB09.06 |
| 8      | What is the importance of variables like flame speed flame front in case of delay period.                 | Remember   | AMEB09.07 |
| 9      | Explain knocking additives                                                                                | Understand | AMEB09.06 |

| 10    | Discuss air flow movements in CI engines                                                                                                             | Understand  | AMEB09.07 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 11    | Explain the Splash lubrication system with the diagram                                                                                               | Remember    | AMEB09.06 |
| 12    | Explain the carburetor working principle with diagram                                                                                                | Understand  | AMEB09.07 |
| 13    | What are the types of fuel injection systems? Explain anyone with a neat sketch?                                                                     | Understand  | AMEB09.06 |
| 14    | How to tell a two stroke cycle engine from a 4 stroke cycle engine?                                                                                  | Remember    | AMEB09.07 |
| 15    | Explain the Pressure feed system with a diagram?                                                                                                     | Remember    | AMEB09.06 |
|       | In what respect four-stroke diesel cycle (compression Ignition) engine                                                                               |             |           |
| 16    | differs from four stroke cycle spark ignition engine?                                                                                                | Remember    | AMEB09.07 |
| 17    | What do you mean by Pre-ignition? How can it be detected?                                                                                            | Understand  | AMEB09.06 |
| 18    | Explain the difference between Pre-ignition, auto-ignition and detonation.                                                                           | Remember    | AMEB09.06 |
| 19    | What is meant by ignition delay? Explain the steps in SI engines ignition delay?                                                                     | Understand  | AMEB09.07 |
| 20    | Why do we feel the necessity of cooling an IC engine? Explain briefly the following methods of cooling IC engines: Air-cooling and Liquid - cooling? | Understand  | AMEB09.06 |
|       | PART - C (ANALYTICAL QUESTIONS)                                                                                                                      |             |           |
|       |                                                                                                                                                      | Blooms      | Course    |
| S. No | Ouestion                                                                                                                                             | Taxonomy    | Learning  |
|       |                                                                                                                                                      | Level       | Outcomes  |
| 1     | What are the harmful effect of overheating of an engine explain                                                                                      | Understand  | AMEB09.06 |
| 2     | What are the name increased of overheating of an engine explain.                                                                                     | Understand  | AMEB09.00 |
| 2     | What are the effects of super charging on anging performance?                                                                                        | Understand  |           |
| 3     | Use does seeven sing takes place in 2 stroke notrol engine?                                                                                          | Understand  | AMED09.00 |
| 4     | How does scavenging takes place in 2 stroke petrol engine?                                                                                           | Understand  | AMEB09.07 |
| 3     | what are the undesirable effects if an engine under cool?                                                                                            | Understand  | AMEB09.06 |
| 6     | How liquid cooling system is better than air cooling system in an IC engine.                                                                         | Understand  | AMEB09.07 |
| 7     | Find the mean effective pressure and torque developed by the engine in the previous problem if its rating is 4 kW at 1500 rpm.                       | Remember    | AMEB09.06 |
| 8     | What do u mean by charge? What type of charge to be sent for petrol engine for better performance?                                                   | Understand  | AMEB09.07 |
| 9     | Why firing order is important to run an IC engine. Mention firing order of four - stroke four cylinders, six cylinder engines.                       | Remember    | AMEB09.06 |
| 10    | Why the actual efficiency much lower than air standard efficiency explain with major losses.                                                         | Remember    | AMEB09.06 |
|       | MODULE-III                                                                                                                                           |             |           |
|       | TESTING AND PERFORMANCE                                                                                                                              |             |           |
|       | PART - A (SHORT ANSWER QUESTIONS                                                                                                                     | )           |           |
|       |                                                                                                                                                      | Blooms      | Course    |
| S. No | Question                                                                                                                                             | Taxonomy    | Learning  |
|       |                                                                                                                                                      | Level       | Outcomes  |
| 1     | Define brake power?                                                                                                                                  | Remember    | AMEB09.06 |
| 2     | Define mechanical efficiency?                                                                                                                        | Remember    | AMER09.06 |
| 2     | List the devices used to measure the cylinder pressure                                                                                               | Understand  |           |
| 3     | What is an indicated newer?                                                                                                                          | Understallu |           |
| 4     | What is all indicated power?                                                                                                                         | Understand  | AMEDOO OC |
| 5     | what are the various losses of IC Engine?                                                                                                            | Understand  | AMEB09.06 |
| 6     | How do you determine heat losses explain with sankey diagram?                                                                                        | Understand  | AMEB09.06 |
| 7     | Define clearance ratio.                                                                                                                              | Understand  | AMEB09.06 |
| 8     | What is specific fuel consumption?                                                                                                                   | Remember    | AMEB09.06 |
| 9     | Define volumetric efficiency?                                                                                                                        | Understand  | AMEB09.06 |
| 10    | What is the use of heat balance sheet of an engine                                                                                                   | Understand  | AMEB09.06 |
|       |                                                                                                                                                      |             |           |
| 11    | Classify positive displacement compressors.                                                                                                          | Remember    | AMEB09.06 |
| 12    | State the basic function of an air dryer in a compressor.                                                                                            | Remember    | AMEB09.06 |
| 13    | Write the capacity range of a vertical type reciprocating compressors                                                                                | Understand  | AMEB09.06 |
| 14    | Define a compressor.                                                                                                                                 | Understand  | AMEB09.06 |
| 15    | Classify non-positive displacement compressors                                                                                                       | Remember    | AMEB09.06 |

| 16      | Mention the primary element of a centrifugal compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember        | AMEB09.06          |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 17      | Classify different types of compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember        | AMEB09.06          |
| 18      | When are the rotary compressors employed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Understand      | AMEB09.06          |
| 19      | Classify rotary type compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember        | AMEB09.06          |
| 20      | Mention the primary element of an axial compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remember        | AMEB09.06          |
| 20      | <b>PADT</b> - R (I ONC ANGWED OTJECTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i contenito en  | 111111111111111111 |
|         | FART - D (LONG ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DI              | 0                  |
| ~ ~ ~ ~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blooms          | Course             |
| S. No   | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Taxonomy        | Learning           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level           | Outcomes           |
| 1       | Explain the Morse test to fins the frictional power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Understand      | AMEB09.06          |
| 2       | What is William's line .how do you measure frictional power using this.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember        | AMEB09.06          |
| 3       | Discuss different types of dynamometers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand      | AMEB09.06          |
| 4       | Write short notes on Exhaust gas analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remember        | AMEB09.06          |
| -       | Define the following terms: Indicated Power Brake power Friction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember        | AMEB09.00          |
| 5       | Dowar Machanical afficiancy Maan affactivanass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand      | ANILD07.00         |
|         | What is the significance of heat belance sheet? Discuss the procedure to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | AMED00.06          |
| 6       | draw hast belence shoet for CL angine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Understand      | AMED09.00          |
| 7       | Translain Leadhannach ann an | The demotent of |                    |
| /       | Explain Isothermal work done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand      | AMEB09.06          |
| 8       | Derive equation for work done of reciprocating air compressor with T-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Understand      | AMEB09.06          |
|         | and p-V diagrams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |
| 9       | Explain about intercooling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand      | AMEB09.06          |
| 10      | Explain the phenomenon of knocking in SI engines? What are the different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand      | AMEB09.06          |
| 10      | factors influencing the knocking?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand      |                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |
| 11      | Explain multistage compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand      | AMEB09.09          |
| 12      | Derive volumetric efficiency of air compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand      | AMEB09 10          |
| 12      | Classify compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remember        | AMEB09.10          |
| 13      | What is the condition for maximum afficiency in multistage compression?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand      | AMERO0.00          |
| 14      | For the condition for maximum enciency in multistage compression?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand      | ANIED09.09         |
| 15      | classified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand      | AMEB09.09          |
| 16      | Classify dynamic compressors. Explain the working of a axial compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember        | AMEB09.11          |
| 17      | State how the air compressors are classified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remember        | AMEB09.09          |
| 18      | Explain the working of a reciprocating compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember        | AMEB0910           |
| 19      | Classify rotary compressors Explain the working of a rotary compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remember        | AMEB0911           |
| 17      | Classify dynamic compressors. Explain the working of a centrifugal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remember        |                    |
| 20      | compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remember        | AMEB09.09          |
|         | DADT C (ANALVTICAL OUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                    |
|         | FART - C (ANALTHCAL QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DI              | C                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blooms          | Course             |
| S. No   | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Taxonomy        | Learning           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level           | Outcomes           |
|         | The data recorded during the trial of a two stroke diesel engine are as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                    |
| 1       | follows: Engine speed =1500rpm Load on brakes =110kg brake arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TT. 1 4 1       |                    |
| 1       | =900mmDetermine the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand      | AMEB09.06          |
|         | (a) Brake torque, (b) Power available at the brakes of the engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |
|         | During testing a two stroke, diesel engine with rone brake dynamometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                    |
|         | the following were recorded: Engine sneed =700rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |
| 2       | Diameter of brake drum –600mm Diameter of rope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember        | AMEB09.06          |
| 2       | -50mm Dead load on the brake drum $-35$ kg Spring balance reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember        | 71012.009.00       |
|         | -4 5kg Find the power available at the brakes in KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                    |
|         | During the trial on a single cylinder four stroke, dissel anoine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |
|         | following are noted. I and an hydroxilia dynamosyster 050N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                    |
| 2       | following are noted: Load on hydraulic dynamometer=950N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D 1             |                    |
| 3       | Dynamometer constant =/500 Fuel used per nour = $10.5$ kg/nr Calorinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember        | AMEB09.06          |
|         | values of rue = 50000kJ/Kg Engine speed = 400rpm. Calculate brake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |
|         | inermal emciency of the engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                    |
|         | An Otto cycle four stroke gas engine has a cylinder 25cm in diameter and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                    |
|         | the stroke of the piston is 40cm. It operates under the following conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                    |
| 4       | Speed =200rpm misfires per minute =10 Mean effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | understand      | AMEB09.06          |
|         | pressure=6.2kg/cm2 Mechanical efficiency =80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                    |
|         | Determine (a) IHP, (b) BHP and (c) Friction horse power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                    |
|         | Calculate the volumetric efficiency of a petrol engine of 6cm bore and 9cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                    |
| 5       | stroke if each cylinder sucks 0.0025kg of charge during suction stroke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember        | AMEB09.06          |
|         | Assume R as 29 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |
|         | rissume it us 29.27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |

|                                                                                                                                                                                                                                     | average torque when one cylinder was cut out was 10.5kg_m. Determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                     | the indicated thermal efficiency, if the calorific value of the fuel used is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | 10000kcal/kg, and the engine uses 0.25kg of petrol per BHP hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | In the Morse test with a four cylinder four stroke petrol engine, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | following data were obtained for a particular setting and speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | BHP with all cylinders working $=32.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | BHP with No 1 cylinder cut off=21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7                                                                                                                                                                                                                                   | BHP with No 2 cylinder cut off=22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMEB09.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                     | BHP with No 3 cylinder cut off-22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | BHP with No 4 cylinder cut off $-23.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | Estimate the IHP of the engine and its mechanical efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | During the trial of a single cylinder, four stroke oil engine, the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | burning the trial of a single cylinder, four stroke of engine, the following observations were recorded: Bore and Stroke =300mm x 450mm Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | anad-220mm Duration of trial-60minutesEval consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | -7.0kgColorific value of fuel- $45000$ kJ/kg Area of indicator diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | =7.0kgCalofine valve of fuel=45000kJ/kg Area of indicator diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | -520mm Lengur of indicator diagram-oommspring index-1.10a/mm Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8                                                                                                                                                                                                                                   | ioakot agoling water =500kgBrake druin diameter =1050kg10ial weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMEB09.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                     | Tarmersture of achievest access=200sin Consumption=200kg Assume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | remperature of exhaust gases=500air Consumption=500kgAssume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | specific real of exhaust gases = $1.004 \text{ kJ/kg K}$ , specific real of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | $=4.185$ kJ/kg k and room temperature $=25^{\circ}$ C Determine the followinga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | for a stand of the |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | efficiency, d. Inermal efficiency, e. Heat balance sneet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | The following readings are observed during the trial of a single cylinder,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | four stroke diesel engine. Fuel used per hour=11kg;mass analysis of fuel is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | carbon 85%, oxygen 14%, non-combustibles 1%; calorific value of fuel is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9                                                                                                                                                                                                                                   | 50000kJ/kg. The volumetric analysis of the exhaust gases is carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMEB09.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                                                                                                                                                                                                                                   | dioxide 8.5%, oxygen 10%, and nitrogen 81.5%. Temperature of exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | gases is 400c. Specific heat of Exhaust gases is 1.05kJ/kg. Partial pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | of steam in the exhaust gases is 0.030bar. Ambient temperature is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | 20 <sup>o</sup> c.Calculate the percentage of heat carried away by the exhaust gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | During the trial on a single cylinder, four stroke, diesel engine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | following are noted: Load on hydraulic dynamometer=950N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                                                                                                                                                                                  | Dynamometer constant $=5500$ Fuel used per hour $= 10.5$ kg/hr Calorific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMEB09.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                     | values of fuel =20000kJ/Kg Engine speed =400rpm. Calculate brake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | thermal efficiency of the engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | MODULE-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | ROTARY, DYNAMIC AND AXIAL FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7<br>5)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                     | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )<br>Blooms                                                                                                                                                                                                                                                                                                                                                                                                                               | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S. No                                                                                                                                                                                                                               | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br>Blooms<br>Taxonomy                                                                                                                                                                                                                                                                                                                                                                                                                   | Course<br>Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S. No                                                                                                                                                                                                                               | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7<br>Blooms<br>Taxonomy<br>Level                                                                                                                                                                                                                                                                                                                                                                                                          | Course<br>Learning<br>Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S. No                                                                                                                                                                                                                               | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blooms<br>Taxonomy<br>Level<br>Understand                                                                                                                                                                                                                                                                                                                                                                                                 | Course<br>Learning<br>Outcomes<br>AMEB09.09                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>S. No</b>                                                                                                                                                                                                                        | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>What is volumetric efficiency in case of compressor?<br>Define slip factor?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                                                   | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>S. No</b>                                                                                                                                                                                                                        | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                                     | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>S. No</b>                                                                                                                                                                                                                        | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                       | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.09                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>S. No</b>                                                                                                                                                                                                                        | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                         | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.09<br>AMEB09.09                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                          | NODOLIST         ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?       Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?       What is stalling?         Draw p-y and T-S diagram of a MULTI stage reciprocating compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                         | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11<br>AMEB09.10<br>AMEB09.11                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                     | NODOLITY         ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?       Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?       What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?       What is the function of an intercooler in compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember                                                                                                                                                                                                                                                                                                               | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.11<br>AMEB09.00                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What are rotary compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                   | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.09<br>AMEB09.09                                                                                                                                                                                                                                                                                                                                                                            |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the function of an intercooler in compressors?         What is the difference between reciprocating compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                       | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09<br>AMEB09.10                                                                                                                                                                                                                                                                                                                                                                            |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                           | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the difference between positive displacement and non-positive displacement compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                       | Course           Learning           Outcomes           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.09           AMEB09.10           AMEB09.09           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.10           AMEB09.11                                                                                                                                             |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                     | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What is the difference between positive displacement and non-positive displacement compressors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                       | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09<br>AMEB09.11<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11                                                                                                                                                                                                                                                                                                                                                               |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                               | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What do you mean by Choking?         Constitute the function of a difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                           | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09<br>AMEB09.10<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09                                                                                                                                                                                                                                                                                                                                                  |
| <b>S. No</b> 1           2           3           4           5           6           7           8           9           10           11                                                                                            | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What do you mean by Choking?         Specify the function of a diffuser.         Must is represented of a diffuser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                           | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09<br>AMEB09.10<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10                                                                                                                                                                                                                                                                                                                                                  |
| <b>S. No</b> 1           2           3           4           5           6           7           8           9           10           11           12                                                                               | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What do you mean by Choking?         Specify the function of a diffuser.         Mention the primary component of a rotary compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                               | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.11<br>AMEB09.11<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10                                                                                                                                                                                                                                                                                                                        |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>13                                                                                                                                             | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What are rotary compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What do you mean by Choking?         Specify the function of a diffuser.         Mention the primary component of a rotary compressor.         Write the function of a rotor in rotary compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                     | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09<br>AMEB09.10<br>AMEB09.11<br>AMEB09.09                                                                                                                                                                                                                                                                                                           |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                             | ROTARY, DYNAMIC AND AXIAL FLOW         PART - A (SHORT ANSWER QUESTIONS         Question         Question         What is volumetric efficiency in case of compressor?         Define slip factor?         Define pressure coefficient.         What is the difference between reciprocating and rotary compressors?         What is stalling?         Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What is the difference between positive displacement and non-positive displacement compressors?         What do you mean by Choking?         Specify the function of a diffuser.         Mention the primary component of a rotary compressor.         Write the function of a rotor in rotary compressors.         Define stage in a Axial flow Compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                             | Course           Learning           Outcomes           AMEB09.09           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11                                                             |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                                       | ROTARY, DYNAMIC AND AXIAL FLOW           PART - A (SHORT ANSWER QUESTIONS           Question           What is volumetric efficiency in case of compressor?           Define slip factor?           Define pressure coefficient.           What is the difference between reciprocating and rotary compressors?           What is stalling?           Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?           What is the function of an intercooler in compressors?           What is the difference between positive displacement and non-positive displacement compressors?           What is the difference between positive displacement and non-positive displacement compressors?           What do you mean by Choking?           Specify the function of a diffuser.           Mention the primary component of a rotary compressors.           Write the function of a rotor in rotary compressors.           Define stage in a Axial flow Compressor.           Mention the definition of 'Degree of Reaction''.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand                                                                                                                       | Course           Learning           Outcomes           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.12                                         |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                 | Noticities           ROTARY, DYNAMIC AND AXIAL FLOW           PART - A (SHORT ANSWER QUESTIONS           Question           Question           What is volumetric efficiency in case of compressor?           Define slip factor?         Define pressure coefficient.           What is the difference between reciprocating and rotary compressors?         What is stalling?           Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?         What is the function of an intercooler in compressors?           What is the function of an intercooler in compressors?         What are rotary compressors?           What is the difference between positive displacement and non-positive displacement compressors?         What do you mean by Choking?           Specify the function of a diffuser.         Mention the primary component of a rotary compressor.           Write the function of a rotor in rotary compressors.         Define stage in a Axial flow Compressor.           Write the formula for Blade loading coefficient in a Axial flow         Mention the action of a Diagrae of Reaction".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                             | Course<br>Learning<br>Outcomes<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.09<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.10<br>AMEB09.11<br>AMEB09.11<br>AMEB09.12<br>AMEB09.13                                                                                                                                                                                                                                                                                              |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                 | Noticities           ROTARY, DYNAMIC AND AXIAL FLOW           PART - A (SHORT ANSWER QUESTIONS           Question           Question           What is volumetric efficiency in case of compressor?           Define slip factor?         Define pressure coefficient.           What is the difference between reciprocating and rotary compressors?           What is the difference between reciprocating compressors?           What is stalling?           Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?           What is the function of an intercooler in compressors?           What are rotary compressors?           What is the difference between positive displacement and non-positive displacement compressors?           What do you mean by Choking?           Specify the function of a diffuser.           Mention the primary component of a rotary compressor.           Write the function of a rotor in rotary compressors.           Define stage in a Axial flow Compressor.           Mention the definition of 'Degree of Reaction''.           Write the formula for Blade loading coefficient in a Axial flow compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                             | Course           Learning           Outcomes           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.09           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.09           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.11           AMEB09.12           AMEB09.13                                                                                 |
| <b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                           | ROTARY, DYNAMIC AND AXIAL FLOW           PART - A (SHORT ANSWER QUESTIONS           Question           Question           What is volumetric efficiency in case of compressor?           Define slip factor?         Define pressure coefficient.           What is the difference between reciprocating and rotary compressors?           What is the difference between reciprocating and rotary compressors?           What is stalling?           Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?           What is the function of an intercooler in compressors?           What are rotary compressors?           What is the difference between positive displacement and non-positive displacement compressors?           What is the difference between positive displacement and non-positive displacement compressors?           What do you mean by Choking?           Specify the function of a diffuser.           Mention the primary component of a rotary compressor.           Write the function of a rotor in rotary compressors.           Define stage in a Axial flow Compressor.           Write the formula for Blade loading coefficient in a Axial flow compressor.           State or define Volumetric efficiency of a reciprocating compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                 | Course           Learning           Outcomes           AMEB09.09           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.11           AMEB09.13           AMEB09.11 |
| <b>S. No</b> 1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18 | ROTARY, DYNAMIC AND AXIAL FLOW<br>PART - A (SHORT ANSWER QUESTIONS           Question           Question           What is volumetric efficiency in case of compressor?           Define slip factor?           Define pressure coefficient.           What is the difference between reciprocating and rotary compressors?           What is the difference between reciprocating and rotary compressors?           What is stalling?           Draw p-v and T-S diagram of a MULTI stage reciprocating compressors?           What is the function of an intercooler in compressors?           What are rotary compressors?           What is the difference between positive displacement and non-positive displacement compressors?           What do you mean by Choking?           Specify the function of a diffuser.           Mention the primary component of a rotary compressor.           Write the function of a rotor in rotary compressors.           Define stage in a Axial flow Compressor.           Write the formula for Blade loading coefficient in a Axial flow compressor.           Write the formula for Blade loading coefficient in a Axial flow compressor.           State or define Volumetric efficiency of a reciprocating compressor.           How an Air compressor may be controlled?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember | Course           Learning           Outcomes           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.10           AMEB09.11           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.09           AMEB09.10           AMEB09.11           AMEB09.12           AMEB09.11           AMEB09.12           AMEB09.13           AMEB09.12                                         |

| 20    | Mention the types of rotary compressors.                                                                                                         | Remember   | AMEB09.11   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
|       | PART - B (LONG ANSWER QUESTIONS)                                                                                                                 |            |             |
|       | Question                                                                                                                                         | Blooms     | Course      |
| S. No |                                                                                                                                                  | Taxonomy   | Learning    |
|       |                                                                                                                                                  | Level      | Outcomes    |
| 1     | State how the air compressors are classified.                                                                                                    | Understand | AMEB09.09   |
| 2     | Explain the working of roots blower.                                                                                                             | Remember   | AMEB09.10   |
| 3     | Explain the working of vane blower and also draw the actual p -v diagram                                                                         | Pomombor   | AMER00 11   |
| 3     | of a compressor.                                                                                                                                 | Kennennber | AWED09.11   |
| 4     | What is rotary compressor? How are they classified?                                                                                              | Remember   | AMEB09.09   |
| 5     | Draw the velocity diagram of an axial flow compressor.                                                                                           | Understand | AMEB09.10   |
| 6     | What do you mean by multistage compression? And state its advantages?                                                                            | Understand | AMEB09.11   |
| 7     | Draw velocity diagrams of centrifugal compressors.                                                                                               | Understand | AMEB09.11   |
| 8     | Compare between reciprocating and rotary compressors.                                                                                            | Understand | AMEB09.12   |
| 9     | Compare between axial flow and centrifugal compressors.                                                                                          | Understand | AMEB09.13   |
| 10    | Discuss of working centrifugal compressors.                                                                                                      | Remember   | AMEB09.11   |
| 11    | Describe with a neat sketch the construction and working of a single-stage                                                                       | Understand | AMEB09 12   |
| 11    | single-acting reciprocating air compressor.                                                                                                      | onderstand | / MILD09.12 |
| 12    | Describe briefly an axial flow compressor.                                                                                                       | Remember   | AMEB09.13   |
|       | Write short notes on                                                                                                                             |            |             |
| 13    | a) clearance in compressors                                                                                                                      | Understand | AMEB09.11   |
|       | b) free air delivered and displacement                                                                                                           |            |             |
|       | c)compressor performance                                                                                                                         |            |             |
| 14    | Explain with a neat sketch actual p-V diagram for a single stage                                                                                 | Understand | AMEB09.12   |
|       | compressor.                                                                                                                                      |            |             |
| 15    | What is a centrifugal compressor? How does it differ from an axial flow                                                                          | Understand | AMEB09.13   |
|       | compressor ?                                                                                                                                     |            |             |
|       | write short notes on                                                                                                                             |            |             |
| 16    | a) control of compressors<br>b) intercolor                                                                                                       | Understand | AMEB09.11   |
|       | b) Intercooler                                                                                                                                   |            |             |
|       | Evolution the working of a reciprocating compressor with its sectional view                                                                      |            |             |
| 17    | diagram                                                                                                                                          | Understand | AMEB09.11   |
|       | Explain with a neat sketch actual p-V diagram for a two- stage                                                                                   |            |             |
| 18    | compressor.                                                                                                                                      | Understand | AMEB09.12   |
|       | Define the following efficiencies as applied to reciprocating air                                                                                |            |             |
|       | compressors:                                                                                                                                     |            |             |
| 10    | a) compressor Efficiency                                                                                                                         | D 1        | AMED00 12   |
| 19    | b) Isothermal Efficiency                                                                                                                         | Remember   | AMEB09.13   |
|       | c) Adiabatic Efficiency                                                                                                                          |            |             |
|       | d) Mechanical Efficiency                                                                                                                         |            |             |
| 20    | Mention the advantages and disadvantages of multi stage compression.                                                                             | Understand | AMEB09.11   |
|       | PART - C (ANALYTICAL QUESTIONS)                                                                                                                  |            |             |
|       |                                                                                                                                                  | Blooms     | Course      |
| S. No | Question                                                                                                                                         | Taxonomy   | Learning    |
|       |                                                                                                                                                  | Level      | Outcomes    |
|       | An air compressor takes in air at 1 bar and 20 ° C and compresses it                                                                             |            |             |
|       | according to law $pv^{1/2} = constant$ . It is then delivered to a receiver at a                                                                 | <b>D</b>   |             |
| 1     | constant pressure of 10 bar. $R=0.287$ KJ/Kg Determine: (1) Temperature at                                                                       | Remember   | AMEB09.09   |
|       | the end of compression (11) Work done and heat transferred during                                                                                |            |             |
|       | compression per kg of air.                                                                                                                       |            |             |
|       | A single-stage, double-acting compressor has a free air derivery (FAD) of 14 m <sup>2</sup> /min massured at 1.012 has and 150C. The massure and |            |             |
|       | 14 m5/mm. measured at 1.015 bat and 150C. The pressure and temperature in the cylinder during induction are 0.05 bar 320 C. The                  |            |             |
| 2     | delivery pressure is 7 bar and index of compression and expansion                                                                                | Remember   | AMEB09.10   |
|       | n-1 3 The clearance volume is 5 % of the swept volume Calculate (i)                                                                              |            |             |
|       | Indicated power required (ii) Volumetric efficiency                                                                                              |            |             |
|       | Air at 103 K Pa and 27 <sup>o</sup> C is drawn in LP cylinder of a two stage air                                                                 |            |             |
|       | compressor and is isentropic ally compressed to 700 KPa. The air is then                                                                         |            |             |
|       | cooled at constant pressure to $37  {}^{0}$ C in an intercooler and is then again                                                                |            |             |
| 3     | compressed isentropic ally to 4 MPa in the H.P cylinder, and is then                                                                             | Remember   | AMEB09.11   |
|       | delivered at this pressure Determine the power required to run the                                                                               |            |             |
|       | compressor if it has to deliver 30 m <sup>3</sup> of air per hour measured at inlet                                                              |            |             |
|       | conditions.                                                                                                                                      |            |             |
|       |                                                                                                                                                  |            |             |

| 4                                                                                                                                             | A roots blower compresses 0.08 m <sup>3</sup> of air from 1.0 bar to 1.5 bar per<br>revolution. Calculate the compressor efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.12                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                                                                                                                             | A centrifugal compressor delivers 16.5 kg/s of air with a total head pressure ratio of 4:1. The speed of the compressor is 1500 r.p.m. Inlet total head temperature is $20^{\circ}$ C, slip factor 0.9 Power input factor 1.04 and 80 % isentropic efficiency. Calculate: Overall diameter of the impeller ii. Power input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13                                                                                                                                                                                                                                                                                          |
| 6                                                                                                                                             | A multi stage axial flow compressor delivers 20 kg/sec of air. The inlet stagnation condition is 1 bar and 17 <sup>o</sup> C. The power consumed by the compressor is 4350 kW .Calculate (i) The delivery pressure (ii)Number of stages (iii) Overall isentropic efficiency of the compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AMEB09.11                                                                                                                                                                                                                                                                                          |
| 7                                                                                                                                             | An axial flow compressor with an overall isentropic efficiency of 85 % draws air at $20^{0}$ C and compresses it in the pressure ratio 4:1.The mean blade speed and flow velocity are constant throughout the compressor. Assuming 50 % reaction blading and taking blade velocity as 180 m/sec. and work input factor as 0.82.calculate (i) Flowvelocity (ii) Number of stages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AMEB09.13                                                                                                                                                                                                                                                                                          |
| 8                                                                                                                                             | A Centrifugal compressor used as a super charger for aero-engines handles<br>150 kg/min of air. The suction pressure and temperature are 1bar and<br>290K. the suction velocity is 80 m/s. after compression in the impeller the<br>conditions are 1.5bar 345K and 220 m/s. Calculate:<br>a) Isentropic efficiency<br>b) power required to drive the compressor<br>c) The overall efficiency of the unit.<br>It may be assumed that K.E. gained in the impeller is entirely converted<br>into pressure in the diffuser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AMEB09.14                                                                                                                                                                                                                                                                                          |
| 9                                                                                                                                             | Air at a temperature of 300K flows in a centrifugal compressor running at 18000 r.p.m. Isentropic total head efficiency= 0.76, outer diameter of blade tip= 550mm, slip factor= 0.82. calculate<br>A) the temperature rise of air passing through the compressor<br>B) the static pressure ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.15                                                                                                                                                                                                                                                                                          |
|                                                                                                                                               | A multi stage axial flow compressor delivers 20 kg/sec of air. The inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |
| 10                                                                                                                                            | stagnation condition is 1 bar and $19^{\circ}$ C. The power consumed by the compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of stages (iii) Overall isentropic efficiency of the compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                            | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                            | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13                                                                                                                                                                                                                                                                                          |
| 10                                                                                                                                            | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13                                                                                                                                                                                                                                                                                          |
| 10<br>                                                                                                                                        | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br><u>MODULE - V</u><br><u>REFRIGERATION</u><br><u>PART - A (SHORT ANSWER QUESTIONS</u><br><u>Question</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13 Course Learning Outcomes                                                                                                                                                                                                                                                                 |
| 10<br>S. No                                                                                                                                   | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br><u>MODULE - V</u><br><u>REFRIGERATION</u><br><u>PART - A (SHORT ANSWER QUESTIONS</u><br><u>Question</u><br>Define refrigeration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember ) Blooms Taxonomy Level Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11                                                                                                                                                                                                                                           |
| 10<br>S. No                                                                                                                                   | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br><u>MODULE - V</u><br><u>REFRIGERATION</u><br><u>PART - A (SHORT ANSWER QUESTIONS</u><br><u>Question</u><br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remember  Remember  Blooms Taxonomy Level Understand Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12                                                                                                                                                                                                                              |
| 10<br><b>S. No</b><br>1<br>2<br>3                                                                                                             | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br><u>MODULE - V</u><br><u>REFRIGERATION</u><br><u>PART - A (SHORT ANSWER QUESTIONS</u><br><u>Question</u><br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remember Remember Blooms Taxonomy Level Understand Understand Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.11                                                                                                                                                                                                                 |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4                                                                                                        | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br><u>MODULE - V</u><br><u>REFRIGERATION</u><br><u>PART - A (SHORT ANSWER QUESTIONS</u><br><u>Question</u><br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember Rem | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.11<br>AMEB09.12                                                                                                                                                                                                    |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5                                                                                                   | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember  Remember  Blooms Taxonomy Level Understand Understand Understand Understand Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13                                                                                                                                                                                                    |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6                                                                                              | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.11                                                                                                                                                                                       |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                         | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.11<br>AMEB09.11<br>AMEB09.12                                                                                                                                                             |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                    | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13                                                                                                                                                             |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>16                                                                         | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13                                                                                                                                                |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | stagnation condition is 1 bar and 19° C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11<br>AMEB09.12<br>AMEB09.13<br>AMEB09.12<br>AMEB09.12                                                                                                                      |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                             | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?<br>Define (i) COP(iii) Relative COP                                                                                                                                                                                                                                                                                                                                                                                 | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13                                                                                                         |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>12                                                       | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?<br>Define (i) COP(iii) Relative COP<br>Mention a reversed heat engine cycle and its function.<br>Write the operations in a vapour acfeigeration guile                                                                                                                                                                                                                                                               | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11                                                                                                         |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                 | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?<br>Define (i) COP(iii) Relative COP<br>Mention a reversed heat engine cycle and its function.<br>Write the operations in a vapour refrigeration cycle.<br>Why is wet compression not preferred                                                                                                                                                                                                                      | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11                                                                  |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                           | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?<br>Define (i) COP(iii) Relative COP<br>Mention a reversed heat engine cycle and its function.<br>Write the operations in a vapour refrigeration cycle.<br>Why is wet compression not preferred.<br>Define enfrigerating system?                                                                                                                                                                                     | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11<br>AMEB09.12<br>AMEB09.13<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13                                                     |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                     | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What are the different components of vapour compression system<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?<br>Define (i) COP(iii) Relative COP<br>Mention a reversed heat engine cycle and its function.<br>Write the operations in a vapour refrigeration cycle.<br>Why is wet compression not preferred.<br>Define refrigerating system?<br>Specify the main characteristic feature of an air refrigeration system | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11              |
| 10<br><b>S. No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                               | stagnation condition is 1 bar and 19 <sup>o</sup> C. The power consumed by the<br>compressor is 5350 kW .Calculate (i) The delivery pressure (ii)Number of<br>stages (iii) Overall isentropic efficiency of the compressor<br>MODULE - V<br>REFRIGERATION<br>PART - A (SHORT ANSWER QUESTIONS<br>Question<br>Define refrigeration?<br>Define (i) actual COP (ii) Theoretical COP.<br>What is the difference between wet compression and dry compression?<br>Write short notes on p-h chart.<br>What is unit of refrigeration<br>What is the function of capillary tube in vapour compression refrigeration<br>system?<br>What is the effect of sub cooling<br>State demerits of air refrigeration system<br>What is the function of Expansion valve?<br>Define (i) COP(iii) Relative COP<br>Mention a reversed heat engine cycle and its function.<br>Write the operations in a vapour refrigeration cycle.<br>Why is wet compression not preferred.<br>Define refrigerating system?<br>Specify the main characteristic feature of an air refrigeration system                                                                                                                                                                             | Remember<br>Blooms<br>Taxonomy<br>Level<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Remember<br>Remember<br>Remember<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Understand<br>Emember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AMEB09.13<br>Course<br>Learning<br>Outcomes<br>AMEB09.11<br>AMEB09.12<br>AMEB09.12<br>AMEB09.12<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.13<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.11<br>AMEB09.12<br>AMEB09.13<br>AMEB09.11<br>AMEB09.12<br>AMEB09.13<br>AMEB09.12<br>AMEB09.12 |

| 19    | State merits of air refrigeration system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand             | AMEB09.11              |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| 20    | Mention the Effect of superheating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Understand             | AMEB09.12              |
|       | PART - B (LONG ANSWER OUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blooms                 | Course                 |
| S No  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toyonomy               | Looming                |
| 5.110 | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Learning               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                  | Outcomes               |
| 1     | Describe a simple vapour compression cycle giving clearly its flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember               | AMEB09.11              |
|       | diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                        |
| 2     | Show the vapour compression cycle on T-S diagram when the vapour is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remember               | AMEB09 12              |
|       | dry saturated, super-heated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rumenteer              | THUED07.12             |
| 3     | What are the factors that affect the performance of a vapour compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember               | AMEB09 13              |
| 5     | system and explain?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remember               | MMLD09.15              |
| 4     | What are desired properties of refrigerants?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Understand             | AMEB09.11              |
| 5     | Explain with neat sketch the working of a vapour absorption system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Understand             | AMEB09.12              |
| 6     | Compare between vapour compression and vapour absorption systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand             | AMEB09.13              |
| 7     | Explain air refrigeration system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand             | AMEB09.11              |
| 8     | Explain reversed Carnot cycle on T-S diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand             | AMEB09.12              |
|       | What are the different components of vapour compression system and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                        |
| 9     | explain with neat sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember               | AMEB09.13              |
| 10    | Classify and explain refrigerants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand             | AMEB09 11              |
| 10    | Differentiate clearly between open and closed air refrigeration systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand             | AMEB09.11              |
| 11    | State merits and demerits of 'vanour compression system' over 'air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Onderstand             | AMLD07.11              |
| 12    | state ments and dements of vapour compression system over an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Understand             | AMEB09.12              |
| 12    | Environmente de analysis en duces of common human ducfrigements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I In danatan d         | AMED00 12              |
| 13    | Enumerate the properties and uses of commonly used retrigerants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Understand             | AMEB09.13              |
| 14    | Write the important refrigeration applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Understand             | AMEB09.11              |
|       | Elements of retrigeration system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                        |
| 15    | State the functions of the following parts of a simple vapour compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remember               | AMEB09 12              |
|       | system: compressor, condenser, expansion valve and evaporator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | 11012207012            |
| 16    | Give the comparison between a vapour compression system and a vapour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remember               | AMEB09 11              |
| 10    | absorption system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember               | AMLD07.11              |
| 17    | Briefly explain pressure enthalpy chart.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember               | AMEB09.12              |
| 18    | Explain practical vapour absorption system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand             | AMEB09.13              |
| 19    | Write the functions of parts of a simple vapour compression system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Understand             | AMEB09.11              |
| 20    | Show the vapour compression cycle on T-S diagram when the vapour is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I In denotes d         | AMED00 12              |
| 20    | super-heated and wet after compression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand             | AMEB09.12              |
|       | PART - C (ANALYTICAL QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blooms                 | Course                 |
| S. No | Ouestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Taxonomy               | Learning               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                  | Outcomes               |
|       | An air refrigeration system operates between 1 MPa and 100 K Pa is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                        |
|       | required to produce a cooling effect of 2000 KJ/min. Temperature of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |
|       | air leaving the cold chamber is $-5^{\circ}$ C and at leaving the cooler is $30^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                        |
| 1     | Neglect losses and clearance in the compressor and expander determine (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand             | AMEB09.13              |
|       | Mass of air circulated per min (ii) Compressor work expander work cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |
|       | work(iii) COP and power in KW required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                        |
|       | 28 toppes of ice from and at $0^{0}$ C is produced per day in an ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                        |
|       | $25$ tollies of recentoin and at 0 °C is produced per day in an animolial refrigeretor. The temperature range in the compressor is from $25 ^{0}$ C to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                        |
|       | <sup>1</sup> C The vancur is dry and seturated at the and of compression and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        |
| 2     | C. The vapour is dry and saturated at the end of compression and an averaging value is used. Assuming a selection of performance of $62.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember               | AMEB09.14              |
|       | expansion value is used. Assuming a co encient of performance of 62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |
|       | of the theoretical calculate the power required to drive the compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |
|       | of the theoretical, calculate the power required to drive the compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                        |
|       | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                        |
|       | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                        |
|       | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                        |
|       | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                        |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigeration temperature at compressor                                                                                                                                                                                                                                                                                                                                                    | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigeration temperature at compressor<br>discharge. The Cp of refrigerant vapour may be taken to be 0.6155                                                                                                                                                                                                                                                                               | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigerant temperature at compressor<br>discharge. The Cp of refrigerant vapour may be taken to be 0.6155<br>kJ/kg.°C.                                                                                                                                                                                                                                                                    | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigerant of temperature at compressor<br>discharge. The Cp of refrigerant vapour may be taken to be 0.6155<br>kJ/kg.°C.<br>In a simple vapour compression cycle the piston displacement volume for                                                                                                                                                                                      | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigeration temperature at compressor<br>discharge. The Cp of refrigerant vapour may be taken to be 0.6155<br>kJ/kg. <sup>0</sup> C.<br>In a simple vapour compression cycle the piston displacement volume for<br>compressor is 1.5 liters per stroke and its volumetric efficiency is 80                                                                                               | Remember               | AMEB09.15              |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigeration temperature at compressor<br>discharge. The Cp of refrigerant vapour may be taken to be 0.6155<br>kJ/kg. <sup>0</sup> C.<br>In a simple vapour compression cycle the piston displacement volume for<br>compressor is 1.5 liters per stroke and its volumetric efficiency is 80<br>%.The speed of compressor is 1600 rpm. Find the power rating of                            | Remember<br>Understand | AMEB09.15<br>AMEB09.13 |
| 3     | of the theoretical, calculate the power required to drive the compressor.<br>take latent heat of ice is 335 KJ/kg.<br>A refrigerator operating on stand vapour compression cycle has a<br>coefficient performance of 6.5 and is driven by a 50 KW compressor. The<br>enthalpies of saturated liquid and saturated vapour refrigerant at the<br>operating condensing temperatures of 35 ° C are 62.55 KJ/Kg and 201.45<br>KJ/Kg. The standard refrigerant vapour leaving evaporator has an enthalpy<br>of 187.53kJ/kg. Find the refrigeration temperature at compressor<br>discharge. The Cp of refrigerant vapour may be taken to be 0.6155<br>kJ/kg.°C.<br>In a simple vapour compression cycle the piston displacement volume for<br>compressor is 1.5 liters per stroke and its volumetric efficiency is 80<br>%.The speed of compressor is 1600 rpm. Find the power rating of<br>compressor and refrigerating effect. | Remember<br>Understand | AMEB09.15<br>AMEB09.13 |

|    | 8°C. Find out the kg of ice formed per kWh. Assume that the refrigeration cycle used is perfect reversed Carnot cycle. Take latent heat of ice as 335 kJ/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                     |                                       |                                        |                                       |          |           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------|-----------|
| 6  | A refrigerating machine of 6 tonnes capacity working on Bell-Coleman<br>cycle has an upper limit of pressure of 5.2 bar. The pressure and<br>temperature at the start of the compression are 1.0 bar and 16°C<br>respectively. The compressed air cooled at constant pressure to a<br>temperature of 41°C enters the expansion cylinder. Assuming both<br>expansion and compression processes to be adiabatic with $\gamma$ = 1.4, calculate<br>:<br>(i)Co-efficient of performance.<br>(ii)Quantity of air in circulation per minute.<br>(iii)Piston displacement of compressor and expander.<br>(iv)Bore of compressor and expansion cylinders. The unit runs at 240<br>r.p.m. and is double-acting. Stroke length = 200 mm.<br>(v)Power required to drive the unit<br>For air take $\gamma$ = 1.4 and c <sub>p</sub> = 1.003 kJ/kg K. |                                       |                                     |                                       |                                        |                                       | Remember | AMEB09.15 |
| 7  | A simple vapour compression plant produces 5 tonnes of refrigeration. The<br>enthalpy values at inlet to compressor, at exit from the compressor, and at<br>exit from the condenser are 183.19, 209.41 and 74.59 kJ/kg respectively.<br>Estimate :<br>(i)The refrigerant flow rate,<br>(ii)The C.O.P.,<br>(iii)The power required to drive the compressor, and<br>(iv)The rate of heat rejection to the condenser.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                     |                                       |                                        |                                       | Remember | AMEB09.13 |
| 8  | A vapour compression heat pump is driven by a power cycle having a thermal efficiency of 25%. For the heat pump, refrigerant-12 is compressed from saturated vapor at 2.0 bar to the condenser pressure of 12 bar. The isentropic efficiency of the compressor is 80%. Saturated liquid enters the expansion valve at 12 bar. For the power cycle 80% of the heat rejected by it is transferred to the heated space which has a total heating requirement of 500 kJ/min. Determine the power input to the heat pump compressor. The following data for refrigerant-12may be used :                                                                                                                                                                                                                                                       |                                       |                                     |                                       |                                        |                                       | Remember | AMEB09.14 |
|    | Pressure,<br>bar<br>2.0<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temperature,<br>°C<br>- 12.5<br>49.31 | Enthalp<br>Liquid<br>24.57<br>84.21 | y, kJ/kg<br>Vapour<br>182.0<br>206.24 | Entropy,<br>Liquid<br>0.0992<br>0.3015 | kJ/kg K<br>Vapour<br>0.7035<br>0.6799 |          |           |
| 9  | A refrigeration machine is required to produce i.e., at 0°C from water at 20°C. The machine has a condenser temperature of 298 K while the evaporator temperature is268 K. The relative efficiency of the machine is 50% and 6 kg of Freon-12 refrigerant is circulated through the system per minute. The refrigerant enters the compressor with a dryness fraction of0.6. Specific heat of water is 4.187 kJ/kg K and the latent heat of ice is 335 kJ/kg. Calculate the amount of ice produced on 24 hours.                                                                                                                                                                                                                                                                                                                           |                                       |                                     |                                       |                                        |                                       | Remember | AMEB09.15 |
| 10 | An air refrigeration system operates between 1 MPa and 200 K Pa is<br>required to produce a cooling effect of 3000 KJ/min. Temperature of the<br>air leaving the cold chamber is -5 °C and at leaving the cooler is 40 ° C.<br>Neglect losses and clearance in the compressor and expander determine (i)<br>Mass of air circulated per min (ii) Compressor work ,expander work ,cycle<br>work(iii) COP and power in KW required                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                     |                                       |                                        |                                       | Remember | AMEB09.13 |