

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad-500043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Title COMPILER DESIGN

Course Code AIT004

Programme B.Tech

Semester V CSE | IT

Course Type Core

Regulation IARE - R16

Course Structure

Theory Practical

Lectures Tutorials Credits Laboratory Credits

3 1 4 - -

Chief Coordinator Ms. E Uma Shankari, Assistant Professor

Course Faculty

Dr. K.Rajendra Prasad, Professor

Ms. B Ramyasree, Assistant Professor

Ms.K Saranya, Assistant Professor

COURSE OBJECTIVES:

The course should enable the students to:

I Apply the principles of theory of computation to the various stages in the design of compilers.

II Demonstrate the phases of the compilation process and able to describe the purpose and operation of

each phase.

III Analyze problems related to the stages in the translation process.

IV Exercise and reinforce prior programming knowledge with a non-trivial programming project to

construct a compiler.

 COURSE OUTCOMES (COs):

CO 1 Understand the various phases of compiler and design the lexical analyzer

CO 2 Explore the similarities and differences among various parsing techniques and grammar

transformation techniques.

CO 3 Analyze and implement syntax directed translations schemes and intermediate code generation.

CO 4 Describe the concepts of type checking and analyze runtime allocation strategies.

CO 5 Demonstrate the algorithms to perform code optimization and code generation.

COURSE LEARNING OUTCOMES (CLOs):

AIT004.01 Define the phases of a typical compiler, including the front and backend.

AIT004.02 Recognize the underlying formal models such as finite state automata, push-down automata

and their connection to language definition through regular expressions and grammars.

AIT004.03 Identify tokens of a typical high-level programming language; define regular expressions for

tokens and design and implement a lexical analyzer using a typical scanner generator.

AIT004.04 Explain the role of a parser in a compiler and relate the yield of a parse tree to a grammar

derivation

AIT004.05 Apply an algorithm for a top-down or a bottom-up parser construction; construct a parser for a

given context-free grammar.

AIT004.06 Demonstrate Lex tool to create a lexical analyzer and Yacc tool to create a parser.

AIT004.07 Understand syntax directed translation schemes for a given context free grammar.

AIT004.08 Implement the static semantic checking and type checking using syntax directed definition

(SDD) and syntax directed translation (SDT).

AIT004.09 Understand the need of intermediate code generation phase in compilers.

AIT004.10 Write intermediate code for statements like assignment, conditional, loops and functions in

high level language.

AIT004.11 Explain the role of a semantic analyzer and type checking; create a syntax-directed definition

and an annotated parse tree; describe the purpose of a syntax tree.

AIT004.12 Design syntax directed translation schemes for a given context free grammar.

AIT004.13 Explain the role of different types of runtime environments and memory organization for

implementation of programming languages.

AIT004.14 Differentiate static vs. dynamic storage allocation and the usage of activation records to

manage program modules and their data..

AIT004.15 Understand the role of symbol table data structure in the construction of compiler.

AIT004.16 Learn the code optimization techniques to improve the performance of a program in terms of

speed & space.

AIT004.17 Implement the global optimization using data flow analysis such as basic blocks and DAG.

AIT004.18 Understand the code generation techniques to generate target code.

AIT004.19 Design and implement a small compiler using a software engineering approach.

AIT004.20 Apply the optimization techniques to intermediate code and generate machine code.

TUTORIAL QUESTION BANK

 UNIT- I

INTRODUCTION TO COMPILERS AND PARSING

Part - A (Short Answer Questions)

S No QUESTIONS Blooms

Taxonomy

Level

Course

Outcomes

Course

Learning

Outcomes

(CLOs)

1 Explain the cousins of compiler? Understand CO 1 AIT004.01

2 Define the two main parts of compilation? What they perform? Understand CO 1 AIT004.01

3 How many phases does analysis phase consists define it? Understand CO 1 AIT004.01

4 Define and explain the Loader? Remember CO 1 AIT004.01

5 Write about preprocessor? Remember CO 1 AIT004.01

6 State the general phases of a compiler? Understand CO 1 AIT004.01

7 Define a lexeme and token? Remember CO 1 AIT004.01

8 List the issues of lexical analyzer? Understand CO 1 AIT004.01

9 State some compiler construction tools? Understand CO 1 AIT004.01

10 Define the term Symbol table? Understand CO 1 AIT004.01

11 Define the term Interpreter? Remember CO 1 AIT004.03

12 Define an error Handler in compiler? Understand CO 1 AIT004.01

13 Define a translator and types of translator? Understand CO 1 AIT004.01

14 Define parser and list its types? Understand CO 1 AIT004.01

15 Define bootstrap and cross compiler? Understand CO 1 AIT004.01

16 Define pass and phase? Understand CO 1 AIT004.01

17 Analyze the output of syntax analysis phase? What are the three general

types of parsers for grammars?

Remember CO 1 AIT004.01

18 What are the goals of error handler in a parser? Understand CO 1 AIT004.01

19 Define context free grammar. When will you say that two CFGs are equal? Remember CO 1 AIT004.02

20 Give the definition for leftmost and rightmost derivations? Understand CO 1 AIT004.02

21 Define a parse tree? Understand CO 1 AIT004.02

22 Explain an ambiguous grammar with an example? Remember CO 1 AIT004.02

23 When will you call a grammar as the left recursive one? Remember CO 1 AIT004.02

24 Define elimination of left factoring? Remember CO 1 AIT004.05

25 Define back tracking? Understand CO 1 AIT004.05

26 Define topdown parsing and its types? Understand CO 1 AIT004.05

27 Write about recursive descent parsing? Understand CO 1 AIT004.05

28 Write about predictive parser? Understand CO 1 AIT004.05

29 Define about FIRST and state its rules? Remember CO 1 AIT004.05

30 Define about FOLLOW and state its rules? Remember CO 1 AIT004.05

31 State the condition to check the grammar is LL(1) or not? Remember CO 1 AIT004.05

32 Write down the difficulties in top down parsing? Understand CO 1 AIT004.05

33 How to eliminating ambiguity from dangling-else grammar? Remember CO 1 AIT004.05

Part - B (Long Answer Questions)

1 Define compiler? State various phases of a compiler and explain them in

detail?

Understand CO 1 AIT004.01

2 Explain the various phases of a compiler in detail. Also Write down

the output for the following expression after each phase x: =a+b*c-d?

Remember CO 1 AIT004.01

3 Explain the cousins of a Compiler? Explain them in detail. Understand CO 1 AIT004.01

4 Describe how various phases could be combined as a pass in compiler? Understand CO 1 AIT004.01

5 For the following expression

Position:=initial+ rate*60

Write down the output after each phase of compiler?

Remember CO 1 AIT004.01

6 Explain the role and issues of Lexical Analyzer? Understand CO 1 AIT004.01

7 Differentiate the pass and phase in compiler construction? Understand CO 1 AIT004.01

8 Explain single pass and multi pass compiler with example? Understand CO 1 AIT004.01

9 Define bootstrapping concept in brief? Understand CO 1 AIT004.03

10 Explain the general format of a LEX program with example? Remember CO 1 AIT004.06

11 Construct the predictive parser the following grammar:

S->(L)|a

L->L,S|S.

Construct the behavior of the parser on the sentence (a,a) using the above

grammar?

Remember CO 1 AIT004.05

12 State the limitations of recursive descent parser? Understand CO 1 AIT004.05

13 Consider the grammar below

E→ E+E | E-E | E*E | E/E | a | b

Obtain left most and right most derivation for the string a+b*a-b?

Remember CO 1 AIT004.05

14 Explain problems in top down parsing along with examples? Understand CO 1 AIT004.05

15 Find the FIRST and FOLLOW sets for following grammar?
S → ACB / CbB / Ba
A → da / BC
B → g / ∈

 C → h / ∈

Remember CO 1 AIT004.05

16 Explain briefly about compiler construction tools? Remember CO 1 AIT004.03

17 Explain briefly about left recursion and left factoring with example? Understand CO 1 AIT004:05

18 Differentiate the compiler and interpreter in detail? Understand CO 1 AIT004.05
19 Describe the rules for finding FIRST and FOLLOW sets of any context free

grammar?

Remember CO 1 AIT004.05

20 Find the FIRST and FOLLOW sets for following grammar?

S→ aBDh

B → cC

C → bC / ∈

D → EF

E → g / ∈

 F → f / ∈

Remember CO 1 AIT004.05

Part - C (Problem Solving and Critical Thinking Questions)

1 Consider the following fragment of C code:

 float i, j;

 i = i*70+j+2;
Write the output at all phases of the compiler for above „C‟ code?

Remember

CO 1 AIT004.01

2 Describe the languages denoted by the following regular expressions.

i. (0+1)*0(0+1)(0+1)

ii. 0*10*10*10*

Remember CO 1 AIT004.03

3 Explain how LEX program perform lexical analysis to identify Identifiers,

Comments, Numerical constants, Keywords, Arithmetic operators?

Remember CO 1 AIT004.06

4 Check whether the following grammar is a LL(1)grammar

S → iEtS|iEtSeS|a

E→ b

Also define the FIRST and Follows.

Remember CO 1 AIT004.05

5 Analyze whether the following grammar is LL(1) or not. Explain your
answer with reasons?

S→ L,R
S → R
 L → * R

 L → id
R→ L.

Remember CO 1 AIT004.05

6 Define ambiguous grammar? Test whether the following grammar is ambiguous

or not?

E → E+E | E-E | E*E | E/E | (E) | id

Remember CO 1 AIT004.04

7 Prepare the predictive parser for the following grammar:

S→ a | b| (T)

T →T, S|S

Write down the necessary algorithms and define FIRST and

FOLLOW. Show the behavior of the parser in the sentences,

 i. (a,(a,a))

ii. ((a,a),a,(a),a)

Remember CO 1 AIT004.05

8 Convert the following grammar into LL(1)grammar,

S→ ABC

A→ aA|C

B→ b

C→ c.

Remember CO 1 AIT004.05

9 Write a recursive descent parser for the grammar.

bexpr→bexpr or bterm | bterm

bterm→bterm and bfactor | bfactor

bfactor→not bfactor | (bexpr) |true | false.

Where or, and , not,(,),true, false are terminals of the grammar.

Remember CO 1 AIT004.05

10 Consider the grammar,

 E → E+T | T

T → T*F | F

F→ (E) | id.

 Construct a predictive parsing table for the grammar given above.

Verify whether the input string id + (id * id) is accepted by the grammar or not?

Remember CO 1 AIT004.05

UNIT-II

BOTTOM-UP PARSING

Part – A (Short Answer Questions)

1 Define the term handle? Understand CO 2 AIT004.05

2 Define bottom up parsing? Understand CO 2 AIT004.05

3 Define LR(0) items in bottom up parsing? Remember CO 2 AIT004.05

4 LR(k) parsing stands for? Remember CO 2 AIT004.05

5 List types of bottom up parsing techniques? Understand CO 2 AIT004.05

6 Define goto function and closure function in LR parser? Remember CO 2 AIT004.05

7 Why SLR and LALR are more economical to construct Canonical LR? Understand CO 2 AIT004.05

8 Write about handle pruning? Understand CO 2 AIT004.05

9 What are error recovery types? Understand CO 2 AIT004.05

10 List down the conflicts during shift-reduce parsing. Understand CO 2 AIT004.05

11 List out the types LR(0) and LR(1) parsers? Understand CO 2 AIT004.05

12 Write about shift reduce parsing? Understand CO 2 AIT004.05

13 Define YACC parser? Understand CO 2 AIT004.06

14 State the difference between CLR and LALR? Understand CO 2 AIT004.05

15 Define an augmented grammar? Remember CO 2 AIT004.05

16 Define shift action? Remember CO 2 AIT004.05
17 Define Reduce action? Remember CO 2 AIT004.05
18 Is left recursion elimination is required in bottom up parsing ?justify. Understand CO 2 AIT004.05
19 List out difference between LL and LR parsers? Understand CO 2 AIT004.05
20 List out the operations of shift reduce parsing? Remember CO 2 AIT004.05

Part - B (Long Answer Questions)

1 Discuss briefly about types of error recovery in parsing? Remember CO 2 AIT004.05

2 Explain the common conflicts that can be encountered in a shift-reduce parser? Understand CO 2 AIT004.04

3 Explain handle pruning in detail with example? Understand CO 2 AIT004.04

4 Consider the grammar E → E + E | E *E | (E) | id
Show the sequence of moves made by the shift-reduce parser on the input
(id1+id2)*id3 and determine whether the given string is accepted by the parser or
not?

Remember CO 2 AIT004.04

5 Demonstrate stack implementation in shift reduce parsing? Remember CO 2 AIT004.04

6 Explain briefly about YACC-automatic parser generator? Remember CO 2 AIT004.06

7 State the difference between SLR,CLR and LALR parsers in detail? Remember CO 2 AIT004.04

8 Explain briefly about panic mode and phrase level error recovery techniques? Remember CO 2 AIT004.05

9 Explain how to handle the error in ambiguous grammar with example? Understand CO 2 AIT004.05

10 Describe LR Parsing algorithm in detail with diagram? Understand CO 2 AIT004.05

11 Consider the grammar,

P→ E

E → E+T

E→ T

T→ id(E)
T→ id

Remember CO 2 AIT004.05

And,check whether the following grammar is LR(0) or not?

12 Explain briefly about shift reduce parsing algorithm? Understand CO 2 AIT004.05

13 Explain the following terms
i)Canonical collection of items
ii)Augmented Grammar
iii)Closure and goto Operation

Understand CO 2 AIT004.05

14 Consider the grammar,

P→ E

E → E+T

E→ T

T→ id(E)
T→ id
And, check whether the following grammar is SLR(1) or not?

Remember CO 2 AIT004.05

15 Explain the algorithm for construction of CLR(1) parsing table? Understand CO 2 AIT004.05

16 Construct the SLR(1) parsing table for the following grammar

S→ Aa | bAc|dc|bd

A→d

Remember CO 2

17 List out the comparisons of LR parsers in detail? Remember CO 2 AIT004.05

18 Consider the grammar

S→ AS| b

A → SA | a

Construct the collection of sets of LR(0) items for this grammar?

Remember CO 2 AIT004.05

19 Show that the following grammar

S→ AaAb | BbBa

A→ ∈

B→ ∈

is SLR(1) or not?

Remember CO 2 AIT004.05

20 Consider the grammar

bexpr→bexpr or bterm | bterm

bterm→bterm and bfactor | bfactor

bfactor→not bfactor | (bexpr) |true | false.

Check whether the grammar is CLR or not?

Remember CO 2 AIT004.05

Part - C (Problem Solving and Critical Thinking Questions)

1 Consider the grammar given below.

 E → E+T | T

T → T*F | F

F→ (E) | id.

Prepare LR parsing table for the above grammar .Give the moves of LR

parser on id * id + id?

Remember CO 2 AIT004.04

2 Analyze whether the following grammar is LR(0). Explain your answer with
reasons?

S → xAy | xBy | xAz

A → as | q

B → q

Analysis CO 2 AIT004.04

3 Analyze whether the following grammar is CLR or not. Explain your answer

with reasons?

S→ Aa | aAc | Bc | bBa

A→ d

B → d

Remember

 Analysis

CO 2 AIT004.04

4 Analyze whether the following grammar is SLR or not. Explain?

your answer with reasons.

Remember

 Analysis

CO 2 AIT004.04

S→ L = R

S→ R

L→ * R

L→ id

R → L.

5 Analyze whether the following grammar is CLR or not. Explain your answer

with reasons?

S→ AA

A →aA | b

Remember

 Analysis

CO 2 AIT004.05

6 Prepare SLR parsing table for the below grammar?

E → E+T | T

T → T*F | F

F→ (E) | id.

Remember CO 2 AIT004.05

7 The following grammar for if-then-else statements is proposed to remedy the

dangling-else ambiguity:

Stmt → if Expr then Stmt

 | if Expr then Stmt else Stmt

 | other

Show that how shift and reduce conflicts can be handled in ambiguous

grammar.

Remember

 Analysis

CO 2 AIT004.05

8 Construct LALR (1) Parsing table for following grammar?

S → Aa |aAc | Bc | bBa

A → d

B → d

Remember CO 2 AIT004.05

9 Consider the grammar

 S→ aSbS | bSaS|∈

a) Construct the corresponding leftmost derivation and rightmost derivation

for abab.

b) Construct the corresponding parse trees for abab and identify whether the

grammar is ambiguous or not.

Remember CO 2 AIT004.05

10 Consider the grammar

S→ AS| b

A → SA | a

Check whether the given grammar is LALR(1) or not?

Remember CO 2 AIT004.05

UNIT -III

SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE CODE GENERATION

Part - A (Short Answer Questions)

1 What is the usage of syntax directed definition? Understand CO 3 AIT004.08

2 Define Attribute Grammar? Understand CO 3 AIT004.07

3 List the types of Attribute Grammar? Understand CO 3 AIT004.07

4 Write a note on syntax directed translation? Understand CO 3 AIT004.07

5 State the difference between synthesized and inherited attributes? Understand CO 3 AIT004.08

6 Define L attributed grammar? Remember CO 3 AIT004.08

7 Define S attribute grammar? Remember CO 3 AIT004.08

8 Construct the Syntax tree for Expression using functions? (a + b) * (b - c) Remember CO 3 AIT004.08

9 Explain the functions to create nodes of Syntax tree for expression? Understand CO 3 AIT004.08

10 Define syntax tree? Draw the syntax tree for the assignment statement?

 a :=b * -c + b * -c.

Remember CO 3 AIT004.08

11 Define Translation schemes? Understand CO 3 AIT004.07

12 Define Annotated Parse Tree? Remember CO 3 AIT004.07

13 List the three kinds of intermediate representation? Understand CO 3 AIT004.09

14 State the benefits of using machine-independent intermediate form? Understand CO 3 AIT004.09

15 What is postfix notation? Understand CO 3 AIT004.09

16 How can you generate three-address code? Remember CO 3 AIT004.10

17 Translate x+y-(a*b)+c into three address code? Remember CO 3 AIT004.10

18 Discuss back-end and front-end? Understand CO 3 AIT004.10

19 Define abstract or syntax tree? Understand CO 3 AIT004.11

20 List out types of three address code? Understand CO 3 AIT004.11

Part – B (Long Answer Questions)

1 Explain briefly about syntax directed definition and it types? Understand CO 3 AIT004.08

2 Explain briefly about Synthesized and Inherited attribute in detail? Understand CO 3 AIT004.09

3 Define translation scheme and write three address code for a<b or b>c? Remember CO 3 AIT004.07

4 Explain briefly about S-attributed and L- attributed grammar in detail? Remember CO 3 AIT004.07

5 Explain how declaration is done in a procedure using syntax directed translation? Understand CO 3 AIT004.07

6 Explain briefly about postfix Translation Scheme? Understand CO 3 AIT004.08

7 Describe the method of generating syntax directed definition for control

Statements?

Remember

CO 3 AIT004.08

8 Construct SDT for the simple assignment statement with example? Understand CO 3 AIT004.08

9 Explain the construction steps and construct the syntax tree for expression using
functions? (m * n + p) + (m – n + p)?

Remember CO 3 AIT004.08

10 Explain briefly syntax directed translation into three address code with suitable

example?

Remember CO 3 AIT004.08

11 Explain 3 address codes and mention its types. How would you implement the

three address statements? Explain with suitable examples?

Remember CO 3 AIT004.08

12 Explain with an example to generate the intermediate code for the flow of control

statements?

Understand CO 3 AIT004.09

13 Write about Quadruple and Triple with its structure? Remember CO 3 AIT004.09

14 Define and represent the Triple, indirect triple and quadruple for the

assignment statement ?

x:= -b + d * -b+d

 Remember CO 3 AIT004.09

15 Translate the arithmetic expression a* - (b+c) into

a) A syntax tree

b) Postfix notation

c) Three-address code

Remember CO 3 AIT004.09

16 Translate the expression – (a + b) * (c + d) + (a + b +c) into

a) quadruples

b) triples

C) indirect triples.

Remember CO 3 AIT004.09

17 Explain translation scheme for Boolean Expressions with example? Remember CO 3 AIT004.11

18 Explain translation scheme for Control Flow with example? Remember CO 3 AIT004.11

Part – C (Problem Solving and Critical Thinking)

1 Write production rules and semantic actions for S-attributed grammar for the
following grammar along with syntax tree and annotated parse tree for the given
string a*b-c/d+e?

L→E

E→ E+T | E-T | T

T→ T*F | T/F |F

 F→ P-F | P

P→ (E)

P→ ID

Remember CO 3 AIT004.11

2 Write production rules and semantic actions for the following grammar

along with annotated parse tree for the string 9-5+4?

expr→ expr + term
 | expr - term

Remember CO 3 AIT004.11

 | term

term→0|1|2|3|4|5|6|7|8|9
3 Write production rules and semantic actions for the following grammar along

with annotated parse tree for the expression: “int a, b, c”?

D →T L

T →int

T → float

L→ L1,id

L → id

Remember CO 3 AIT004.11

4 Write production rules and semantic actions for the following grammar along

with annotated parse tree for the string (3+4)*(5+6)?

L→E

E→ T

E→ E1+T

T→ F

T→ T1*F

F→ (E)

F→ digit

Remember

CO 3 AIT004.11

5 Write production rules and semantic actions for the following grammar along

with annotated parse tree for the string a-4+c?

E→E1+T

E→E1-T

E→T

T→ (E)

T→id

T→ num

Remember CO 3 AIT004.11

06 Generate the three address code and draw the abstract tree for the following

expressions?

a) (x-y)*z+m-n

b) a+(b-c)+(b+c)*(a*e)

 Remember CO 3 AIT004.09

07 Generate the three-address code for the following C program fragment

?while(a > b)

{

if (c < d)

x = y + z;

else

x = y - z;

}

Remember CO 3 AIT004.09

08 Construct triples, Indirect and quadriples of an expression: a = b * - c + b * - c? Remember CO 3 AIT004.09

09 Construct triples, Indirect and quadriples of an expression : x = (a + b)* - c/d? Remember CO 3 AIT004.09

10 Why are quadruples preferred over triples in an optimizing compiler with

example?

Remember CO 3 AIT004.09

UNIT -IV

TYPE CHECKING AND RUN TIME ENVIRONMENT

Part – A (Short Answer Questions)

1 List different data structures used for symbol table? Understand CO 4 AIT004.14

2 Define Type checking? Understand CO 4 AIT004.12

3 List the different types of type checking? Understand CO 4 AIT004.12

4 Define Type Expression? Understand CO 4 AIT004.12

5 Write about the type systems? Understand CO 4 AIT004.12

6 Write a short note on static type checking? Understand CO 4 AIT004.12

7 Write a short note on Dynamic type checking? Understand CO 4 AIT004.12

8 Define Structural Equivalence? Understand CO 4 AIT004.12

9 What is the Strongly typed language? Understand CO 4 AIT004.13

10 Define Type error? Understand CO 4 AIT004.13

11 Write Translation scheme for checking the type of Assignment statement

S→id:=E

Remember CO 4 AIT004.12

12 Write Translation scheme for checking the type of Conditional statement
S→if E then S1

Remember CO 4 AIT004.12

13 Write Translation scheme for checking the type of while statement

S→While E do S1

Remember CO 4 AIT004.12

14 Define Type conversion? Understand CO 4 AIT004.12

15 List the types of type conversion? Understand CO 4 AIT004.12

16 Write about general activation record? Understand CO 4 AIT004.14

17 Define Symbol table? Understand CO 4 AIT004.14

18 Define Dynamic storage allocation? Understand CO 4 AIT004.14

19 Write short note on procedures? Understand CO 4 AIT004.14

20 Define Activation tree? Understand CO 4 AIT004.14

21 Define stack storage allocation? Understand CO 4 AIT004.13

22 Define static storage allocation? Understand CO 4 AIT004.13

23 Define heap storage allocation? Understand CO 4 AIT004.13

24 Write a short note on parameter passing? Understand CO 4 AIT004.13

25 Define Control stack? Understand CO 4 AIT004.13

Part – B (Long Answer Questions)

1 Write a note on the specification of a simple type checker/ Understand CO 4 AIT004.12

2 Define a type expression? Explain the equivalence of type expressions with an
appropriate example?

Understand CO 4 AIT004.12

3 Write about reusing the storage space for names? Understand CO 4 AIT004.14

4 Discuss and analyze about all allocation strategies in run-time storage

environment?

Understand CO 4 AIT004.14

5 Explain the data structures used for implementing Symbol Table? Understand CO 4 AIT004.15

6 Explain Static and Dynamic Checking of types with examples? Understand CO 4 AIT004.14

7 Differentiate the call by value and call by name with examples? Understand CO 4 AIT004.15

8 Distinguish between static and dynamic storage allocation? Understand CO 4 AIT004.14

9 Explain the type checking of expressions? Understand CO 4 AIT004.12

10 Write a short note on storage organization in runtime environment? Understand CO 4 AIT004.15

11 Explain the static and dynamic storage allocations? Understand CO 4 AIT004.13

12 Describe the name and structure equivalence in type expressions? Understand CO 4 AIT004.12

13 Explain the type checking of control flow statements? Understand CO 4 AIT004.12

14 Explain briefly about storage allocation strategies? Understand CO 4 AIT004.14

15 Describe the basic implementation techniques for symbol table? Understand CO 4 AIT004.15

16 Explain the calling sequences of activation record? Remember CO 4 AIT004.14

17 Differentiate ordered, unordered and binary search tree in symbol table? Understand CO 4 AIT004.15

18 Explain briefly about static storage allocation with block diagram? Understand CO 4 AIT004.14

19 Differentiate explicit and implicit allocation of memory to variables?

Understand CO 4 AIT004.14

20 Differentiate stack and heap storage allocation strategies? Understand CO 4 AIT004.14

Part – C (Problem Solving and Critical Thinking)

1 Suppose that the type of each identifier is a sub range of integers, for

expressions with operators +, -, *, div and mod, as in Pascal. Write type-

checking rules that assign to each sub expression the sub range its value must

lie in?

Analysis

CO 4 AIT004.12

2 Explain briefly about Source language issues? Understand CO 4 AIT004.13

3 Explain briefly about Activation record with block diagram? Understand CO 4 AIT004.14

4 Discuss about varaiable length data on stack with neat diagram? Understand CO 4 AIT004.14

5 Explain briefly about heap storage allocation with block diagram? Understand CO 4 AIT004.14

6 Explain briefly about stack storage allocation with block diagram? Understand CO 4 AIT004.14

7 Explain briefly about language facilities for dynamic storage allocation? Understand CO 4 AIT004.14

8 Describe the parameter passing methods with examples? Understand CO 4 AIT004.14

9 Explain Over loading of Operators & Functions with examples? Understand CO 4 AIT004.14

10 Differentiate the call by reference and call by copy restore with examples? Understand CO 4 AIT004.14

UNIT-V

CODE OPTIMIZATION AND CODE GENERATOR

Part - A (Short Answer Questions)

1 List the principle sources of optimization? Understand CO 5 AIT004.15

2 Define the 3 areas of code optimization? Understand CO 5 AIT004.15

3 Define local optimization? Understand CO 5 AIT004.15

4 Define constant folding? Understand CO 5 AIT004.15

5 Define Common Sub expressions? Understand CO 5 AIT004.15

6 Explain Dead Code? Understand CO 5 AIT004.15

7 Write the techniques used for loop optimization and Reduction in strength? Remember CO 5 AIT004.15

8 What is Register allocation and assignment? Remember CO 5 AIT004.13

9 Write about inner loops? Remember CO 5 AIT004.13

10 Define flow graph and basic block? Understand CO 5 AIT004.16

11 Define a DAG? Mention its Remember? Understand CO 5 AIT004.16

12 Define peephole optimization? Remember CO 5 AIT004.16

13 Write the machine instruction for operations and copy statement? Remember CO 5 AIT004.16

14 Analyze global data flow? Understand CO 5 AIT004.16

15 Write about live variable analysis? Understand CO 5 AIT004.15

16 Define the term copy propagation? Understand CO 5 AIT004.15

17 Define the term Code motion? Understand CO 5 AIT004.15

18 What is induction variable? Understand CO 5 AIT004.15

19 How do you calculate the cost of an instruction? Understand CO 5 AIT004.15

20 What is the Unreachable Code? Understand CO 5 AIT004.15

21 Generate the code for x: =x+1 for target machine? Remember CO 5 AIT004.17

22 Show the DAG for a: =b *-c + b * -c? Remember CO 5 AIT004.16

23 List the different types of loops in flowgraph? Understand CO 5 AIT004.16

24 Define Algebraic Simplification? Understand CO 5 AIT004.15

25 Define Dominators? Understand CO 5 AIT004.16

Part - B (Long Answer Questions)

1 Explain the concept of Function-Preserving Transformations? Remember CO 5 AIT004.15

2 Explain Machine dependent code optimization in detail with an example? Understand CO 5 AIT004.15

3 Write about target code forms and explain how the instruction forms

effect the computation time?

Understand CO 5 AIT004.15

4 Write about machine dependent and machine independent optimization? Understand CO 5 AIT004.15

5 Explain the role of code generator in a compiler? Understand CO 5 AIT004.15

6 Write in detail the issues in the design of code generator? Understand CO 5 AIT004.17

7 Explain the instructions and address modes of the target machine? Understand CO 5 AIT004.12

8 Explain the principle sources of code optimization in detail? Understand CO 5 AIT004.15

9 Define the primary structure preserving transformations on basic blocks? Understand CO 5 AIT004.17

10 Explain peephole optimization in detail? Understand CO 5 AIT004.17

11 Discuss about the following

i. Copy propagation

ii. Dead code elimination

iii. Code motion

Remember CO 5 AIT004.16

12 Explain in the DAG representation of the basic block with example? Remember CO 5 AIT004.16

13 Explain loop optimization in detail with example? Remember CO 5 AIT004.15

14 Explain various Global optimization techniques in detail? Remember CO 5 AIT004.16

15 Explain Loops in flow graph in detail with example? Remember CO 5 AIT004.17

16 Explain Local optimization in detail with example? Remember CO 5 AIT004.16

17 Discuss Redundant-instructions elimination and Flow-of-control

optimizations?

Understand CO 5 AIT004.17

18 Demonstrate the simple code generator with a suitable example? Remember CO 5 AIT004.17

19 Write the procedure to detect induction variable and dead code elimination

with example?

Remember CO 5 AIT004.20

20 Explain briefly about register allocation and assignment? Understand CO 5 AIT004.16

21 Explain the instruction cost in detail with example? Understand CO 5 AIT004.16

Part – C (Problem Solving and Critical Thinking)

1

Show the code sequence generated by the simple code generation algorithm

x*y+(m-k)-(g+b)

Remember CO 5 AIT004.17

2 Generate target code for the given program segments:

main()

{

int i=4,j;

j = i + 5;

}

Remember CO 5 AIT004.17

3 Consider the following basic block of 3-address instructions .Generate target

code for the source language statement and finds its cost.

a := b + c

x := a + b

b := a – d

c := b + c

d := a – d

y := a – d

Remember CO 5 AIT004.16

4 Identify the register descriptor target code for the source language

Statement and its cost.

(a-b) + (a-c) + (a-c)

Remember CO 5 AIT004.17

5 Consider the following part of code.

 int main()

{

int n,k=0;

scanf(“%d”,&n);

for(i=2;i<n;i++)

{

 if(n%I),==0)break;

 }

k=1;

if(i==n)

printf(“number is prime”);

else

printf(“number is not printed”);

}

Identify the basic block in the given program

Remember CO 5 AIT004.16

6 Construct the DAG for the following basic block.
D:=B*C
E:=A+B
B:=B+C

 A:=E-D

Remember CO 5 AIT004.16

7 Design basic block for following code
void quicksort(m, n)

int m, n;
{

Remember CO 5 AIT004.17

Prepared by:
Ms. E Uma Shankari, Assistant Professor

 HOD, CSE

int i, j;

if (n <= m)
return; /* fragment begins here */
i = m-1;
j = n;
v = a[n];
while(1)

{
do
i = i+1;
while(a[i] < v);
do

j = j-1;
while(a[j] > v);
if(i >= j) break;
x = a[i];
a[i] = a[j];
a[j] = x;
}

x = a[i];
a[i] = a[n];
a[n]= x; /* fragment ends here */
quicksort(m, j);
quicksort(i+1, n);

 }.

8 Explain how the following expression can be converting in a DAG.

a+b*(a+b)+c+d

Remember CO 5 AIT004.16

9 Explain role of DAG representation in optimization with example? Remember CO 5 AIT004.16

10 Deign the basic block and flow graph for the following code
begin
prod :=0;
i:=1;
do begin
prod :=prod+ a[i] * b[i];
 i :=i+1;
end

while i <= 20

end

Remember CO 5 AIT004.20

11 Generate optimal machine code for the following c program.
main()
{
int i,a[10];
while(i<=10)
a[i]=0;

}

Remember AIT004.18

