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UNIT-I




Solution of algebraic and Transcendental equations and Interpolation

Solutions of Algebraic and Transcendental equations:

1) Polynomial function: A function f (x) is said to be a polynomial function

if f(x) isapolynomial in x.
ie, f(x)=apx™+a;x" 1+ ta_x +ay,
wherea, = 0, the co-efficients a,,a,........... a, are real constants and nis a

non-negative integer.
2)  Algebraic function: A function which is a sum (or) difference (or) product of

two polynomials is called an algebraic function. Otherwise, the function is called a
transcendental (or) non-algebraic function.
Eg: f(x) =cie*+ce™ =

fx) = 65"—%3+3 =0

3) Root of an equation: A number « is called a root of an equation f (x)=0 if

f (a)=0. We also say that « is a zero of the function.
Note: The roots of an equation are the abscissae of the points where the graph
y = f(x) cuts the x-axis.

Methods to find the roots of f (x) =0

Direct method:

We know the solution of the polynomial equations such as linear equation

ax + b =0, and quadratic equation ax? +bx+c = 0,using direct methods or
analytical methods. Analytical methods for the solution of cubic and quadratic
equations are also available.

1) Bisection method: Bisection method is a simple iteration method to solve
an equation. This method is also known as Bolzono method of successive
bisection. Some times it is referred to as half-interval method. Suppose we

know an equation of the form f (x)=0 has exactly one real root between

two real numbers x,, x, .The number is choosen such that f (x,) and f(x,)
will have opposite sign. Let us bisect the interval [xo, xl] into two half

intervals and find the mid point x, = % ; al

. If f(x,)=0 then x, is aroot.

If f(x)and f(x,) have same sign then the root lies between x, and x..

The
interval is taken as[xo, x]. Otherwise the root lies in the interval [x,,x] .




PROBLEMS
1). Find a root of the equation x* —5x+1=0 using the bisection method in 5 — stages

f(0)>0 and

— A3
Sol  Let f(x)=x 5x+1.Wenotethatf(1)<0

.. One root lies between 0 and 1
Consider x, =0 and x =1

By Bisection method the next approximation is
Xo+X%x 1
X,=——===(0+1)=0.5
= f(x,)=f(0:5)=-1.375<0and f(0)>0
We have the root lies between 0 and 0.5

0+0.5 _ 0.95

Now X, =

We find f(x,)=-0.234375<0 and f(0)>0
Since f(0)>0, we conclude that root lies between x, and x,

The third approximation of the root is

xy =222 = 2(0+0.25) = 0.125

We have f (x,)=0.37495>0
Since f(x,)>0and f(x,)<0, the root lies between

X, =0.125 and x, =0.25
Considering the 4™ approximation of the roots

R Tk 1(0.125+o.25) =0.1875

5

f (x)=0.06910>0, since f(x;)>0 and f(x;)<0 the root must lie between

xs = 0.18758 and x3 = 0.25

Here the fifth approximation of the root is

1
X, =§(X5+X3)

- 1(0.1875+0.25)
2

=0.21875

We are asked to do up to 5 stages
We stop here 0.21875 is taken as an approximate value of the root and it

lies between 0 and 1




2) Find a root of the equation x* —4x—9=0 using bisection method in four stages
Sol Let f(x)=x>—-4x-9
We note that f (2)<0 and f(3)>0

.. One root lies between 2 and 3

Consider x, =2 and x, =3

By Bisection method x, = % ;Xi =25

Calculating f (x,)=f(2.5)=-3.375<0

.. The root lies between x, and x;

2.5+3 = 275

The second approximation is x5 = %(x1 +x,) =

Now f(x3) = £(2.75) = 0.7969 > 0

.. The root lies between x, and x,

Thus the third approximation to the root is
X, = %(x2 +X,) =2.625

Again f(x,)=f(2.625)=-1.421<0

.. The root lies between x, and x,

Fourth approximation isxs = %(x3 +x4) = %(2.75 + 2.625) = 2.6875

False Position Method ( Requla — Falsi Method)

In the false position method we will find the root of the equation f (x)=0 Consider two

initial approximate values x, and x, near the required root so that f (x,) and f(x,) have

different signs. This implies that a root lies between x, and x,. The curve f(x) crosses x-
axis only once at the

point x, lying between the points x, andx, . Consider the point A=(x,, f (x,)) and
B=(x, f(x))

on the graph and suppose they are connected by a straight line. Suppose this line cuts x-axis
atx,. We calculate the value of f (x,) at the point. If f(x,) and f(x,) are of opposite

signs, then the root lies between x, and x, and value x, is replaced by x,

Other wise the root lies between x, and x, and the value of x, is replaced byx;.

Another line is drawn by connecting the newly obtained pair of values.
Again the point here cuts the x-axis is a closer approximation to the root. This process is
repeated as many times as required to obtain the desired accuracy. It can be observed that the

points x,, X,, X, ,...obtained converge to the expected root of the equation y = f (X)




y 4
(x]’f(xl))
(%9, f(xp))
xO X2
X2 R [0 X
(x1, £ (7)) (x0,/(xg))

To Obtain the equation to find the next approximation to the root

Let A=(x,, f(x,))and B=(x, f(x)) be the points on the curve y = f (x) Then

y=fxo) _ fOe)—fxo) (1)

X—Xo X1—Xo

the equation to the chord AB is

At the point C where the line AB crosses the x — axis, where f(x) = 0ie, y =0

From (1), we get X=X, —ﬁ L %) JE—— )

X is given by (2) serves as an approximated value of the root, when the interval in which it lies is

small. If the new value of x is taken as x, then (2) becomes

Ay

(xg il (x@))

./‘(-‘71)

O *o

Now we decide whether the root lies between

X, and x, (or)x, and x




We name that interval as (x,,x,) The line joining(x;,y1), (x2,¥,) meets x — axis at x, is

. () =% f(x)
given by x, = F(0)=f (%)

This will in general, be nearest to the exact root. We continue this procedure till the root

is found to the desired accuracy
The iteration process based on (3) is known as the method of false position

The successive intervals where the root lies, in the above procedure are named as
(%0 %) (%1% ) (%0 %) ete
Where x; < x;,1 andf(x,), f(x;41) are of opposite signs.

X f (Xi)_xi f (XH)

f(x)-f(x4)

Also x;,, =

PROBLEMS:
1. By using Regula - Falsi method, find an approximate root of the equation x* -x-10=0
that lies between 1.8 and 2. Carry out three approximations

Sol.Let us take f(x)=x"-x-10 and x, =1.8,x, =2

Then f(x,)=f(1.8)=-13<0and f(x)="f(2)=4>0
Since f(x,) and f(x )are of opposite signs,the equation f(x)=0 has a root between
X, and x
The first order approximation of this root is
_ X, — %o
TR T ) () )
2-18

~18 13
2713 (Y

=1.849

We find that f(x,)=-0.161 so that f(x,) and f(x,) are of opposite signs. Hence the

root lies between x, and x, and the second order approximation of the root is

_1.8490 | 2-1849 x(-0.159)
0.159

=1.8548
We find that f (x,)= f (1.8548)

=-0.019




So that f(x,)and f(x,) are of the same sign. Hence, the root does not lie between

x, and x,.But f(x;) and f(x) are of opposite signs. So the root lies between x, and x,

and the third order approximate value of the root is x, = x5 — [f (x’% ;zx )] f(x3)
1 3

_ 18548 — 2188 (—0.019)
o 4 +0.019 '

= 1.8557

This gives the approximate value of x.

2. Find out the roots of the equation x®* —x—4 =0 using False position method
Sol. Let f(x)=x’-x-4=0
Then f(0)=—4,f(1)=—4,f(2)=2
Since f(1)and f(2) have opposite signs the root lies between 1 and 2
_%f ()% (%)
F0a)=f(%)

(1x2)-2(-4)
T

- 2222 1666

By False position method x,

X, =

f (1.666)=(1.666)" —1.666 -4
=-1.042
Now, the root lies between 1.666 and 2

| 1.666x2-2x(~1.042)

- =1.780
& 2-(-1.042)
f (1.780) = (1.780) ~1.780 4

= -0.1402

Now, the root lies between 1.780 and 2
1.780><2—2><(—O.1402)

= =1.794
. 2—(-0.1402)
f(1.794)=(1.794)’ ~1.794 -4
=-0.0201

Now, the root lies between 1.794 and 2

. _L794x2-2x(-0.0201)
° 2-(-0.0201)

f (1.796) = (1.796)’ ~1.796 — 4 = —0.0027

=1.796




Now, the root lies between 1.796 and 2

| 1.796x2—2x(~0.0027)

Xg =1.796 The root is 1.796
2—(-0.0027)

Newton- Raphson Method:-
The Newton- Raphson method is a powerful and elegant method to find the root of an

equation. This method is generally used to improve the results obtained by the previous
methods.
Let x, be an approximate root of f(x)=0 and let x, =x,+h be the correct root which
implies that f (x,)=0. We use Taylor’s theorem and expand f (x )= f (%, +h)=0
= f(x,)+hf'(x,)=0
f (%)
(%)
Substituting this in x, ,we get
X =X +h
f(x
T fl(( ;0))
. %, IS a better approximation than x,

=h=-

Successive approximations are given by
_ fx)
1)

X2y X3 weeeer wee e Xppqg WHETE X541 = X;

y=f(x

f(xl)

f(x)

Problems:

1. Apply Newton — Raphson method to find an approximate root, correct to three decimal
places, of the equation x* —3x—5=0, which lies near x =2

Sol:- Here f(x)=x*-3x-5=0 and f*(x)=3(x*-1)

.. The Newton — Raphson iterative formula




y _X_xi3—3xi—5_ 2x°+5
T 3(x -1 3(x-1)
To find the root near x =2, we take x, =2 then (1) gives

3
X, = 2X,"+5 _ 16+5 :§:2.3333

3(x°-1) 3(4-1) 9
_ 2%’+5 _ 2x(23333) +5
" 3(x*-1) 3[(2.3338)" -1]

i=012...(1)

=2.2806

_ 2x3+5  2x(2.2806)°+5
B33 -1 3[(2.2806)2 — 1]

2% (2.2790) + 5
X4 = 3[(2.2790)2 — 1]

Since x, and x, are identical up to 3 places of decimal, we take x, =2.279 as the

= 2.2790

= 2.2790

required root, correct to three places of the decimal
2. Using Newton — Raphson method
a) Find square root of a number
b) Find reciprocal of a number
Sol.  a) Square root:-
Let f(x)= x> —N =0, where N is the number whose square root is to be found.
The solution to f (x) is then x=+/N
Here f'(x)=2x
By Newton-Raphson technique

f(x) x> =N
X=X, =K —
(%) 2%,
1[ N}
= Xa=F| XK+ —
2 Xi

Using the above iteration formula the square root of any number N can be found to any
desired accuracy. For example, we will find the square root of N =24.

Let the initial approximation be x, =4.8

1 24\ 1/23.04+24\ 47.04
x1=§(4.8+—)= ( >: =49

48/ 2\ 48 9.6
v =149y 24 1(2401424) 4801, o0
2 49) 2\ 49 9.8
v - (480, 24 |_1(239904+24) 47.0004 .00
2 4898) 2\ 4.898 9.796

Since x, =x,, there fore the solution to f(x)=x*-24=0 is 4.898. That

means,




the square root of 24 is 4.898

b) Reciprocal:-

Let f(x)= 1 N =0 where N is the number whose reciprocal is to be found
X
The solution to f (x)isthenx = L. Also, f1(x) =_—;L
N X

To find the solution for f (x)=0, apply Newton — Raphson method

(")
—1/x}

For example, the calculation of reciprocal of 22 is as follows
Assume the initial approximation be x, =0.045

/. % =0.045(2-0.045x 22)
= 0.045(2-0.99)
= 0.0454(1.01) = 0.0454
X, = 0.0454(2—0.0454x 22)
= 0.0454(2-0.9988)
= 0.0454(1.0012) = 0.04545
X, = 0.04545(2 —0.04545x 22)
= 0.04545(1.0001) = 0.04545

Xit1 = X — = x;(2 — x;N)

x, = 0.04545(2 — 0.04545 x 22)
= 0.04545(2 — 0.99998)
= 0.04545(1.00002)
= 0.0454509
.. The reciprocal of 22 is 0.04545
3. Find by Newton’s method, the real root of the equation xe* —2 = 0 correct to

three decimal places.

Sol. Let f(x)=xe*"-2—(1)
Then f(0)=-2and f(1)=e—-2=0.7183
So root of f(x) lies between 0 and 1

It is near to 1. So we take x, =1 and f*(x)=xe*+e* and f*(1)=e+e="5.4366

.. By Newton’s Rule

First approximation x, = x, — f (XO)

(%)

=1- 0.7183 =0.8679
5.4366




s f(x)=00672 f'(x)=4.4491

)
(%)

_0.8679- 20672

4.4491

The second approximation x, = x, —

=0.8528

.. Required root is 0.853 correct to 3 decimal places.

Interpolation

Introduction:-

If we consider the statement y = f (X)X, <X <X, we understand that we can find
the value of y, corresponding to every value of x in the range x, <x < x_. If the function f (x)

is single valued and continuous and is known explicitly then the values of f(x) for certain

values of x like x;,X,......... X, can be calculated. The problem now is if we are given the set of

tabular values

XiX, X Xyeoween X,

Y-Yo W Yo Y
Satisfying the relation y=f(x) and the explicit definition of f(x) is not
known, then it is possible to find a simple function say f(x) such that f(x) and ¢(x) agree at
the set of tabulated points. This process to finding ¢(x) is called interpolation. If ¢(X) is a

polynomial then the process is called polynomial interpolation and ¢(X) is called interpolating

polynomial. In our study we are concerned with polynomial interpolation

Errors in Polynomial Interpolation:-

Suppose the function y(X) which is defined at the points (X, Y;)i=0,12,3———-n is
continuous and differentiable (n+1) times let ¢, (X) be polynomial of degree not exceeding n
such thatg, (%) =y;,i=12———n—(1) be the approximation of y(X) using this ¢,(x) for
other value of x, not defined by (1) the error is to be determined

since  Y(X)—¢,(x)=0 for Xx—X,,X,.....X, we put
y(x)_¢n(x):|‘ﬂn+l(x)




Where 7,,;(X)=(X=%;).ccvvevns (x—x,)—(3) and L to be determined such that the equation (2)
holds for any intermediate value of x such as x = x*, x, < x* < x,
1) _ 1
()-06)
ﬁn+1 (X )

We construct a function F(x) such that F(x)=F(x,)=F(x"). Then F(x) vanishes (n+2)

Clearly L=

times in the interval [XO, Xn]. Then by repeated application of Rolle’s theorem. Fl(X) must be
zero (n +1) times, Fn(X) must be zero n times........ in the interval[XD, Xn]. Also F"+1(X) =0

once in this interval. suppose this pointis x=¢, x, <& < x, differentiate (5) (n +1) times with

respect to x and putting X = ¢, we get

n+1
y"*(£)—L(n+1)!=0 which implies that L _Y7e)

(n+1)!

Comparing (4) and (6) , we get

1) ()Y )

Which can be written as y(x)—¢, (x) = 7(:]1(1);? Y™ (&)

This given the required expression x, < & < x, for error

Finite Differences:-

1.Introduction:-

In this chapter, we introduce what are called the forward, backward and central
differences of a function y= f (x). These differences and three standard examples of finite

differences and play a fundamental role in the study of differential calculus, which is an
essential part of numerical applied mathematics

2.Forward Differences:-

Consider a function y = f (X)of an independent variable x. let y,,y,,y,,....y, be
the values of y corresponding to the values x,, X, X,....x, of X respectively. Then the differences
Vi— VYo Yo=Y ————— are called the first forward differences of y, and we denote them by
AYy, AYy, e that is

AYo =Y = Yor AY1 = Yo = Y1, AY, = Y3 = Ypereenens

In general Ay, =y, , -y, ..r=0,2—————

Here, the symbol A is called the forward difference operator




The first forward differences of the first forward differences are called second forward

differences and are denoted by A%y ,A%y,...... that is
A%Yo = Ay, — Ay,
Azyl = Ay, - Ay,

In general A%y, =Ay,,,—Ay, r=0,12..... similarly, the n™ forward differences are defined by

the formula.

A"y, =A"'y  —A"'y r=0,12.....
While using this formula for n=1, use the notation A%y =y and we have
A"y, =0vn=12..... and r=0,2,......... the symbol A" is referred as the n" forward difference
operator.
3.Forward Difference Table:-

The forward differences are usually arranged in tabular columns as shown in the

following table called a forward difference table

Values Values First Second Third Fourth
of x ofy differences differences differences differences

X, Yo
Ayo =YY

X Y1 A? Yo = Ay, — Yo
A3/1: Yo—V; ASyO :Azyl_Azyo

X, Y, AZ Y, = Ayz - Ay1 A4 Yo = A3 Y1 — As Yo
A3/2 =Y;:—Y, Agylezyz_Azyl

Xq Y3 A? Y, =AY, —AY,

Y4 =Y. Y;




Example finite forward difference table for y = x®

X y=f(x) Ay Ay A’y Ay
1 1
-
2 8 12
19 6
3 27 18 0
37 6
4 64 24 0
61 6
5 125 30
91
6 216

4. Backward Differences:-

As mentioned earlier, let y,,y,......y,...... be the values of a function y = f (x) corresponding to

the values Xos Xps Xpevrrererennns Xy evenen of X respectively. Then,

In general Vy, =y, -y _,,r=123... —(1)

The symbol Vis called the backward difference operator, like the operator A, this
operator is also a linear operator

Comparing expression (1) above with the expression (1) of section we immediately note
that Vy, =Vy, ,,r=0,12......—>(2)

The first backward differences of the first background differences are called second

differences and are denoted by V?y,,V?y, ———V? ————1i.e.,.
V2y, =Vy,—Vy,,V?y, =Vy, —Vy, ..........

In general V?y, =Vy, —Vy, ,,r=2,3...—(3) similarly, the n™ backward differences
are defined by the formulaV'y, =V"'y, —=V"'y, ,r=nn+1...—(4)While using this
formula, for n = 1 we employ the notation V°y =y,

If y="f (X) Is a constant function , then y = c is a constant, for all x, and we get

V"y, =0vn the symbol V" is referred to as the n™ backward difference operator




5. Backward Difference Table:-

X y Vy V3y vy
Xo Yo

vy,
X, Ya VY,

vy, Ay,
X, Y V2,

Vy,
X3 Ys

6. Central Differences:-
With y,,V,,Y,....y, as the values of a function y= f (x) corresponding to the values
X, XX, ... OF X, We define the first central differences
OYy210Ya2,0Ys, ———— as follows
Yy = Y1~ Y0r0Ya2 = Y2 = Y1:0Ys2 = V3= Yo ————
Ve =Ye = Yer = (1)

The symbol ¢ is called the central differences operator. This operator is a linear

operator
Comparing expressions (1) above with expressions earlier used on forward and

backward differences we get
Oy, =AY, =VY,,0Y,, =AY, =VY,.....
In general &Y, .., =AYy, =VY,.,,n=0,12.....—>(2)
The first central differences of the first central differences are called the second central

differences and are denoted by 5°y,,5°Y,...
Thus 82Y, =8y, — Yy, 7Y, = Oy — O gperenes

%Yo = Yniaz = Yn vz —(3)
Higher order central differences are similarly defined. In general the n™ central
differences are given by
i) forodd n:6"y, , ="y, ="y, r =12... > (4)
iy  foreven n:8"y, =8"Y, ., =" Y, 4, F =12....—>(5)
while employing for formula (4) for n=1, we use the notation 5°y, =y,
If y is a constant function, that is if y=c a constant, then

o'y, =0 for all n>1




7. Central Difference Table

X Yo 5y 5%y 5y 5’y
O Y

X Vi 5%y,
5Yar2 Y

X, Y 5%, 5y,
5Ys Yy

X Ya 5°Y,
Yo

X, Ya

Example: Given f(-2)=12,f(-1)=16, f(0)=15, f(1)=18,f(2)=20 from the central

difference table and write down the values of S8y,,,,8%y, and &°y,,, by taking x, =0

Sol.  The central difference table is

X y=f(x) sy 5%y 5y sty
2 12
4
-1 16 -5
-1 9
0 15 4 -14
3 -5
1 18 -1
2
2 20

Symbolic Relations and Separation of symbols:
We will define more operators and symbols in addition to A, V and ¢ already defined

and establish difference formulae by symbolic methods
Definition:- The averaging operator 4 is defined by the equation uy, :%[ym,2 + Y|
Definition:- The shift operator E is defined by the equation Ey, =Y,,,. This shows that the

effect of E is to shift the functional value vy, to the next higher value vy, ,. A second operation

with E gives E®Y, =E(EY, )= E(Y..1) = Y.




Generalizing E"y" =y, .

Relationship Between A and E
We have

AYy =Y =Y,
:Eyo_yoz(E_l)yo
=A=E-y(or)E=1+A

Some more relations
A%y, =(E-1)'y, =(E*-3E°+3E-1)y,
=Y, _3y2 +3y1 Yo

Definition
Inverse operator E™ is definedas E'y, =, ,
Ingeneral E™y, =y, .
We can easily establish the following relations
i) V=1-E*
i) o=EY?—E™

= -1/2
il =—(E"“+E

) =5( )
iv) A=VE =E"?

V) 1 El+%52

Definition The operator D is defined as Dy(x) = %[y(x)]

Relation Between The Operators D And E
3

h
ay111(x)_i_____

. , . h?
Using Taylor’s series we have, y(x+h)=y(x)+ hyl(x)+5 y*(x)+
This can be written in symbolic form
212 33
h“D N h°D N o
2! 3!

|

|

|

|
<

Il
@D
<

<

Ey, = [1+ hD +

We obtain in the relation E =e"™ — (3)

X/
°e

If f(x) isa polynomial of degree n and the values of x are equally spaced then A"f (x) is

constant

Proof:




a,=0.

Let f(x)=ayx"+ax""+

+a_,x+a_  where a;a,a,..a, are constants and

If h is the step- length, we know the formula for the first forward difference
Af (x)=f (x+h)-f (x):[ao(x+h)"+a1(x+h)”71+————+an71(x+h)+an}
~[ax" +ax"t +-———+a, x+a, |
-1
= Hx“ +n.x"*h +¥x“.h2 +———}— x”}+
-1)(n-2
ain”‘le(n—l)x”‘z.th—(n )(n )x“‘3.h2 +———}—x“‘1}t
2!
—————— +a, ;h
=a,nhx" " +0,x"? +bX"* +————+b . x+b_,
Where b,,b,,......b,_, are constants. Here this polynomial is of degree (n-1), thus, the

first difference of a polynomial of n™ degree is a polynomial of degree (n-1)

continuing like this we get A" f (x)=a,n(n-1)(n-2)

Now

AP f(x)=A[Af (x)]

= A[aonh.x“‘1 +b, X"+, X"+ ————+b X +D,

= aonh[(XJrh)n*l—x”‘l}+b2 |:(X+h)n72 —Xn_2:|+———+bn_l (x+h)—x]
= a,n" X" £, X" 4 ————— +C,_X+C, ,

Where c,....c, , are constants. This polynomial is of degree (n—2)

Thus, the second difference of a polynomial of degree n is a polynomial of degree (n-2)
2.1.h" =a;h"(n!)

.. which is constant

1. As A"f (x) is a constant, it follows that A™ f (x)=0,A"*f (x)=0,........
2. The converse of above result is also true that is, if A"f(x) is tabulated at equal
spaced intervals and is a constant, then the function f (x) is a polynomial of degree n
Example:-
1. Form the forward difference table and write down the values of Af(10),
A*f (10),A%f (15) and A%y(15)
X 10 15 20 25 30 35
y 19.97 21.51 22.47 23.52 24.65 25.89




X Y Ay A%y A’y A'y Ay
10 19.97
1.54
15 21.51 -0.58
0.96 0.67
20 22.47 0.09 -0.68
1.05 -0.01 0.72
25 23.52 0.08 0.04
1.13 0.03
30 24.65 0.11
1.24
35 25.89

We note that the values of x are equally spaced with step- length h =5

Note: - .. X, =10,x, =15————X, =35 and

Yo = (% )=19.97
y, = f(x)=2151

ys = f (%) =25.89

From table

Sol.

Af (10) = Ay, =1.54
A*f(10)=A’y, =—0.58
A*f (15) =A%y, =-0.01
A*f (15) = Ay, =0.04
Evaluate

(i)Acosx
(ii)A%sin(px+q)

(i) A"e™*®

Let h be the interval of differencing




(i)Acosx =cos(x+h)—cosx
:—Zsin(x+EJsinD
2 2
(ii)Asin( px+q)=sin[ p(x+h)+q]-sin(px+q)
ph) . ph
:2 _ _
cos(px+q+ 5 jsm ;

=25inp—hsin(£+ px+q+p—hj
2 2 2

A’ sin(px+q)=23inp7hA[sin(px+q)+%(7z+ ph)}

:{ZSin p?hT Sin[px+q+%(ﬂ'+ ph)}
(iii)AeaXer _ ea(x+h)+b _eaXer
— e(ax+b) (eah_l)
A2 — A[A(eawfb ):| _ A[(eah _1)(eax+b ):|
= (ea“ —1)2 A(eax*h)
— (eah _1)2 eax+b
Proceeding on, we get A" (e™**) =(e _1)" p+b

3. Using the method of separation of symbols show that
n(n-1)

Anll'lx—n = /le—n - n/'lx—l + /’lX—Z t——- +(_1)n ILIX—n

Sol.  To prove this result, we start with the right hand side. Thus

,uX—n,uX—l+M,uX 24 ————— +(-1)" ux—n
= ﬂX—nElﬂXJr@ EPux+-———- +(=1)" E"ux
={l—nE1+@EZ+ ————— +(-1)"E™ ,ux:(l—E’l)n,ux
1Y (E-1)'
=|1-= . S
( Ej an E un

n

A
=— ux=A"E"ux
o M H

=A"u,_, which is left hand side

4. Find the missing term in the following data

X 0 1 2 3 4

y 1 3 9 - 81




Why this value is not equal to 3* . Explain
Sol.  Consider A'y, =0
=4y, -4y, +5y, -4y, +Yy,=0
Substitute given values we get
81-4y,+54-12+1=0=y,=31
From the given data we can conclude that the given function is y=3*. To find y,, we
have to assume that y is a polynomial function, which is not so. Thus we are not getting
y=3=27
Newton’s Forward Interpolation Formula:-

Let y = f(x) be apolynomial of degree n and taken in the following form

y="f (X):bo +bl(X—Xo)+b2(X—XO)(X—X1)+b3(X—XO)(X—Xl)(X—X2)+———
+b, (X=X ) (X=%)———=(x=%,) = (1)

This polynomial passes through all the points [xi; yi] for i =0 to n. there fore, we
can obtain the ;s by substituting the corresponding X, 's as

at X=X0,y0=b0
at szl,yl:bo+b1(X1_X0)
at X=X, Y, =by +b, (%, =%, )+b, (X, =% ) (X, =% ) > (1)

Let ‘h’ be the length of interval such that X;'s represent

Xo» Xo +h, X, +2h, X, +3h ————x%, + xh

This implies x, —x, =h, X, =X, —2h, X, —X, =3h————x, —X, =nh —(2)
From (1) and (2), we get

Yo =Dy

Y1 =by +bh

Y, =b, +b,2h+b, (2h)h
Y, =by +b,3h+b, (3n)(2h)+b, (30)(2h)h

Y, =b, +b, (nh)+b, (nh)(n-1)h+—-——+b, (nh)[(n-1)h][(n-2)h]—>(3)

Solving the above equations for by,b,,b,....b, , we get b, =y,

h h h
bZZM: _ _(yl_yO)Zh

2h? 2 70 h

b, = Yi—by _ Yi—Yo _ Ay,




yz_yo_zyl_zyo — y2_2y1+y0 — A2yo
2h? 2h? 2h?

n A%

T

Similarly, we can see that

_ANy, Ay, _ A",
T e b = i
A 2
y="f(x)= yw%(x x0)+2|—:],§(x—x0)(x—x1)
°y
3|—h§(x—x0)(x—x1)(x—x2)+———+
"y,
2 () (x %)~ (x%4) > (3

If we use the relationship X =X, + ph= x—X, = ph, where p=0,12,.....n
Then
X=X =X—(X,+h)=(x=%,)=h
=ph—h=(p-1)h
X=X, =X—(%+h)=(x-x)-h
=(p-1)h-h=(p-2)h

Equation (3) becomes

y= f(X)=f(Xo+ph)=yo+pAyo+p(Z—,_l)A2yo+ p(p_z),(p_z)Asyo+————+
p(p_l)(p_z)_n!___(p_(n_l))A"yo—>(4)

Newton’s Backward Interpolation Formula:-

If we consider
Yo (X)=ay+a, (X=X, )+a, (X=X, ) (X=X, )+a5 (X=X, ) (X=X, ) (X=X, ) +————(Xx=X)

and impose the condition that y and vy, (x) should agree at the tabulated points

X0y Xy =Ly Xy, X0 Xg




We obtain

+1
y”(X):y”+pvyn+ p(ZI )szn+___
1)———- -1
p(p+1) [p+(n )]v"yﬁ____%(s)
n!
X—X
Wh = n
ere p=—

This uses tabular values of the left of y, . Thus this formula is useful formula is useful

for interpolation near the end of the table values

Formula for Error in Polynomial Interpolation:-

If y=f(x) is the exact curve and y=4¢, (x) is the interpolating curve, then the

error

in polynomial interpolation is given by

Error = f (x)—¢, (x) = (X_XO)(X_(T]il_l)_!__(X_Xn) " (&) —>(7)

for any x, where X, <x<X, and X, <& <X,
The error in Newton’s forward interpolation formula is given by

f(X)_¢n(X)=p(p_1)(?n_fl))"! """ (P=1) jyrag ()

Where p=2—%

The error in Newton’s backward interpolation formula is given by

()= (X)= p(p+1)(p+2)...... (p+n)hn+lyn+1]c () Where p— X_hxn

(n+1)!
Examples:-
1. Find the melting point of the alloy containing 54% of lead, using appropriate
interpolation formula
Percentage of

50 60 70 80
lead(p)

Temperature (Q°c) [ 205 |225 |248 |274




Sol.

Sol.

The difference table is

X Y A A’ A
50 205
20
60 225 3
23 0
70 248 3
26
80 274

Let temperature = f (x)

X, + ph=24,x,=50,h=10
50+ p(10)=54 (or) p=0.4

By Newton’s forward interpolation formula

-1 1 5
f(Xo+ph):y0+pAy0+%A2yo+ p(p n)l(p )A3y0+___
f (54)=205+0.4(20)+ 0.4(0.4-1) (3)+ (0.4)(0.4—1)(0.4—2)(0)

21 3
=205+8-0.36
=212.64

Melting point = 212.64

Using Newton’s forward interpolation formula, and the given table of values
X 1.1 1.3 1.5 1.7 1.9

f (X) 021 (069 |125 |1.89 |261

Obtain the value of f(x) when x=1.4

X y=f(x) A A? A® A*
1.1 0.21
0.48
1.3 0.69 0.08
0.56 0
1.5 1.25 0.08 0
0.64 0
1.7 1.89 0.08
0.72
1.9 2.61




If we take x, =1.3 then y,=0.69,
Ay, =0.56,A%y, =0.08,A%y, =0,L=0.2,x=1.3

X, +ph=1.4(or)1.3+p(0.2)=1.4,p :%

Using Newton’s interpolation formula

1(1_ J
(1.4)=0.69+ 2x056+ 222 /0,08
2 21
~0.69+0.28-0.01=0.96

3. The population of a town in the decimal census was given below. Estimate the population for

the 1895
Year
1891 | 1901 | 1911 |1921 | 1931
X
Population
46 66 81 93 101
ofy

Sol.  Putting L =10, x, =1891, x =1895 in the formula X = x, + ph we obtain p=2/5=0.4

X Y A A? A A*
1891 46
20
1901 66 -5
15 2
1911 |8l 3 3
12 -1
192 93 -4
8
1931 101
y(1895) = 46+ (0.4)(20) + CAOA7Y) )
N (0.4—1) 0.64(0.4 — 2) (2)
, (04)(0:4-1)(0.4-2)(0.4-3)
24

=54 .45 thousands




Gauss’s Interpolation Formula:- We take x, as one of the specified of x that lies around the
middle of the difference table and denote x,—rh by x—r and the corresponding value of y by

y —r . Then the middle part of the forward difference table will appear as shown in the next page

X Y Ay A%y A’y A'y A°y
X4 Y
X g Y3 Ay,
X, Y, AY A%y,
X 4 Y., Ay, A%y, Ay,
X Yo Ay A%y, A’y Aty
X, Y Ay, A%y, A%y, Aty Ny,
X, Y Ay, A%y, A%y, Aty Ay,
X, Y Ay, A%y, A%y, Ay, Ay,
X, Ya Ay, A%y, Ay, A%y, Ay,
Ay, = Ay +A%Y,
APy, =A%y + A%y,
Ny, =N’y +A%y
A'Y, =AY+ Ay ————— (1) and
Ay =AYy, +A%Y,
A’y =Ny, + A%y,
Ny, =A%y, +A%y,
A'Y =AY+ Ay, ————— (2)

By using the expressions (1) and (2), we now obtain two versions of the following Newton’s

forward interpolation formula

yp =[y0+ p(Ayo)_F%(AZyO)_F p(p_13)!(p_2)A3yo

p(P-1)(p-2)(P-3)
41

+

Ao+ ———] e 3

Here y, is the value of y at X=X, =X, + ph
Gauss Forward Interpolation Formula:-

Substituting for A%y,,A%Y,,.... from (1)in the formula (3), we get

-1 -1)(p-2
yp :[y0+ p(Ayo)+%(A2yl+A3yl)+ p(p 3)|(p )Agy,l
caty, 4 POD(P=2)(P=8) oy sy

41




Yo =[¥o+ P(AY,)+ p(zl_l)(Azy_lF p(p+?!(p_l) Ay,

L Pp+1)(p-1)(P-2)
41

(y.)+ -]
Substituting A*y_, from (2), this becomes

-1 +1)p(p-1
ypz[yo+p(Ayo)+%A2yl+(p );(p Javy,

+(p+1)(lo—41!)P(P—Z)(A4y_2)+____] _________________ 4

Note:- we observe from the difference table that

AY, =38Y,,, A’y , =5%Y,, A’y . =5°%Y,,,A'y , ="y, and so on. Accordingly the formula
(4) can be written in the notation of central differences as given below

-1 +1 -1
Y, =[Yo + PSYy, +%52VO +(p )p(p )53y1,2

L(ph(p-Yp(p-2)
41

2. Gauss’s Backward Interpolation formula:-

Let us substitute for Ay,,A’y,, A%y, ----- from (1) in the formula (3), thus we obtain

Yo =[¥o + P(AY, +A2yl)+M(A2yl+A3yl)+ (p=Y)p(p-2) (A%, +A%y )+

2! 3!
(p_l)(p:j) p(p_3)(A4Y1+A5y1)+____]
=[y, + p(Ayl)+@ p(Azyl)erAs)’ﬁ(pﬂ) p(FA)f!—l)(P—Z)(Nyl)JF____]

Substituting for A%y, and A'y_, from (2) this becomes

(p+1)pA2 (p+1)P(p_1)(A3y_1+A4y—2)

Yo =[Yo+ p(Ay—1)+T Yat 3!
1 -1)(p-2
(P )p(rz“ )(p )(A“y_z+A5y_z)+————]

Lagrange’s Interpolation Formula:-

Let X, X, X,.... X, be the (n+1) values of x which are not necessarily equally
spaced. Let Yo, Yy, Youeeen. y, be the corresponding values of y= f (x) let the polynomial
of degree n for the function y=f(x) passing through the (n-+1)points

(% F (%)) (%, f(x))=—===(x,. f(x,)) be in the following form
y=f(X)=a,(X=%) (X=X, ) (X=X, )&, (X=X ) (X=X, ) ccrvevev. (x=x,)+




Where a,,a,,a,.... " are constants
Since the polynomial passes through (%, f(%,)).(%, f(%))......(x,. f (x,)). The
constants can be determined by substituting one of the values of X,,x,.....x, for x in the
above equation
Putting x =X, in (1) we get, f(x,)=2a,(x—=%)(% =% ) (% —X,)
f(%)
X=X ) (Xg =X, )X = %;)
Putting x =X, in (1) we get, f(x)=a,(Xx—X%,)(% —%)————(%—X,)
f(x)
X=X ) (% =% ) (X = %,)
Similarly substituting x =X, in (1), we get
f(x,)
(X, =% ) (X =% ) e (X, — X))
Continuing in this manner and putting X=X, in (1) we

f(x)
(Xn _XO)(Xn _Xi)____(xn _Xn—l)

:aoz(

:>a1=(

=a, =

get a, =

Substituting the values of a,,a,,a,....a,, we get

) — (X=%) (X=X, )eeeee (X=X, . +(x—x0)(x—x2) ..... (x=x,)
(%) (% =% ) (X =X, )evvveeen (xo—xn)f( o) (% =% ) (% =%, ) (% = X,)

f(x1)+(X_X°)(X_X1)(X_X2) ..... (x—xn)+ ..... f(%,)+ (X =% ) (X=X ) e (X=X, 1) f(x)
(% =X ) (X =X, )eoere (X, — X, ) (X, =X ) (X =% ) eeee (X, =X, )

Examples:-

1. Using Lagrange’s formula calculate f (3) from the following table

X |0 1 2 4 5 6

(%) 1 |14 |15 |5 |6 |19

Sol.  Given x,=0,x, =1, X, =2,%=4,X =6,%X,=5

f(%)=1f(x)=14,f(x,)=15f(x)=5f(x,)=6 f (x)=19

From langrange’s interpolation formula
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0.05-4.2+11.25+3.75-1.8+0.95

=10
f(x,)=10

Find f (3.5) using lagrange method of 2™ and 3" order degree polynomials.

1)

x1 2 3 4

f(x) 1 2 9 28

By lagrange’s interpolation formula

Sol:

4 we have

For n




(35-2)(35-3)(35-4) . (35-1)(3.5-3)(35-4)
f(35)= (1-2)(1-3)(1-4) ® (2-1)(2-3)(2-4) (2)+
(35-1)(35-2)(35-4)
(3-1)(3-2)(3-4) (9)+
(35-1)(35-2)(35-3)

@2y O

=0.0625+(-0.625)+8.4375+8.75

=16.625
f (x)= (x—2)(x_—63)(x—4) 1)+ (X—l)(X;3)(X‘4)(2)
D2 DA 23)
LE9 00 ey 20D o) 20 gy
_X ‘9X2_+626X_24 X =B+ Ox—12+% _7X2_;14X_8(9)+ X _6X26+11X_6(28)

[—x3 FOX2 26X+ 24+ 6X° —48x% +114x — 72— 27x% +189x% — 378X + 216 + 308X + 28x° —168x> —168]
B 6

6x> —18x* +18x
- =

f (x)=x>—-3x"+3x

- £(35)=(35)"~3(3.5)" +3(3.5) =16.625
Example:
Find y(25), given that y,o = 24,y24 = 32, Y2 =35 y3> =40 using Guass forward difference
Formula:

Solution: Given

X 20 24 28 32
Y 24 32 35 40

By Gauss Forward difference formula




p(p-1)

L P(p-1(p-2)

Vo =D¥o+ P(AYo)+ 2 (A% +A%Y,) A Ay,
-1)(p-2 -3
aty 4 PP rz“ J(P=3) yoy L psy 4]

We take x= 24 as origin.
Xo=24,h=4,x=25p=x-Xo/ h,p=25-24/4=25
Gauss Forward difference table is

X y Ay A’y Ay

20 24

24 32 Ay =

28 35 Ay, =3 AZy =

5

32 40 Ayl =5 Azyo = A?’ y—l =7
By gauss Forward interpolation Formula
We y(25) = 32 +.25(3) + (w (=5) + (.25+1)(.265)(.25—1) (7) =32 +.75

+.46875 - .2734 = 32.945

Y(25) = 32.945,

Example:

Use Gauss Backward interpolation formula to find f(32) given that f(25) = .2707, f(30) =
.3027, (35) = .3386 f(40) = .3794.

Solution: let xo = 35 and difference table is

X y Ay A%y A’y
25 2707

30 3027 .032

35 .3386 .0359 .0039

40 3794 .0408 .0049 .0010

From the table yo = 0.3386

A1 20,0359, 4 Y

2

3
=0.0049, 2 Y2 = 0.0010, x, = 32 p = X, Xo/h = 32-35/5 = -.6

By Gauss Backward difference formula
f(32) = .3386 + (-.6)(.0359) + (-.6)(-.6+1)(.0049)/2 + (-.6)(.36-1)(0.00010)/6 = .3165




UNIT-II




CURVE FITTING

Curve fitting

Suppose that a data is given in two variables x & y the problem of finding an analytical

expression of the form y = f (x) which fits the given data is called curve fitting
Let (X,¥:):(X, ¥, )eenees (X,,Y,) be the observed set of values in an experiment and

y = f (x) be the given relation x&y,Let E,,E,,......E, are the error of approximations then we

have
E =y —f (Xl)
E,=y,—f (Xz)
E,=y,— f (Xs)
E,=v,— f(x,) where f(x),f(X). .. f(x,) are called the expected values of y

corresponding to X =X, X = X,........ X=X

the differences E , E,.....E, between expected values of y and observed values of y are called
the errors, of all curves approximating a given set of points, the curve for which
E=E’+E/+...E° is a minimum is called the best fitting curve (or) the least square

curve

This is called the method of least squares (or) principles of least squares

1. FITTING OF A STRAIGHT LINE:-
Let the straight line be y =a+bx — (1)

Let the straight line (1) passes through the data points

(%0 Y1) (%00 Yz ) oo (X0 Vo )i (X0 Y5 ) i =12.000

So we have yi =a+bxi —(2)

The error between the observed values and expected values of y = yi is defined as
Ei=y,—(a+bxi)i=12....n—(3)

The sum of squares of these error is
E=) Ei’= Z[yi —(a+bxi)]2 now for E to be minimum
i=1 i=1

E _,E
oa  ob

These equations will give normal equations




Zn: yi=na+ bZn: Xi

i=1 i=1

Zn:xiyi = azn: Xi +bZn: Xi
i=1 i=1 i=1

The normal equations can also be written as

D y=na+b) x
D oxy=a) x+bY x?
Solving these equation for a, b substituting in (1) we get required line of best fit to

the given data.

NON LINEAR CURVE FITTING

PARABOLA:-

Let the equation of the parabola to be fit
The parabola (1) passes through the data points

(X0 ¥1)s (%00 Yo )ernevnnninnee (X Yo )oi€ (X0 Y5 )51 =1,2......X
We have yi=a-+bx +cx’ —(2)

y =a-+bx+cx® —(1)

The error Ei between the observed an expected value of y =y, is defined as
Ei=yi—(a+bxi+cxi’),i=123...n—>(3)

The sum of the squares of these error is

E=¢g, Ei*=¢", (yi—a-bxi —cxiz)2 —(4)

For E to be minimum, we have

% _ % _oE
oa oc

e
The normal equations can also be written as

gy = na+bex+cex?

exy = aex+bex® +cex® use Y instead of &

ex’y =aex® +bex® +cex*

Solving these equations for a, b, ¢ and satisfying (1) we get required parabola of best fit

POWER CURVE:-

The power curve is given by y =ax® — (1)

Taking logarithms on both sides




log,,’ = log,,*+blog,,”

(or)y=A+bX —(2)

where y =log,,’, A=log,,* and X =log,,*
Equation (2) is a linear equation in X &y
.. The normal equations are given by

gy =nA+beX
exy =AsX +beX?  use Tsymbol

From these equations, the values A and b can be calculated then a = antilog (A)

substitute a & b in (1) to get the required curve of best fit
4. EXPONENTIAL CURVE :- (1)y =ae™ (2)y=ab"

1. y=ae™ —(1)
Taking logarithms on both sides
log,, y =log,, a+bxlog,, e
(or)y=A+BX —(2)
Where y=log,, y,A=log,,a&B =blog,, e
Equation (2) is a linear equation in X and Y
So the normal equation are given by
2Y =nA+ BZX
Txy = AZX + BEX?
Solving the equation for A & B, we can find

B
log;, e

Substituting the values of a and b so obtained in (1) we get

a=antilogA&b=

The curve of best fir to the given data.
2. y=ab*—>(1)
Taking log on both sides

log,, y =log,,a+xlog,, b (or)Y = A+ Bx
Y =log,, y,A=1log,,a,B=1log,,b

The normal equation (2) are given by

2y =nA+BZX
Txy = AZX + BEZX?

Solving these equations for A and B we can find a=antilog A, b =antilog B

Substituting aand b in (1)

1. By the method of least squares, find the straight line that best fits the following data




5

68

y =a+bx

Ans.  The values of &x,eYy,ex* and exy are calculated as follows

Xi yi Xi? xiyi
1 14 1 14
2 27 4 54
3 40 9 120
4 95 16 220
5 68 25 340
Replace xi,yi by X,y anduse X instead of &
exi =15;gyi =204, sxi’ =55 and exiyi = 748
The normal equations are
gy =na+bex — (1)
exy =aex+hex? —(2)
204 =15a+5b
748 =55a+15b
Solving we get a=0,b=13.6
Substituting these values a & b we get
y=0+13.6x = y =13.6X
2. Fitasecond degree parabola to the following data
X 0 1 2 3 4
y 1 5 10 22 38

y = a+bx+cx’
Ans.  Equation of parabola y =a-+bx+cx* —(1)
Normal equations gy = na+bex +cex’
exy = asX+bex® +cex’
ex’y =aex® +bex’ +cex* —>(2)




Ans,

X y Xy X2 X2y X3 x*
0 1 0 0 0 0 0
1 5 5 1 5 1 1
2 10 20 4 40 8 16
3 22 66 9 198 27 81
4 38 152 16 608 64 256

ex =10,y =76, Xy = 243, ex* =30,sx’y =851, ex®> =100, x* =354
Normal equations
76 =5a+10b+30c

243 =10a+30b+100c

851=230a+100b +354c
Solving a=1.42,b=0.26,c =2.221

Substitute in (1) = y=1.42+0.26x+ 2.221x*

3. Fitacurve y=ax" to the following data

X 1 2 3 4 5 6
y 2.98 4.26 5.21 6.10 6.80 7.50
Let the equation of the curve be y =ax® —(1)
Taking log on both sides
logy =loga+blogx
y=A+bX —(2)
y=logy,A=loga, X =logx
gy =nA+beX
exy = Aex+bex? —(3)
X X =log x y y=logy Xy x>
1 0 2.98 0.4742 0 0
2 0.3010 4.26 0.6294 0.1894 | 0.0906
3 0.4771 5.21 0.7168 0.3420 | 0.2276
4 0.6021 6.10 0.7853 0.4728 | 0.3625
5 0.6990 6.80 0.8325 0.5819 | 0.4886

eX = 2.8574,8y = 4.3133,exy = 2.2671,ex* =1.7749
4.3313=6A+2.8574b
2.2671=2.8574A +1.7749b

solving A=0.4739 b=0.5143
a=antilog(A)=2.978
Sy =2.978x%%




AnSs,

AnS.

Fitacurve y=ab* —(1)

X 2 3 4 5 6
y 144 172.8 207.4 248.8 298.5
logy =loga+xlogh — (1)
y=A+xB—>(2)
y=Ilogy,A=loga,B=Ilogh
Yy =nA+Bex
exy = Aex+Bex? — (3)
X y X Y =logy Xy
2 144.0 4 2.1584 4.3168
3 172.8 9 2.2375 6.7125
4 207.4 16 2.3168 9.2672
5 248.8 25 2.3959 11.9795
6 298.5 36 2.4749 14.8494

Fit a second degree parabola to the following data by the method of least squares.

X 0 1 2

3

4

y 1 1.8

2.5

6.3

Equation of parabola y =a+bx+cx* — (1)

Normal equations ey = na+bex+cex’
exy =asX+bex® +cex’ &

ex’y =aex® +bex’ +cex* —(2)
X

X y Xy NG X2y x3 4
0 1 0 0 0 0 0
1 1.8 1.8 1 1.8 1 1
2 1.3 2.6 4 5.2 8 16
3 2.5 7.5 9 22.5 27 81
4 6.3 25.2 16 100.8 64 256

Y xi= 10, Y yi =12.9, ¥ x* = 30, ¥ x* = 100, ¥ x;* = 354, ¥ x;%y; = 130.3

Z Xi Vi, = 37.1
Normal equations

5a +10b +30c =12.9
10a + 30b +100c = 37.1

30a + 100b +354c = 130.3
Solving o 1 42 b = -1.07 c= .55




Substitute in (1) y = 1.42- 1.07x+.55x°

Numerical solutions of ordinary differential equations
1. The important methods of solving ordinary differential equations of first order numerically

are as follows
1) Taylors series method
2) Euler’s method
3) Modified Euler’s method of successive approximations

4) Runge- kutta method

To describe various numerical methods for the solution of ordinary differential eqn’s,we consider

the general 1% order differential egn

dy/dx=f(x,y)------- (1)

with the initial condition y(Xo)=Yo

The methods will yield the solution in one of the two forms:

i) A series for y in terms of powers of x,from which the value of y can be obtained by direct

substitution.
ii ) A set of tabulated values of y corresponding to different values of x
The methods of Taylor and picard belong to class(i)
The methods of Euler, Runge - kutta method, Adams, Milne etc, belong to class (ii)

TAYLOR’S SERIES METHOD
To find the numerical solution of the differential equation

Yt y)>)
dx

With the initial condition y(X,) =Y, >(2)

y(X) can be expanded about the point X, in a Taylor’s series in powers of (X—X,) as

(x (xX=%)" ) (x

Y(x) = y(x,) + 22/ Xo) V(%) + 272y Y +—n_>!<,gn Y (%) >@)

Inequ3, y(X,) is known from I.C equ2. The remaining coefficients y'(X,), Y"(X,),--e-e-. y"(x,) etc
are obtained by successively differentiating equl and evaluating at X,. Substituting these values in
equ3, Y(X)at any point can be calculated from equ3. Provided h=x-x, is small.

When X, =0, then Taylor’s series equ3 can be written as

2 n

y(x) = y(O)+xy(O)+ YO+ +%y”(0)+ ........ >4)

1. Using Taylor’s expansion evaluate the integral of y'—2y=3e*,y(0)=0, ata) x=0.2

b) compare the numerical solution obtained with exact solution .




Sol:  Given equation can be written as 2y +3e* =y’,y(0) =0

Differentiating repeatedly w.r.t to ‘x” and evaluating at X=0

y'(x) =2y +3e*,y'(0) = 2y(0) +3e° = 2(0) + 3(1) =3

y"(x) =2y’ +3e*,y"(0) =2y’'(0) +3e° =2(3) +3=9

y"(X) = 2.y"(x) +3e*,y"(0) = 2y"(0) +3e° =2(9) +3=21

YU (x) = 2.y"(x) +3e*, y"(0) = 2(21) + 3e® = 45

y'(x) =2.y" +3e*,y'(0) = 2(45) +3e° =90+3 =93

In general, y™V(x) =2.y™(x)+3e* or y™(0)=2.y™(0)+3e°

The Taylor’s series expansion of Y(X) about x, =0 is

3

y(x) = y(0)+xy’ (0)+—y(0)+ y"'(0)+ y""(0)+ y""'(0)+

Substituting the values of y(0),y (O), y"(0), y”'(O), ..........

y(x) = 0+3x+2xt 1 2o B0y By
2 6 24 120
Y(X)=3X+gx2+gx3+%x4+j—gx5+ ........ > equl

Now put X=0.1 in equl

y(0.1) =3(0.1) + 2 (0.1)% + L (0.1)° + =2 (0.1)* + >X (0.1)° = 0.34869
2 2 8 40

Now put x=0.2 in equl

y(0.2) =3(0.2) +g(o.2)2 +£(o.2)3 +%(o.2)4 +2—é(o.2)5 —0.811244

y(0.3) =3(0.3) +%(o.3)2 +%(o.3)3 +§(0.3)4 +j—é (0.3)° =1.41657075

Analytical Solution:

The exact solution of the equ g—y =2y +3e* with y(0) =0 can be found as follows
X

%—Zy =3e" Whichisalineariny.
X

Here P=-2,Q=3¢"

pdx —2dx
LF=["=[ " =e™
e e

General solution is y.e ™ = jseX.e-Zde +c=-3e"+cC
s y=-3e"+ce”wherex=0,y=0 0=-3+c=c=3
The particular solution is y =3¢ —3e* or y(x)=3e" —3¢*
Put x=0.1in the above particular solution,

y =3.% —3e*! =0.34869




Similarly put x=0.2

y =3e%* —3e%? =0.811265
putx=0.3

y =3e"® —3e%° =1.416577

2. Using Taylor’s series method, solve the equation g—y =x?+y? for x=0.4 given that y=0
X

when x=0
Sol:  Given that %:x%y2 and y=0 when x=0i.e. y(0)=0
X

Here y,=0, x,=0
Differentiating repeatedly w.r.t ‘x” and evaluating at X =0
Y(X)=x>+Yy%,y(0)=0+y*(0)=0+0=0
y'(X) =2x+Yy"2y, y"(O) =2(0)+y'(0)2.y=0
y"(X)=2+2yy"+2y"y', y"(0) = 2+ 2.y(0).y"(0) + 2.y'(0)* = 2
y"(x)=2.y.y" +2.y". y’+4 y"y,y"(0)=0
The Taylor’s series for f(x) about X, =0 is
x2 3 x4

y(x) = y(0) +xy’ (0)+ y”(0)+ y'”(0)+ V()

Substituting the values of y(0),y (0), y"(O), .....

3 3
y(x) =0+ x(0) +0+23i|+0+ ........ = X?+ (Higher order terms are neglected)

(0.4 _0.064
3

3. Solve y'=x—Y? y(0)=1 using Taylor’s series method and compute y(0.1),y(0.2)

.y(0.4) = =0.02133

Sol:  Giventhat y'=x-y? y(0)=1
Here y, =1, X,=0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x=0
y'(x)=x-y?,y'(0)=0-y(0)’ =0-1=-1
y'(x)=1-2y.y’,y"(0) =1-2.y(0)y'(0) =1-2(-1) =3
y"(x) =1-2yy'=2(y")", y"(0) =-2.y(0).y"(0) - 2.(Y'(0))* =—6-2=-8
y"'(x)=-2.y.y"-2.y".y'—4.y"y', y"'(0) =-2.y(0).y"(0) - 6.y"(0).y'(0) =16 + 18 = 34
The Taylor’s series for f(x) about xo = 0 is

y(x) = y(0) + —y 1(0) + y“(O) yl“(O)

Substituting the value of y(0), y*(0), yll(O),. -

y(x) —1ox+o2. 83 3t
2 6 24




y(x)=1- x+2x gx3 AT >(1)

now putx =0.1in (1)
y(0.1)=1- 01+_(01)+ (0.1)% + ;(0.1)4+.....

= 0.91380333 10.91381

Similarly put x =0.2 in (1)
3 ) 4 3, 17 4
02)=1-02+=(0.2)"- = (0.2°+ —(0.2)" +
y(0.2) 2( ) 3 (0.2) 12( )

=0.8516.
4. Solve y' = x* - y, ¥(0) = 1, using Taylor’s series method and compute y(0.1), y(0.2),
y(0.3) and y(0.4) (correct to 4 decimal places).

Sol. Giventhaty'=x*—yand y(0)=1
Here Xo =0, Yo = 1 or y =1 when x=0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x = 0.

Y'(x)=x*-y, y'(0)=0-1=-1

() = 2x -y, y'(0) =2(0) - y'(0)=0-(-1) =1
yrg=2-y", Yyl =2-y(0=2-1=1,
yreg =-y", y¥(0) =-y" (0) =-1.

The Taylor’s servies for f(x) about xo= 0 is

y(x) = y(0) + —y(O) y”(O) y'“(O) !y'V(0)+ ......

substituting the values of y(0) , y*(0), y“(O) V0.

s X X X
V) =1+ X (D) + (1) + =)+ (D

2 X3 X4

X
X)=1-X+ —+ —-— +...... 2>(1
y(x) = >t 5 22 (1)

Now put x = 0.1 in (1),
01)° (0.1)° (0.1)
son=1-01s OV, V(1
6 24
=1-0.1+0.005+ 0.01666 — 0.0000416 -0.905125 ~ 0.9051
(4 decimal places)

Now put x =0.2 in eq (1),

_ (02)° , (02) (02)'
y(0.2)=1-0.2+ 5 + 5 o

=1-0.2+0.02 + 0.001333 - 0.000025




=1.021333 — 0.200025
=0.821308 ~ 0.8213 (4 decimals)
Similarly y(0.3) =0.7492 and y (0.4) = 0.6897 (4 decimal places).

5. Solve % -1 =xy and y(0) = 1 using Taylor’s series method and compute y(0.1).
X

Sol. Given that j—y -1=xyandy(0)=1
X

Here%:1+xyandy0:1,x0:0.
X

Differentiating repeatedly w.r.t ‘x’ and evaluating at xo = 0

y'(x) =1 +xy, y'(0) = 1+0(1) = 1.
Y'(X) =xy+y, y'(0) = 0+1=1
y'x) =xy +y' +Y, y1(0) = 0.(1) + 2 /(1) =2
yV () =xy" + y"+2y" y"(0) = 0+3(1) =3.
vV (x) = xy" +y" +2y" yW(0)=0+2+2(3)=8

The Taylor series for f(x) about Xo = 0 is

2

y(x) = y(0)+xy(0)+ y” (0) + y“'(O) y'V(O) y Y(0)+.....

Substituting the values of y(0) , y'(0) , y”(O)

W=1+x+ L+ X (g4 X (3)+ P
X)=1l+XxX+ — + — — —

y 2 3] 120
(x)—1+x+x—2+X—+X—+X—5+ -2>(1)
y 2 3 8 15

Now put x = 0.1 in equ (1),

y(0.1)=1+0.1 + (0.)* , (0.9° , (0. (0.1

3 8 15
=1+0.1+0.005 + 0.000333 + 0.0000125 + 0.0000006
=1.1053461
H.W

6. Given the differential equ y* = x* + y, y(0) = 1.0btain y(0.25), and y(0.5) by Taylor’s
Series method.
Ans: 1.3333, 1.81667

7. Solve y' = xy? + Y, Y(0) =1 using Taylor’s series method and compute y(0.1) and
y(0.2).
Ans: 1.111, 1.248.




Note: We know that the Taylor’s expansion of y(x) about the point xq in a power of (X —
Xo)IS.

(x=%)°
3!

( o) | ( 0)2 1

y (Xo) + y (Xo) + y (%) +... 2(1)

y(x) = y(Xo) +
Or

(X )y (X X) y (X_Xo) n

Y(X) = Yo+ 1l 0 ol 0 31 Yo

If we let x — Xo = h. (i.e. X = Xg + h = X;) we can write the Taylor’s series as

2 3 4

h h h
Y=Y =Y+ 7 Vot oy Yoty Yoty Yo

h hz 3 \%
i.e.y1:y0+ ﬁ Yo + —

h
o yo + 3 yo' o+ Iy(')v + . >(2)

Similarly expanding y(x) in a Taylor’s series about x = x;. We will get.

h , h® y B, b
Y2=yLo oV e ¥ e grh « >(@3)

Similarly expanding y(x) in a Taylor’s series about x = x, We will get.

h h? h® h*
y3= Y2 + Fy2'+§y2“ oV —Iy;V+...... >(4)

In general, Taylor’s expansion of y(x) at a point x= X, IS
2 3 4
Yne1 = Yo + %yé + %yé' h—y;" h! Yo F oo >(5)
8. Solve y1 = X-y2, y(0) = 1 using Taylor’s series method and evaluate y(0.1), y(0.2).
Sol: Giveny'=x-y* (1)
and y(0)=1 2>(2)
Here Xo =0, yo=1.
Differentiating (1) w.r.t °x’, we get.

y'=1-2yy'>(3)
y!'=-2(y. y" + (v)?) > (4)
yV=-2ly y+y Y+ 2y Y >(5)
=2y y'+y y"
Putxo =0, yo=11in (1),(3),(4) and (5),
We get
yy =0-1=-1,

Yo =1-2(1) (-1) =3,
y' = -2[(-1)) + (1) (3)] = -8
Vo= 2[3(-1) (3) + (1) (-8)] = -2(-9 -8) = 34.

Take h=0.1
Stepl: By Taylor’s series, we have




h h? h® h*
y1=Yo+ ﬁy(') + Eyg' Eyg“ —Iy;V S >(6)

on substituting the values of yo, v, , y,' , etc in equ (6) we get

y(0.1) = w-1+——<n+‘pf @+ o (OD(¥D+
=1-0.1+0.015-0.00133+0.00014 + ...

=0.91381

Step2: Let us find y(0.2), we start with (X1,y1) as the starting value.
Here X3 =Xo+ h=0+0.1=0.1and y; = 0.91381
Put these values of x; and y; in (1),(3),(4) and (5),we get
yl =x1- y? =0.1-(0.91381)? = 0.1 — 0.8350487 = -0.735

y' =1-2y,.y! =1-2(0.91381) (-0.735) =1+ 1.3433 = 2.3433
v =2y, )2+ yi -y ] = - 2[(-0.735)% + (0.91381) (2.3433)] = -5.363112

YV =-2[3.y! y" +yy y"]=-2[3.(-0.735) (2.3433) + (0.91381) (-5.363112)]
= -2[(-5.16697) — 4.9] =20.133953

By Taylor’s series expansion,

— + E I h h 1 h
Y2=¥1 1 yl ol y1 31 el 1 4| yl
2
~y(0.2) = y, = 0.91381 + (0.1) (-0.735) + % (2.3433) +

. 1) (©. 1)

(20.133953) + .

y(0.2) =0.91381 - 0.0735 + 0.0117 — 0.00089 + 0.00008
=0.8512

9. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor’s series method given that y1 = y2 +x and
y(0)=1

Sol: Giveny' = y? +x >(1)

and y(0)=1 2(2)
Here Xo =0, yo = 1.
Differentiating (1) w.r.t ‘x’, we get

y'=2yy'+1 >(3)
y" =2ly- ¥+ )] >
T2y yt +yyte2yy']
=2y y" +3y'y"] >()
Putxo=0,yo=11in (1), (3), (4) and (5), we get
Yo =(1)°+0=1

0 =2() (1) +1=3,




Yo' =2((1) (3) + (1)*) =8

Yo =2[(1)(8)+3(1)@3)]
=34
Take h=0.1.
Stepl: By Taylor’s series expansion, we have

h h? h® h*
y(X1) =y1=Yo + Eyg — VYo +—VY, + —IygV+.... >(6)

2! 3!
on substituting the values of yo, y; , y. etc in (6),we get
2 3 4
y(0.1)=y;=1+(0.1)(1) + (0. (3) + 0.0 (8) + @(34”
2 6 24
=1+0.1+0.015 + 0.001333 + 0.000416

y1 = 1.116749

Step2: Let us find y(0.2),we start with (x1,y1) as the starting values
Here x; =Xo+h=0+0.1=0.1and y,; = 1.116749
Putting these values in (1),(3),(4) and (5), we get

y, = y24x; = (1.116749)? + 0.1 = 1.3471283
y!' =2y, y! +1=2(10116749) (1.3471283) + 1 = 4.0088
" =20y v+ (y))?) = 2((1.116749) (4.0088) + (1.3471283)7] = 12.5831

v,  =2y1y" +6y ' =2(1.116749) (12.5831) + 6(1.3471283) (4.0088) =
60.50653
By Taylor’s expansion
h h? h? h*
Y(XZ)ZYZ:W'*‘ﬁle +§y1“ —yl”' ﬁyll\/*l‘....

y(0.2) =y, = 1.116749 + (0.1) (1.3471283) + 02" ) 4.0088) + & 61) (12.5831)

L O 1) (60.50653)

y>=1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252
=1.27385

y(0.2) =1.27385
Step3: Let us find y(0.3),we start with (X,y2) as the starting value.
Herex; =x; +h=0.1+0.1=0.2and y, = 1.27385
Putting these values of x, and y, in eq (1), (3), (4) and (5), we get
Yy = Y, +Xp= (1.27385)% + 0.2 = 1.82269
Yy, =2y, y; +1=2(1.27385) (1.82269) + 1 = 5.64366

y" = 2Ly, v+ (yh)?] = 2[(1.27385) (5.64366) + (1.82269)7]
= 14.37835 + 6.64439 = 21.02274
yV =2y, + Y 46y -y = 2(1.27385) (21.00274) + 6(1.82269) (5.64366)




=53.559635 + 61.719856 = 115.27949

By Taylor’s expansion,

y(x)=y=y+ﬂy'+h—2y”+h—3y +h—4y'v+
A e TR P YR TR L TR

O & 64366) + O

¥(0.3) = ys = 1.27385 + (0.1) (1.82269) + - -

(21.02274)

4
+ O 115 27049)
24

=1.27385 + 0.182269 + 0.02821 + 0.0035037 + 0.00048033
=1.48831
y(0.3) = 1.48831
10. Solve ylz X2 — Y, Y(0) = 1 using Taylor’s series method and evaluate
y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 decimal places)
Sol:  Giveny'=x’—vy >(1)
andy(0) =1 2>(2)
Herexo=0,yp =1

Differentiating (1) w.r.t ‘x’, we get

y'=2x-y>(3)
Yi'=2-y' >
y|V — _ylll 9(5)

put Xo =0, Yo=11in (1),(3),(4) and (5), we get
Yo= X5 ~Yo=0-1=-1,
Yo =2Xo- ¥, =2(0)-(-1)=1
=2y =21= 1,
v

Yo =-yg =-1 Takeh=0.1

Stepl: by Taylor’s series expansion

Yo =yimyor Lyt D B B 5
DEVEYoT gy Yo T op Yo TgpYo Ty Yo T
On substituting the values of yo, y,, Y, etcin (6), we get
2 3 4
y(0.1) = y; = 1+ (0.1) (-1) + %(1” (0'61) (1) + (02'1) -1)+....

=1-0.1 + 0.005 + 0.01666 — 0.0000416
=0.905125 ~ 0.9051 (4 decimal place).
Step2: Let us find y(0.2) we start with (x1,y;) as the starting values
Herex=Xo+h=0+0.1=0.1and y; = 0.905125,
Putting these values of x; and y; in (1), (3), (4) and (5), we get
y! = x? -y; = (0.1)° — 0.905125 = -0.895125

y'=2x; - y' =2(0.1) - (-0.895125) = 1.095125,




y"=2- y" =2-1.095125 = 0.90475,
V= .y = .0.904875,

1

By Taylor’s series expansion,

2 3 h4 v
TR TR AR

Y(Xz):y2:y1+EY'+h—yH+
uot o2t 3

2
y(0.2) =y, = 0.905125 + (0.1)(-0.895125) + + % (1.09125) +

3 4
%(1.095125) + % (-0.904875)+....

y(0.2) =y, =0.905125 — 0.0895125 + 0.00547562 + 0.000150812 — 0.0000377
=0.8212351 ~ 0.8212 (4 decimal places)
Step3: Let us find y(0.3), we start with (Xy,y») as the starting value

Here x; =x; + h=0.1+ 0.1 = 0.2 and y, = 0.8212351

Putting these values of x, and y, in (1),(3),(4), and (5) we get
y: = x2 -y, = (0.2)> —0.8212351= 0.04 — 0.8212351 = - 0.7812351
Yy, =2Xp - y; =2(0.2) +(0.7812351) = 1.1812351,
y,'=2- y) =2-1.1812351 = 0.818765,
y) =-y)' =-0.818765,

By Taylor’s series expansion,

2
1

(X3) =y3= +D'+h_ "+h_3 +h_4|V+
Y(X3) =y3 =2 TRE Y 3Iy2 4Iy2

21
2
y(0.3) =y = 0. 8212351 + (0.1)(-0.7812351) + (0.3 (1.1812351) +
3 4
%(0.818765) + % (-0.818765)+....

y(0.3) = y3 = 0. 8212351 0.07812351+ 0.005906 + 0.000136 — 0.0000034

= 0.749150 ~ 0.7492 (4 decimal places)

Step4: Let us find y(0.4), we start with (xs,y3) as the starting value
Here X3 =x;+ h=0.2+ 0.1 = 0.3 and y; = 0.749150
Putting these values of x3 and ys in (1),(3),(4), and (5) we get
y: = x2 - y3 = (0.3)° - 0.749150= -0.65915,
y!'=2xs- yi =2(0.3) + (0.65915) = 1.25915,
ya'=2- yl' =2-1.25915 = 0.74085,

V= yM =.0.74085,

3

By Taylor’s series expansion,




2 3 h4
v
ETRATE RS

YXe) = ya = ys + 1 ISRV
WENERT R BTy s Ty

2
y(0.4) = y4 = 0. 749150 + (0.1)(-0.65915) + % (1.25915) +

3 4
(DN (0.74085) + .1 (-0.74085)+....
6 24
y(0.4) =y, = 0. 749150 — 0.065915+ 0.0062926+ 0.000123475 — 0.0000030
= 0.6896514 ~ 0.6896 (4 decimal places)
11. Solve y* = x*—y, y(0) = 1using T.S.M and evaluate y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4
decimal place ) 0.9051, 0.8212, 07492, 0.6896

12. Given the differentiating equation y* = x* + y?, y(0) = 1. Obtain y(0.25) and y(0.5) by T.S.M.
Ans: 1.3333, 1.81667

13. Solve y* = Xy2 +y, y(0) = 1 using Taylor’s series method and evaluate y(0.1) and y(0.2)
Ans: 1.111, 1.248.

EULER’S METHOD

It is the simplest one-step method and it is less accurate. Hence it has a limited application.

Consider the differential equation j_y =f(xy) 2>(1)
X

With y(Xo) = yo=>(2)
Consider the first two terms of the Taylor’s expansion 0Of y(X) at X = X
Y(X) = Y(Xo) + (X —X) Y'(X0) 2>(3)
from equation (1) y'(xo) = f(Xo,y(X0)) = f(Xo,o)
Substituting in equation (3)

2 Y(X) = y(Xo) + (X — Xo) f(Xo,Y0)
At X = X1, Y(X1) = Y(Xo) + (X1 — Xo) F(Xo0,Y0)

Y1 =Yo +hf(Xo,Yo) Whereh=xX;—Xp
Similarly at x =Xz, Y2 =y1 + h f(X1,y1),
Proceeding as above, Yn+1 = Yn + h f(Xn,Yn)
This is known as Euler’s Method

d
1. Using Euler’s method solve for x = 2 from d_y = 3x* + 1,y(1) = 2,taking step size () h=0.5
X

and (I1) h=0.25
Sol: here f(x,y) = 3x*+ 1, xo = 1,yp = 2
Euler’s algorithm is yps1 = Yn + h f(Xn,yn), n=0,1,2,3,..... 2>(1)

() h=05 S Xi=Xg+h=1405=15




Takingn=01in (1), we have Xo=X1+h=15+05=2

Y1= Yo+ h f(Xo,Yo)
ie.  yi=y(05)=2+(05)f(1,2)=2+(0.5) (3 +1)=2+(0.5)4)

Here x;=Xo+h=1+05=15
Ly(L5)=4=y;
Taking n =1 in (1),we have
y2= Y1+ hf(xyy)
i.e. y(xz) = y> = 4 + (0.5) f(1.5,4) = 4 + (0.5)[3(1.5)* + 1] = 7.875
Herex,=x4+h=15+05=2

- y(2)=7.875
() h=0.25 5 X1 =1.25, X, =1.50, X3 = 1.75, X4 = 2
Takingn =0 in (1), we have
y1= Yo+ h f(Xo,Yo)
ie.  y(x1)=y1=2+(0.25)f(1,2)=2+(0.25)(3+1)=3

y(X2) = y2=y1 + h f(x3,y1)

i.e. y(x2) =y, =3+ (0.25) f(1.25,3)
=3+ (0.25)[3(1.25)* + 1]
=4.42188

Herex,=x1+h=125+025=15

~y(1.5) = 5.42188
Taking n =2 in (1), we have
e, y(X3) =ys=hTf(xzy)
=5.42188 + (0.25) f(1.5,2)
=5.42188 + (0.25) [3(1.5)% + 1]
= 6.35938

Here x3=x,+h=15+0.25=1.75
- y(1.75) =7. 35938
Taking n =4 in (1),we have
Y(Xa) = ya=y3 + N f(x3,y3)
i.e. y(X4) = y4 = 7.35938 + (0.25) f(1.75,2)
= 7.35938 + (0.25)[3(1.75)% + 1]

=8.90626




Note that the difference in values of y(2) in both cases
(i.e. when h = 0.5 and when h = 0.25).The accuracy is improved significantly when h is reduced to

0.25 (Example significantly of the equ is y = x®+ x and with this y(2) = y, = 10

2. Solve by Euler's method,y' = x +y, y(0) = 1 and find y(0.3) taking step size h = 0.1. compare the
result obtained by this method with the result obtained by analytical solution
Sol:  y;1=1.1=y(0.1),
y>,=y(0.2) =1.22
y3 =y(0.3) = 1.362
Particular solution is y = 2e* — (x + 1)
Hence y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) = 1.5997

We shall tabulate the result as follows

X 0 0.1 0.2 0.3
Eulery 1 1.1 1.22 1.362
Eulery 1 1.11034 1.3428 1.3997
The value

of y deviate from the execute value as x increases. This indicate that the method is not accurate
3. Solve by Euler’s method y* +y = 0 given y(0) = 1 and find y(0.04) taking step size
h=0.01 Ans:  0.9606

4. Using Euler’s method, solve y at x = 0.1 from y* = x+ y +xy, y()) = 1 taking step size

h =0.025.
5. Given that g—y =xy ,y(0) = 1 determine y(0.1),using Euler’s method. h=0.1
X
Sol:  The given differentiating equation is g—y: xy, y(0) =1
X
a=0

Here f(X,y) =xy,Xo=0and yp=1

Since h is not given much better accuracy is obtained by breaking up the interval (0,0.1) in to five

steps.

Euler’s algorithm is yn+1 = Yo + h f(Xn,Yn) 2>)
-.From (1) form = 0, we have




y1= Yo +h (x0,y0)
=1+ (0.02) f(0,1)
=1+ (0.02) (0)
=1
Next we have x; =xo+ h=0+0.02 =0.02
.. From (1), form = 1,we have
Y2 =y1 + hf(xy,y1)
=1+ (0.02) f(0.02,1)
=1+ (0.02) (0.02)
=1.0004
Next we have X, =x; + h=0.02 + 0.02 =0.04
. From (1), form = 2,we have
ys = Y2 + h f(x2,2)
=1.004 + (0.02) (0.04) (1.0004)
=1.0012
Next we have x3 =X, + h=0.04 + 0.02 =0.06
. From (1), form = 3,we have
Ya=Y3+ hf(x3,y3)
=1.0012 + (0.02) (0.06) (1.00012)
=1.0024.
Next we have X4 = X3 + h =0.06 + 0.02 =0.08
..From (1), form = 4,we have
Y5 = Ya + h f(Xq,ya)
=1.0024 + (0.02) (0.08) (1.00024)
=1.0040.
Next we have X5 = X4 + h=0.08 + 0.02 =0.1
When X = Xs, y~Ys
.y =1.0040 when x =0.1

6. Solve by Euler’s method y' = 2y given y(1) = 2 and find y(2).
X

7. Given that j—y =3x°+ Yy, ¥(0) = 4.Find y(0.25) and y(0.5) using Euler’s method
X

Sol: given % =3x%*+yand y(1) = 2.

X
Here f(x,y) = 3x* +y, Xo = (1), yo= 4
Consider h =0.25
Euler’s algorithm is yn+1 = Yn + h f(Xn,Yn) 2>(1)
-.From (1), for n =0, we have
Y1 = Yo + h f(Xo,Yo)
=2+ (0.25)[0 + 4]
=2+1




=3
Next we have x; =xp+h=0+0.25=0.25
When X = Xy, Y1~y
-y =3 when x =0.25
. From (1), for n = 1, we have
Y2 =y1+h f(X1,y1)
=3+ (0.25)[3.(0.25)* + 3]
= 3.7968
Next we have x, =x; +h=0.25+0.25=0.5
Whenx =Xz, Yy~ Yy
.y =3.7968 when x = 0.5.

—-X
a y—, y(0) =1 and estimate y(0.1) using Euler’s
y+X

8. Solve first order diff equation
method (5 steps) Ans: 1.0928

9. Use Euler’s method to find approximate value of solution of % —yx+5atx=2-1
X

and 2-2with initial contention y(0.2) = 1

Modified Euler’s method

Working rule :
i)Modified Euler’s method

i) When i=1y°_, can be calculated from Euler’s method

iii) K=0, 1......... gives number of iteration. i =1,2...

gives number of times, a particular iteration k is repeated

Suppose consider dy/dx=f(x, y) -------- (2) with y(xo) =yo----------- (2
To find y(x1) =y; at Xx=X3=Xp+h

Now take k=0 in modified Euler’s method

We get y. =y, + h/z[f (% Yo)+ f (% yl(i’l)ﬂ ........................... 3)
Taking i=1, 2, 3...k+1 in egn (3), we get
y” =y, +h/ Z[f (%o, Yo )] (By Euler’s method)

yl(l) = yo+h/2|:f (XO’ y0)+ f (Xi' yl(O)):|

W =y 012 1 (%, %0)+ f (.0.7)]




VY = Yo tn12] 1 (%, ¥0)+ F (% 0") |

k+1)

If two successive values of y,*), v are sufficiently close to one another, we will take the

common value as y, = y(X,)=Yy(x +h)

We use the above procedure again
1) using modified Euler’s method find the approximate value of X when x=0.3

given that dy/dx=x+y and y(0)=1
sol:  Given dy/dx=x+yand y(0)=1
Here f(X,y)=x+y,% =0 and y,=1
Take h = 0.1 which is sufficiently small
Here x,=0,x, =X, +h=0.1x,=x +h=0.2,x,=%,+h=0.3

The formula for modified Euler’s method is given by

Vel =y, + h/2[f (X + Y )+ f (ka Vi ™ )} —(1)

Stepl: To find y1= y(x1) =y (0.1)
Taking k =0 in eqn(1)
Ve = Yo +012] T (% +¥0)+ T (3, 0.7) [ (2)
when i=1 ineqn (2)
W = Yo +h/2] £ (%, ¥0)+ f (33,7

First apply Euler’s method to calculate yio) =y

Y =y, (%, Y,)
= 1+(0.1)f(0.1)
= 1+(0.1)
=1.10

now[ X, =0,Y, =1,% =0.1,y,(0)=1.10]

S =yt 0/2] £ (%Yo )+ 1 (%37 |

= 1+0.1/2[f(0,1) + f(0.1,1.10)
= 1+0.1/2[(0+1)+(0.1+1.10)]
=111

When i=2 in egn (2)

W = Yo +h72] £ (%,¥0)+ F (3,37 ) |

= 1+0.1/2[f(0.1)+f(0.1,1.11)]
=1+ 0.1/2[(0+1)+(0.1+1.11)]
=1.1105

W = Yo +012] (% ¥0)+ f (%17




= 1+0.1/2[f(0,1)+f(0.1 , 1.1105)]

= 1+0.1/2[(0+1)+(0.1+1.1105)]
=1.1105

Since y,? =y,®

- y1=1.1105

Step:2 To find y, = y(x2) = y(0.2)

Taking k =1 ineqgn (1) , we get

v =yt 2) £ (x3)+ f (03 Y) [ (3)

i=1,234,.....
Fori=1

v =y h 2] £ (g, y)+ (%, 9.) |
yz(o) is to be calculate from Euler’s method
yz(O) =y, +h f (Xl’ yl)

= 1.1105 + (0.1) f(0.1 , 1.1105)

= 1.1105+(0.1)[0.1+1.1105]
=1.2316

.y = 1.1105+0.1/2[ f (0.1,1.1105)+ f (0.2,1.2316) |

= 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316]
= 1.2426

V.2 =yt 01 2] £ (% 0)+ T (x3:7) ]

=1.1105 + 0.1/2[f(0.1, 1.1105) , f(0.2 . 1.2426)]
= 1.1105 + 0.1/2[1.2105 + 1.4426]

=1.1105 + 0.1(1.3266)

= 1.2432

V¥ =y 2] (g, )+ 1 (3|

= 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)]
= 1.1105+0.1/2[1.2105+1.4432)]
= 1.1105 + 0.1(1.3268)




=1.2432
Since y,? =y,
Hence y, = 1.2432

Step:3
To find y5 = y(xs) = y y(0.3)

Taking k =2 in eqn (1) we get
v =y, +h12] 1 (% y)+ 1 (i) [ (4)
Fori=1,

v =y, +h/2[f (%0 ¥2)+ (%, yﬁ)}
ys(o) is to be evaluated from Euler’s method .

v, ” =y, +hf (%, Ys)
= 1.2432 +(0.1) f(0.2 , 1.2432)
= 1.2432+(0.1)(1.4432)
=1.3875
ooy =1.2432+0.1/2[f(0.2 , 1.2432)+£(0.3, 1.3875)]
=1.2432 +0.1/2[1.4432+1.6875]
= 1.2432+0.1(1.5654)

= 1.3997
@ =y, +h/2| f f ®
Yo =Y+ (%20 ¥2)+ F (% ¥
= 1.2432+0.1/2[1.4432+(0.3+1.3997)]

= 1.2432+ (0.1) (1.575)

= 1.4003
@) _ h/2| f(x f(x,y.?
Ys Y, + ( 2’y2)+ 31 Y3
= 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)]

= 1.2432 +0.1(1.5718)

= 1.4004

Va9 =y, +012] £ (%, %5)+ (% v.) ]




= 1.2432 + 0.1/2[1.4432+1.7004]
= 1.2432+(0.1)(1.5718)

= 1.4004
Since y,* =y,

Hence y, =1.4004 . The value of y at x = 0.3 is 1.4004

2 . Find the solution of j— =x-y,y(0)=1latx=0.1,0.2,0.3,0.4 and 0.5 . Using modified
X

Euler’s method
dy _ x-yand y(0) =1
dx
Here f(X,y) = x-y,Xo=0and yp =1
Consider h=0.1 so that
Xx=0.1,%x,=0.2,%x3=0.3,xs=0.4and x5=0.5
The formula for modified Euler’s method is given by
Yk+1(i) =Y. +h/2 f (Xk’ yk)+ X1 yk+1(iil) _)(1)
Where k=0,1, 2, 3,..... i=1,2,3,.....

Sol . Given

v _ 1 - i i-1)\ |
X f (Xk'Yk)_Xk Yi E[f(xk,yk)+f(xk+1,yk+l( ))} yk+1()_yk+h/2|:f(xkvyk)+ f(xk+1'yk+1( 1))_
K
0
8- 0-1=-1 - 1+(0.1)(-1)=0.9 = y,©
0.1(i=1) 0-1=-1 1+(0.1)(-0.9)=0.91
14(-1-0.8) = -0.9
0.1(i=2) 0-1=-1 1/5(-1-0.81)= -0.905 1+(0.1)(-0.905)=0.9095
0.1(i=3) 0-1=-1 1(-1-0.80.95)= - 1+(0.1)(-0.90475)=0.9095
0.90475
K=1
0.1 0.1-0.9095= - - 0.9095+(0.1)(-
0.8095 0.8095)=0.82855
0.2(i=1) -0.8095 0.9095+(0.1)(-
%2(-0.8095-0.62855) 0.719025)=0.8376
0.2(i=2) -0.8095 1/5(-0.8095-0.6376) 0.9095+(0.1)(-
0.72355)=0.8371
0.2(i=3) -0.8095 1/(-0.8095-0.6371) 0.9095+(0.1)(-
0.7233)=0.8372




0.2(i=4)

-0.8095

15(-0.8095-0.6372)

0.9095+(0.1)(-
0.72355)=0.8371

K=2

0.2 0.2-0.8371=-0.6371 |- 0.8371+(0.1)(-
0.6371)=0.7734

0.3(i=1) = .0.6371 15(-0.6371-0.4734) | 0.8371+(0.1)(-
0.555)=0.7816

0.3(i=2) = 0.6371 15(-0.6371-0.4816) | 0.8371-
0.056=0.7811

0.3(i=3) = 0.6371 15(-0.6371-0.4811) | 0.8371-
0.05591=0.7812

0.3(i=4) =-0.6371 15(-0.6371-0.4812) | 0.8371-0.055915 =
0.7812

K=3

0.3(i=1) 0.3-0.7812 - 0.7812+(0.1)(-
0.4812) =0.7331

0.4(i=1) -0.4812 15(-0.4812-0.4311) | 0.7812-0.0457 =
0.7355

0.4(i=2) -0.4812 %5(-0.4812-0.4355) 0.7812-0.0458 =
0.7354

0.4(i=3) -0.4812 %5(-0.4812-0.4354) 0.7812-0.0458 =
0.7354

K=

0.4 -0.3354 - 0.7354-0.03354 =
0.70186

0.5 -0.3354 %(-0.3354- 0.7354-0.03186 =

0.301816) 0.7035
0.5 -0.3354 %2(-0.3354- 0.7354-0.0319 =
0.30354) 0.7035

3. Find y(0.1) and y(0.2) using modified Euler’s formula given that dy/dx=x?-y,y(0)=1

[consider h=0.1,y;=0.90523,y,=0.8214]

4. Given dy/dx=—xy*, y(0)=2compute y(0.2) in steps of 0.1

Using modified Euler’s method

[h=0.1, y1=1.9804, y,=1.9238]




5. Given y* = x+siny, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using modified Euler’s

method

[y1=1.2046, y,=1.4644]

Runge — Kutta Methods

I. Second order R-K Formula

Vi1 = Vitl/2 (Ki+Ky),
Where K; = h (i, i)
Kz = h (X;+h, yitk;)
Fori=0,1,2-------

I1. Third order R-K Formula

Yir1 = Vitl/6 (Ki+4Ko+ K3),
Where K = h (X;, Yi)
Kz = h (xi+h/2, yo+ki/2)
K3 =h (xj+h, yi+2ka-k;)
Fori=0,1,2-------

I11. Fourth order R-K Formula

Yis1 = Yitl/6 (K1 +2Ko+ 2K3+Ky),
Where Ki = h (X;, Y;)

Kz = h (xi+h/2, yi+ki/2)

Ks = h (xi+h/2, yi+ka/2)

K4 = h (Xi+h, yi+ks)

Fori=0,1,2-------

1. Using Runge-Kutta method of second order, find y(2.5) from

Sol: Given dy = Xy y(2)=2.
dx X

Ty

Here f(X, y) = X+y ,X0=0,yo=2and h=0.25
X

5. X1 =Xoth =2+0.25 =2.25, Xo = X1+h =2.25+0.25 =25

By R-K method of second order,

Y _ XY =2 h=025.
dx X




Vi =¥ +1 2+, ) b = (% 0,y 1), i =01 (1)

Step -1:-
To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in eqn(i)

We have vy, = yo+%(k1+k2)

Where k;= hf (Xo,Yo ), ko= hf (Xo+h,yo+k;)
f (Xo,Yo )=f(2,2)=2+2/2=2
ki=hf (Xo,Y0 )=0.25(2)=0.5
ko= hf (Xo+h,yo+ki)=(0.25)f(2.25,2.5)
=(0.25)(2.25+2.5/2.25)=0.528
- V1=y(2.25)=2+1/2(0.5+0.528)
=2.514
Step2:
To find y(xy) i.e., y(2.5)
i=1lin (1)
x1=2.25,y,=2.514,and h=0.25
y2=y1+1/2(ki+k)
where ki=h f((x1,y1 )=(0.25)f(2.25,2.514)
=(0.25)[2.25+2.514/2.25]=0.5293
k,=hf(x+hy,+k)=(0.1) f (0.1,1-0.1)=(0.1)(-0.9) =-0.09
=(0.25)[2.5+2.514+0.5293/2.5]
=0.55433

y, =Y (2.5)=2.514+1/2(0.5293+0.55433)

=3.0558
..y =3.0558 when x = 2.5
Obtain the values of y at x=0.1,0.2 using R-K method of
(i)second order (ii)third order (iii)fourth order for the diff eqn y*+y=0,y(0)=1
Sol: Given dy/dx = -y, y(0)=1
f(x,y) =-y, %=0,y0=1
Here f (X,y) =-y, X0=0, yo=1take h=0.1




S X1=Xpth =0.1,
X2=X1+th=0.2
Second order:
stepl: To find y(x;) i.e y(0.1) or y;
by second-order R-K method,we have
Y1 = Yot+1/2(ki+ky)
where k;=hf(Xo,Y0)=(0.1) f(0,1) = (0.1)(-1)=- 0.1
ko= hf (Xo*+h, yo+ki)= (0.1) f (0.1, 1-0.1) = (0.1)(-0.9) = -0.09
y1=y(0.1)=1+1/2(-0.1-0.09)=1-0.095=0.905
..y =0.905 when x=0.1
Step2:
To find y, i.e y(x,) i.e y(0.2)
Here x; = 0.1, y; =0.905 and h=0.1
By second-order R-K method, we have
V2 = Y(X2)= y1+1/2(ky+k>)
Where k, =h f(x,y;)=(0.1)f(0.1,0.905)=(0.1)(-0.905)=-0.0905
k,=h f(x+h,y,+k)=(0.1) f (0.2,0.905-0.0905)
1

0
~(0.1) f (0.2,0.8145) = (0.1)(~0.8145)
=-0.08145

y>= y(0.2)=0.905+1/2(-0.0905-0.08145)
=0.905- 0.085975 = 0819025
Third order
Stepl:
To find y; i.e y(x1)=y(0.1)
By Third order Runge kutta method
Y, = Yo +1/6(k, +4k, +k;)
where k; = h f(xo, yo) = (0.1) f (0.1) = (0.1) (-1) =-0.1

k,=hf(x+h/2,y,+k /2)=(0.1)f (0.1/2,1-0.1/2)=(0.1) f (0.05,0.95)
—(0.1)(~0.95) = -0.095

and k3=h f((Xo+h,y0+2k2-k1)




(0.1) f(0.1,1+2(-0.095)+0.1)= -0.905

Hence y; = 1+1/6(-0.1+4(-0.095)-0.09) = 1+1/6 (-0.57) = 0.905

y1=0.905 i.e y(0.1)= 0.905

Step2:

To find ys,i.e y(X2)=y(0.2)

Here x;=0.1,y;=0.905 and h =0.1

Again by 2" order R-K method

Y2 = y1+1/6(Kk1+4ko+ks)

Where ki=h f(x1, y1) = (0.1)f (0.1,0.905)= -0.0905

ko= h f (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.2,0.905 - 0.0905)= -(0.1) f (0.15, 0.85975)= (0.1) (-0.85975)
and k3 = h f((x1+h,y1+2kz-k1)=(0.1)f(0.2,0.905+2(0.08975)+0.0905= -0.082355
hence Y = 0.905+1/6(-0.0905+4(-0.085975)-0.082355)=0.818874

.y =0.905whenx=0.1

And y =0.818874 when x =0.2

fourth order:

stepl:

X0=0,Y0=1,h=0.1 To find y; i.e y(x1)=y(0.1)

By 4" order R-K method, we have

Y1 = Yot 1/6(k;+2ko+2ks+k,)

Where ki=h f(Xo,Y0)=(0.1)f(0.1)=-0.1

ko=h f (Xo+h/2, yo+k1/2) = -0.095

and k3= h f((xo+h/2,yo+k2/2)=(0.1)f (0.1/2,1-0.095/2)
= (0.1)f(0.05,0.9525)

=-0.09525

and k4= h f(xo+h,yo+ks)

=(0.1) f(0.1,1-0.09525)=(0.1)f(0.1,0.90475)

=-0.090475

Hence y;=1+1/6(-0.1)+2(-0.095)+2(0.09525)-0.090475)
=1+1/6(-0.570975)+1-0.951625 = 0.9048375

Step2:

Tofindy,,ie., y(x,)=y(0.2),y, =0.9048375,ie., y(0.1) = 0.9048375




Here x; = 0.1, y1=0.9048375and h = 0.1

Again by 4" order R-K method, we have

Y2 = y1+1/6(K1+2Ko+2Ks+Ks)

Where ki=h f(x1,y1)=(0.1)f(0.1,0.9048375)=-0.09048375

ko= hf (x1+h/2,y1+k;/2)=(0.1)f(0.1+0.1/2,0.9048375 -0.09048375 /2)=-0.08595956
and ka=hf(x,+h/2, y1+k2/2)=(0.1)f(0.15,0. 8618577)= -0.08618577

ks =h f(x1+h,y1+ks)=(0.1)f(0.2,0.86517)

=-0.08186517

Hence y, = 0.09048375+1/6(-0.09048375-2(0.08595956)-2(0.08618577)- 0.08186517
=0.9048375-0.0861065

=0.818731

y =0.9048375 when x =0.1 and y =0.818731

3. Apply the 4" order R-K method to find an approximate value of y when x=1.2 in steps
of 0.1,given that

yi=x%+y2y (1)=1.5

sol.  Given y'= x*+y?and y(1)=1.5

Here f(x,y)= x*+y* yo=1.5 and xo=1,h=0.1

So that x;=1.1 and x,=1.2

Stepl:

To find y1ie Y(X1)

by 4™ order R-K method we have

Y1=Yo+1/6 (Ki+2ko+2ks+ky)

ki=hf(Xo,Yo)=(0.1)f(1,1.5)=(0.1) [12+(1.5)?]=0.325

ko= hf (xo+h/2,yo+k1/2)=(0.1)f(1+0.05,1.5+0.325)=0.3866

and ks=hf((xo*+h/2,yo+k2/2)=(0.1)f(1.05,1.5+0. 3866/2)=(0.1)[(1.05)*+(1.6933)*]
=0.39698

k4=hf(xo+h,yo+ks)=(0.1)f(1.0,1.89698)

=0.48085

Hence




Y, =1.5+%[0.325+ 2(0.3866)+2(0.39698) +0.48085 |
=1.8955

Step2:
Tofindys, ie., y(x,)=y(1.2)

Here x;=0.1,y;=1.8955 and h=0.1

by 4™ order R-K method we have

Yo = y1+1/6(K1+2ko+2ks+k,)

ke=hf(x1,y1)=(0.1)f(0.1,1.8955)=(0.1) [1%+(1.8955)%]=0.48029

ko= hf (x1+h/2,y1+k1/2)=(0.1)f(1.1+0.1,1.8937+0.4796) =0.58834

and ka=hf((x,+h/2,y:+k2/2)=(0.1)f(1.5,1.8937-+0.58743) =(0.1)[(1.05)%+(1.6933)7]
=0.611715

ka=hf(x1+h,y1+ks)=(0.1)f(L.2,1.8937+0.610728)

=0.77261

Hence y,=1.8937+1/6(0.4796+2(0.58834)+2(0.611715)+0.7726) =2.5043

.y =2.5043 where x=0.2

4. using R-K method, find y(0.2) for the eqn dy/dx=y-x,y(0)=1,take h=0.2

Ans:1.15607

5.Given that y*=y-x,y(0)=2 find y(0.2) using R- K method take h=0.1

Ans: 2.4214

6. Apply the 4™ order R-K method to find y(0.2) and y(0.4) for one equation

10% =x*+v? y(O) =1takeh=0.1 Ans. 1.0207, 1.038
X

7. using R-K method, estimate y(0.2) and y(0.4) for the egn dy/dx=y?-x*/ y*+x?,y(0)=1,h=0.2
Ans:1.19598,1.3751

8. use R-K method, to approximate y when x=0.2 given that y*=x+y,y(0)=1

Sol: Here f(x,y)=x+y,yo=1,X,=0

Since h is not given for better approximation of y




Take h=0.1

. X1=0.1, x,=0.2

Stepl

To find y; i.e y(x1)=y(0.1)

By R-K method,we have

Y1=Yo+1/6 (Ki+2ko+2ks+ky)

Where k;=hf(Xo,Y0)=(0.1)f(0,1)=(0.1) (1)=0.1

ko= hf (xo+h/2,yo+k1/2)=(0.1)f(0.05,1.05)=0.11

and ks=hf((xo+h/2,yo+k2/2)=(0.1)f(0.05,1+0. 11/2)=(0.1)[(0.05) +(4.0.11/2)]
=0.1105

ks=h f (Xo+h,yo+ks)=(0.1)f(0.1,1.1105)=(0.1)[0.1+1.1105]

=0.12105
Hence ..y, =y(0.1) :1+%(0.1+0.22+0.240+0.12105)

y =1.11034

Step2:

To find y; i.e y(X2) = y(0.2)

Here x;=0-1, y;=1.11034 and h=0.1

Again By R-K method,we have

Yo=Yy1+1/6(K1+2ko+2ks+Ky)

ki=h f(x1,y1)=(0.1)f(0.1,1.11034)=(0.1) [1.21034]=0.121034
ko= h f (x;+h/2, y1+k;/2)=(0.1)f(0.1+0.1/2,1.11034+0.121034/2)
=0.1320857

and ks=h f((x,+h/2,y1+k,/2)=(0.1)f(0.15,1.11034+0.1320857/2)
=0.1326382

ks=h f(x;+h,y;+k3)=(0.1)f(0.2,1.11034+0.1326382)
(0.1)(0.2+1.2429783)=0.1442978

Hence y,=1.11034+1/6(0.121034+0.2641714+0.2652764+0.1442978

=1.11034+0.1324631 =1.242803




..y =1.242803 when x=0.2

9.using Runge-kutta method of order 4,compute y(1.1) for the eqn y*=3x+y? y(1)=1.2 h = 0.05
Ans:1.7278

10. using Runge-kutta method of order 4,compute y(2.5) for the egn dy/dx = x+y/x, y(2)=2 [hint h =
0.25(2 steps)]

Ans:3.058
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Multiple Inteqrals

Double Integral :

l. When y;,y- are functions of x and x, and X, are constants. f(x,y)is first integrated w.r.t y

keeping ‘x’ fixed between limits y1,Y, and then the resulting expression is integrated w.r.t ‘x” with
in the limits X¢,X, i.e.,

X% Y= ()
ﬂf(x, y)dxdy = I I f (x, y)dydx

X=X y=#(X)
Il. When x3,X; are functions of y and y; Y are constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits x1,X; and then resulting expression is integrated w.r.t ‘y’

between the limits y1,y- i.e.,

Y=Y, x=¢(y)
_” f(x,y)dxdy = I J. f(x,y)dx dy
R y=y1  x=4(y)
1. When x1,X2, Y1,y are all constants. Then

] X2 X2 Y2
“f(x,y)dxdy: I jf(x,y)dx dy =I If(x,y)dy dx
R Y1 X X Y1

Problems

23
1. Evaluate ”xyzdxdy
11

2] 3
Sol. j { j xyzdx}dy
1




X2

3. Evaluate j‘J' X(x* +y? dxdy
00

Sol.

5 x° 5 3 x?

_[ j x(x2+y2)dydx= J[x3y+ﬁ} dx

x=0 y=0 x=0 3 y=0
5 5 7 6 8 P 6 8
I x*.x° +X(X) dx_I X+ 2 Jdx = LA
o RN 6 38| 6 24

1
4, Evaluate I dydx
0 0

1+ X +y°

2 2
5 o L+x“+yT S

. 1 dydx 1| 1
Sol: J. = l: A mdy dx

1+%°

1| N1+ 1 1

_ _ (.t 1Y S R N
_XIO yjo (m)2+y2dy dX_XIOW{Tanl 1+X2} dx [ IX2+aZdX—atan l(%)]

y=0

1
- [ —2—[Tan"1-Tan"0]ax or %(sinh‘1><)t=%(5i”h_11)

x=0 \fl-ﬁ- X2
S J'O 1+x= [Iog(x+M}

x=0

=7 10g(1++2)

4 x?

5. Evaluate ”ey’xdydx
00

Ans: 3e*-7

13X
6. Evaluate .”(x2+y2)dxdy
0 x

Ans: 3/35

2 X
7. Evaluate _[ je‘“”dydx
00

4_92

e
Ans:

8. Evaluate

O —— | N
|

1
I x?y*dxdy
1




3

Ans: z
36

9. Evaluate J’ j e dxdy
0

Sol: TTe‘(X2+y2’dxdy = Te‘yz [T e‘xzdx} dy
00 0 0

:J'e‘y2 ﬁdy je‘x dx:ﬁ

0 2 0 2
:ETe_yzdy:_ﬂ_ﬂzz

2 3 22 4
Alter
e 2,2 % % 2
”e’(x Y dxdy = j je’r rdrd@ (X2 +y*=r?)
00 6=0r=0

(changing to polar coordinates taking X =rcosé,y =rsin @)

s
=500 =3(%-9)

10. Evaluate [ [ xy(x+ y)dxdy over the region R bounded by y=x and y=x

Sol: y=x* is a parabola through (0,0) symmetric about y-axis y=x is a straight line through (0,0)
with slopel.

Let us find their points of intersection solving y=x*, y=x we get x*=x = x=0,1Hence y=0,1

". The point of intersection of the curves are (0,0), (1,1)

Consider Ji[ xy(X + y)dxdy
R

For the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x to y=x and then w.r.t. ‘x’ from
x=0to x=1

I “ ny+y)dy]dx J' U X2y + Xy )dy}dx

2 3\
:Il el X dx
wo|” 2 3

=002 3 2 3

=0 6 2 3




5% x X))

(E 5 14 24)
1 1 1 28 12-7 28 19 9 3
6 14 24 168 168 168 56

11. Evaluate I Ixydxdy where R is the region bounded by x-axis and x=2a and the curve x’=4ay.
R

Sol. The line x=2a and the parabola x*=4ay intersect at B(2a,a)

~The given integral = | [ xy dx dy
R

Let us fix ‘y’

For a fixed ‘y’, x varies from 2,/ay to 2a. Then y varies from 0 to a.

Hence the given integral can also be written as

I ooy [ oy

a 2 i
= [ 2a® —2ay |ydy -
y=i
a - < P
22y’ 2ay® , 2a* 3a‘-2a* a* N
= — :a — = = — o ,\-’\.\e A etk o 0{
2 3 3 3 3 i R

12. Evaluate IO I rsin@dadr
0

Sol. :z r[f%sinede}dr
—I —cosd); 72 2, ar
= r:O—r(cos% cosO)dr
1
—I r(0- 1dr_.[ rdr_( 2] :1_0:1
2) 272
13.Evaluate [[(x* +y®)dxdy in the positive quardrant for

which x+y<1

Sol. ”(xz +y? )dx dy = J.Xlzo dx_[yyjfx(x2 +y? ) dy
R

1 ) y3 X g Q
= XV+— X
y 3

x=0
0

Y\\C,V)




11011

34 12 6
14. Evaluate ” (x*+y)dxdy over the area bounded by the ellipse —+§=1
Sol. Given ellipse is —+y—2:1
a~ b
_y? ¥ 1 b?
|.e.,§ =1—¥ =¥(a2 —xz)(or) y? =¥(a2 —x2)

sy :iEx}az —X?
a
Hence the region of integration R can be expressed as

-b b
—a<x<a,—al-x’ < yS—\/az—x2
a

.-.”(x2+y2)dxdy=£_ .[{_\/;T;EXZ(X +y? )dxdy
R
ba\/ﬁ
off [ oy oy |
=2J:{x2.éx/a2—x2 +%(a2—x2)%}dx
:4J'Oa{%x2\/a2 —x? +3b—;(a2 —XZ)%}dX

Changing to polar coordinates
putting X = asin @

dx=acos8do

X . .
Z=sind=0=sin"
a

X—=>06->0

@ | x

x—>a,0—>Z
2

— 72 b 2 qin2 b’ 3 3
—4I0 /3.a sin 9.acos@+§.a cos® @ |acos@do

3
4_[/ a’bsin®@cos® 0+ — ab’ cos* 0 |dO=4|a b11£+£.§.1.z
3 42 2 3 422
z 1z
) ~ ~ = r
_[sm @cos" 0dO = n 1. n-3 . 22
5 m+n m+n-2 m




Double integrals in polar co-ordinates:

asing rdrd@

T
Sol. I/J'asmf) rdrd9 J-/{J-as'"f) azr_r2 dr}dez_%jo%{joaw a—22_rr2 dr}de
:__]_J‘:AZ( '—az_rz)aslnﬁdez(_l)J‘OAZ[\/aZ_aZSinZQ_\/az_one

2 0

1. Evaluate I 7 I

=(—a)-[o%(cose—l)de=(—a)(sin 9—9);%
=(-a)[[sin,~7,]~(0-0)]
:(—a)[}/ﬁ—%}zz[%_}/\/ﬂ

2. Evaluate .[”rsmgrdrde AnNs: arz
0 Jo 4
3. Evaluate jwj%e‘rzrdedr Ans: Z
4

a(1+cos0) 37a’

4. Evaluate I I r drdé Ans:

Change of order of Integration:
1. Change the order of Integration and evaluate I Iy 2/ dy dx

2

Sol. In the given integral for a fixed x, y varies from :— to 24/ax and then x varies from 0 to 4a. Let
a

2
us draw the curves y = :— and y =2ax
a
The region of integration is the shaded region in diagram.
] ] . 4a p24fax
The given integral is = Ixzojyz ) dy dx

Changing the order of integration, we must fix y

2

first,for a fixed y, x varies from Z— to /4ay
a

and then y varies from 0 to 4a.

Hence the integral is equal to

j I dxdy I U y/dx} %
[T =] 2=V, by




4 1
= — Ja.4a4a -—.64a°
3 Va 12a

2, 16, 16,

3 3 3

2. Change the order of integration and evaluate = J':J'f(xz +y*)dxdy

Sol. In the given integral for a fixed X, y varies from —to X' and then x varies from 0 to a
a a

X f
Hence we shall draw the curves y=— and y = X
a a

i.e. ay=x and ay’=x
we get ay = ay®
=ay—ay’=0

= ay(1-y)=0 3%
=y=0y=1

If y=0, x=0 if y=1, x=a

The shaded region is the region of integration.
The given integral is J‘aoj‘yiy_"‘(x2 +y* Jdxdy
X= y:Xa

Changing the order of integration, we must fix
first. For a fixed y, x varies from ay? to ay and
then y varies from 0 to 1.

Hence the given integral, after change of the order of integration becomes
Loy 2, \,2
Iy:O J‘x:ay2 (X ty )dX dy

=] . :J‘Zayz (x2 + yz)dx} dy

1 (X ¥
_ X 2
= J'y:() 3 ] dy




a a a a a a

12 4 21 5 28 20

12-x

3.Change the order of integration in j J' xydxdy and hence evaluate the double integral.
0 x?

Sol. In the given integral for a fixed x,y varies from x? to 2-x and then x varies from 0 to 1.
Hence we shall draw the curves y=x* and y=2-x.

The line y=2-x passes through (0,2), (2,0)

Solving y=x? ,y=2-x

Then we get x* =2—x

=X +x-2=0

= X" +2x-x-2=0

= X(x+2)-1(x+2)=0

= (x=1)(x+2)=0

=>x=1-2

If x=1y=1

If x=-2,y=4

Hence the points of intersection of the curves are
(-2,4) (1,2)

The Shaded region in the diagram is the region of

intersection.

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies

from 0 to W

Then y varies from 0 to 1

For the region within CABC, for a fixed y, x varies from 0 to 2-y ,then y varies from 1 to 2

Hence _[:J?X Xy dy dx = ” Xy dx dy + H xy dx dy
OACO CABC

1 N 2 [ 2y
= yo[ o xdx}ydy+.[y1“Xo xdx}ydy
2-y

W 2
1 (X2 2 (X
=jy_o(?] ydy+.|.y_l(?J 7 y dy

x=0 =0
(2-y)
2

(" Lydy+(° d
=[ Sywv+f ydy
1l 12 2.3

=0, dy+E.J'y:1(4y—4y +y*)dy




(il
%[2.4_2.1_%(8—1%%(16_1)}

1{ 28 15} 1 1{72 112+45} 1 1[3}_“5 9
2

Nll—\
N

OJII—‘

1
2
1,
6

b——+— |==+ + =
3 4] 6 2 12 6 2|12

4. Changing the order of integration .[Oa IX?/_X xy “dy dx
5. Change of the order of integration J':joﬁ y“dxdy  Ans: %

Hint : Now limits are y =0toland x =0to/1— y?

puty=siné

«/1— y® =cosé

dy =cos@dé
= [ y?\L-yiay

:J‘O%sin2 0 cos? ¢9d6?:‘|'0%sin2 9d0—j?sin4 0do
1 31
=5(7)-73(74)= s

Change of variables:
The variables x,y in ” f (x,y)dxdy are changed to u,v with the help of the relations
R
x=f,(u,v),y = f,(u,v) then the double integral is transferred into
o(x,y)
g ff(uv), f,(uv)] 3(0)

Where R'is the region in the uv plane, corresponding to the region R in the xy-plane.

du dv

Changing from Cartesian to polar co-ordinates

X=rcosd,y=rsiné

x o
a((x, y)J: or 06|_[cos6 —rsind
(r,0)) |6y ody| [sin@ rcosd
o 00

(cos 0 +sin? 6) =r

I (x, y)dxdy:ﬂf(rcos&,rsin@)rdr do
Ry

R




Note : In polar form dx dy is replaced by rdr dé@

Problems:

1. Evaluate the integral by changing to polar co-ordinates Lw_[:e*(xz+

Sol. The limits of x and y are both from 0 to .

yz)dx dy

.. The region is in the first quadrant where r varies from 0 to « and & varies from 0 to %

Substituting x=rcosé,y=rsind and dxdy=rdrdé
Hence r_[mef(xzwz)dxdy:j% jw e"rdrdo
0 JoO =04Jr=0

Putr? =t
= 2rdr =dt

:rdr:d%

Wherer=0=t=0and r=co=t=w

e ) dxdy = /
o 1;

%=1/ \*
= [/ (e o

*mde

_ le/(o _1)do=

=375k
2. Evaluate the integral by changing to polar co- ordmatesj j

_ [a2_ 2
Sol. The limits for x are x=0 to X=ya -y
= x*+y’=a’

.. The given region is the first quadrant of the circle.
By changing to polar co-ordinates

X=rcosd,y=rsing,dxdy=rdrdé

Here ‘1’ varies from 0 to a and '@'varies from 0 to %
.-.J-Oaj-g/ﬁ(xz + yZ)dxdy =J.Z_|.;r2rdrd9
_I’V[ j 1o 4(0);%
0 4
:@a‘l
7T 5

2
3. Showthatj jy/ v 5 dxdy =8a’ (E_gj
+

x +y )dxdy




2
4. Sol. The region of integration is given by X = yﬁa, X =Yy andy=0, y=4a.

i.e., The region is bounded by the parabola y>=4ax and the straight line x=y.
Let x=rcosd,y=rsinf.Thendxdy =rdrdé
The limits for r are r=0 at O and for P on the parabola

4acosf
sin? @

r’sin’¢=4a(rcosf)=r=

For the line y=x, slope m=1i.e., Tand=1,0 = %

The limits for 0:% —>%

Also x* —y? =r?(cos* 0—sin® @)and X* +y* =r*

. 4a py Xz_y2 4acos G

~ J.y%aXZ‘FyZ dxdy = 977_[ Vanto (cos? @—sin® @)rdrd6
. 4a0057Sinz

:J'HéA(cosze—sinze)(r—;)o "do

_8aj cos® @ —sin H)Mdé?
7y sin* @

:8aZIZ(cos4 0—cot’ 0)do =8a’ {37;2_8 +%—1} —8a’ (f_§j
4

Triple integrals :

If X1,X2 are constants. y;,y, are functions of x and z;,z, are functions of x and y, then f(x,y,z) is first
integrated w.r.t. ‘z’ between the limits z; and z, keeping x and y fixed. The resulting expression is
integrated w.r.t ‘y’ between the limits y; and y, keeping x constant. The resulting expression is

integrated w.r.t. ‘x’ from x; t0 X;

i.e..m f(x,y,z)dxdydz=

I, Iygz [7E ¢ (x,y.2)dz dy dx

ygl Zf1Xy)




Problems

1. Evaluate I j I xyz dxdy dz
Sol. _[X ijloxj xyzdxdydz

- xl dx I y:xz dijHz__yz xyz dz

z=0

SR

y=0
z=0

2 4 6 Tt
_ip (x—2x3+x5)dx=E X _ax X
g Jr-o 8|2 4 6]

1(1_1+l) 1
"8l2 2 6) 48
2. Evaluate Ifljozjxxfzz(x+ y+2)dxdy dz

X+2Z

jj x+y+y dxdydz
0 x

= Jij: [(xy + y% + zyjX+Z dx dz

X-z

w
<3
Le—ar

_I J' X+2) )+_%} —[%} +2(X+2)—z(x—z)dxdz

1 pz ]_
:J._lj.o 2z(x+ Z)+E4XZ dx dz
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Vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts
of differential calculus, such as, continuity and differentiability to vector functions in a simple and
natural way. Also, the new concepts of gradient, divergence and curl are introduced.
DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar t € S, let there be associated a

unique vector f . Then f is said to be a vector (vector valued) function. S is called the domain of

f.Wewrite f = f(t).

Let i, j,k be three mutually perpendicular unit vectors in three dimensional space. We can
write f = f ()= f,t)i+ f,(t) ]+ f,(t)k , where fi(t), f2(t), fa(t) are real valued functions (which

are called components of f ). (we shall assume that i, j,k are constant vectors).

1. Derivative:

Let f be a vector function on an interval | and a ¢ I. Then Lt , if exists, is

t—a

f(t)-f(
—a

_ - df -
called the derivative of f ata and is denoted by f *(a) or (E] at t = a. We also say that f is

differentiable at t =a if f '(a) exists.

2. Higher order derivatives

_ £l c1
Let f be differentiable on an interval | and f = %be the derivative of f.If Lt_, rO-r@ (t:_f ()
~-a

exists for every a € Iy | . It is denoted by e

Similarly we can define f (t) etc.

We now state some properties of differentiable functions (without proof)
(1) Derivative of a constant vector is a .

If & and b are differentiable vector functions, then

d . da db
7). 4 gepyta . dd
@) G EED) =+

d - da- _db
3). Yap-Rp5,a%
@) Gr@b)=grb+a g

d . da db

(@). _(axb)=d—><5+§x—;




5). If fis a differentiable vector function and ¢ is a scalar differential function, then

L949¢
(¢ f)= ¢ i )
(6). If f=f@)i+f,(t) ]+ f,(t)k where fy(t), fo(t), fa(t) are cartesian components of the
df df, . df, . df, c

vector f , then — =iy —rj+=
dt dt dt dt

(7). The necessary and sufficient condition for f (t) to be constant vector function is 2—]; =0

3. Partial Derivatives
Partial differentiation for vector valued functions can be introduced as was done in the case

of functions of real variables. Let f be a vector function of scalar variables p, g, t. Then we write

f = f (p,q,t). Treating t as a variable and p,q as constants, we define

f(p!q!t+&)_ 'F(p,q,t)
A

Ltcﬁ—)O

if exists, as partial derivative of f w.r.t. t and is denot by a

of of
Similarly, we can define —p —qalso The following are some useful results on partial

differentiation.

4. Properties

1) —(m)—%— ¢—

2). If A is a constant, then a(la) 6a

o

o 0
3). If C is a constant vector, then — =C—
) p (f€) = p

o))
Y]]
D

4), e

)
H
Zl
[
2|
2|

).

~
|
O
N—r
I

o))
|
|
+
|
2|3

2o 2o 2o
2|

6).

—~
|
X
O
~
Il

7). Let f=fi+f,j+f,k , where fy, f,, fsare differential scalar functions of more then one

of, - of

variable, Then a_ L+ j—2+ E%(treating i, ],k asfixed directions)
ot ot ot ot

5. Higher order partial derivatives
o o’f ofof ) o*f o féf
Let f= f (p,q,t). Then —=—| — |, =—| — |etc.
ot ot\ ot ) opot op\ ot
6.Scalar and vector point functions: Consider a region in three dimensional space. To each point

p(x,y,z), suppose we associate a unique real number (called scalar) say ¢. This ¢(x,y,z) is called a




scalar point function. Scalar point function defined on the region. Similarly if to each point
p(x,y,Z)we associate a unique vector f (x,y,z), f is called a vector point function.

Examples:

For example take a heated solid. At each point p(x,y,z)of the solid, there will be temperature
T(x,y,z). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a
position p(x,y,z) in space, it will be having some speed, say, v. This speedv is a scalar point
function.

Consider a particle moving in space. At each point P on its path, the particle will be having a
velocity V which is vector point function. Similarly, the acceleration of the particle is also a vector
point function.

In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,z). This is

called magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.

Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a<t <b.

Then the set of all points (x(t),y(t),z(t)) is called a curve in a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the curve. If
A =B, the curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.

Let OF =+(t), 00 = 7(t + 6t) =7+ §7.Then 6Ff =00 — OF = PQ

Then % is along the vector PQ. As Q—P, PQ and hence % tends to be along the tangent
to the curve at P.

&_ar ar

Hence It " will be a tangent vector to the curve at P. (This pre may not be a unit vector)

a-0 &t
Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can

ar . .
observe that & IS unit tangent vector at P to the curve.
S

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator V(read as del) is defined as

Vzi'aiJr j%+ Eag. This operator possesses properties analogous to those of ordinary vectors as
z

X

well as differentiation operator. We will define now some quantities known as “gradient”,




“divergence” and “curl” involving this operator V. We must note that this operator has no

meaning by itself unless it operates on some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION
Let ¢(x,y,z) be a scalar point function of position defined in some region of space. Then the

vector function i'%+ ]% + E% is known as the gradient of ¢ or V¢
OX oy oz

.0 -0 -0 - ¢ -0 o¢
Vo=(i —+ j—+k — +k ==
¢ (Ic’ﬂerjayJr 82)¢ OX Jay oz
Properties:

(1) If fand g are two scalar functions then grad(f +g)=grad f £ grad g

(2) The necessary and sufficient condition for a scalar point function to be constant is that Vf= 0

(3) grad(fg) = f(grad g)+g(grad f)
(4) If cisa constant, grad (cf) = c(grad f)

(5) grad GJ _ g(grad f)g—zf(grad 9 (40)

(6) Let szi+yj+zli. Then dF:dXi+dy]+dZI;if ¢ is any scalar point function, then

dp= Poaxs oy Pgr [ 122,592, 125_ (idx + oy + kdz )= vood
OX oy oz OX oy

DIRECTIONAL DERIVATIVE

Let ¢(x,y,z) be a scalar function defined throughout some region of space. Let this function have a
value ¢ at a point P whose position vector referred to the origin O is OP = r. Let ¢+A¢ be the

value of the function at neighbouring point Q. If 0 =+ + AT . Let Ar be the length of A7

AQ

~— gives a measure of the rate at which ¢ change when we move from P to Q. The limiting value
AT

off—f as Ar — 0 is called the derivative of ¢ in the direction of % or simply directional derivative

of ¢ at P and is denoted by d¢/dr.

Theorem 1: The directional derivative of a scalar point function ¢ at a point P(x,y,z) in the

direction of a unit vectore is equal to €. grad ¢=¢. V¢.

Level Surface

If a surface ¢(x,y,z)= c be drawn through any point P(r), such that at each point on it, function has
the same value as at P, then such a surface is called a level surface of the function ¢ through P.

e.g : equipotential or isothermal surface.

Theorem 2: V¢ at any point is a vector normal to the level surface ¢(X,y,z)=c through that point,

where ¢ is a constant.




The physical interpretation of V¢
The gradient of a scalar function ¢(x,y,z) at a point P(X,y,z) is a vector along the normal to the level

surface ¢(x,y,z) = ¢ at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase
of ¢. Greatest value of directional derivative of @ ata point P = |grad ¢| at that point.
SOLVED PROBLEMS
1: If a=x+y+z, b= x’+y*+z% , ¢ = xy+yz+zXx, prove that [grad a, grad b, grad c] = 0.
Sol:- Given a=x+y+z
oa oa oa

There fore — =1, —=1,—=1
OX oy oz
Grada=Va= f@:i'+]+i
OX
Given b= x?+y?*+7°
Thereforea—b =2X, a—b =2y, a—b =217
OX oy oz
Gradb=vb=i 2+ ]a—b+za—b:2xi'+2y]+2212
OX oy oz
Again ¢ = xy+yz+zx
Thereforea—_y+z @_z+x @—y+x
OX oy 0z
oc - oc oc
Gradc=i—+ j—+Z—=(y+2)i +(z+X) ]+ (x+ y)k
6XJ6'y az(y i+ (Z+X)]+(x+Y)
1 1 1

[orad a, grad b, grad ] = [2x 2y 2z | =0, (onsimplification)
VY+Z Z+XX+Y
[grad a, grad b, grad c] =0

2: Show that V[f(r)] = TN b where 7= xi + yj + zk .
r

Sol:- Since 7= xi + yj + zk , we have r’= x*+y*+7
Differentiating w.r.t. ‘x’ partially, we get
or or X .. . or 'y or z

2r—=2x =>—=—Similarly — ==, — =—
ox X r oy r o r

.—a Ta _8 c1l ar_ ifl 5
(I&H@H(EJW)_Z” (N5~ 2T 03
N (o e _fl(r)_
= " ElX— r

1-

Note : From the above result, V(logr) = —r

r

VIF(n]

3: Prove that V(r")= nr"?f
Sol:- Let = xi +yj+zk andr = |F]. Then we have r’ = x’+y*+2z* Differentiating w.r.t. x partially,
we have

or or X .. . o 'y or z

2r—=2x= —==—Similarly=—==and — =—
OX oX r oy r oz r




V()= Zf%(r”) =>inr"* % =Zi'nr”’l§ =nr" 2> ix=nr"?(r)
r
Note : From the above result, we can have

). V(E) =—£3, takingn=-1(2) gradr = r ,takingn=1
r r r

4: Find the directional derivative of f = xy+yz+zx in the direction of vector i + 2] + 2k at the point
(1,2,0).
Sol:- Given f = xy+yz+zx.

Grad f = i'i+ ]i+2i=(y+z)i_+(z+x)]+(x+ y)k
OX oz

If € is the unit vector in the direction of the vector i + 2] + 2k , then

g1 t21t2k =%(i_+2]+2IZ)

V12 +22 +2°

Directional derivative of f along the given direction = &.Vf
_ %(| +2j+ ZR)[(y +2)i+(z+x)j+ (x + yE)]at (1,2,0)

1 10
= 3 [(v+z)+2(z+x)+2(x+v)](1,20) = 5

5: Find the directional derivative of the function xy*+yz*+zx? along the tangent to the curve x =t, y
=%, z = £ at the point (1,1,1).
Sol: - Here f = xy*+yz?+zx
vi= i, ]iﬂzﬂ:
OX oy oz
At (1,1,1), Vf=3i+3j+3k
Let r be the position vector of any point on the curve x =t , y = t?, z = t*. then

(y2 +2xz)_+(z2 +2xy)]+(x2 +2yz)l?

r=xityj+zk =ti +t? j+t3k

=i+2tj+3t%k = (i +2j+3k)at (1,1,1)

SIS

r.
We know that P is the vector along the tangent to the curve.

Unit vector along the tangent =& « = 21 3K _1+2]+3K

V122432 V14

Directional derivative along the tangent = Vf e

- % (F+2]+3K) 3( + j+K) %(“2”’):1?84

6: Find the directional derivative of the function f = x*-y?+2z at the point P =(1,2,3) in the direction

of the line PQ where Q = (5,0,4).

Sol:- The position vectors of P and Q with respect to the origin are OP =i+ 2j+3k and
OQ-= 5i +4k

PQ=0Q —OP = 4i-2j+k




Let € be the unit vector in the direction of % Then € = ——
J21

grad f= i+ j O kT oxi—oyjrak
x oy o

The directional derivative of f at P (1,2,3) in the direction of PQ = &.Vf

1 - + o~ - - _ 1 1
= —— (4i-2j+Kk).(2xi —2yj +4zk) — (8x+4y +4z =——(28
\/ﬁ( J ) ( | )\/ﬂ( y )at(1,2,3) \/ﬁ( )

7: Find the greatest value of the directional derivative of the function f = x?yz> at (2,1,-1).

Sol: we have

grad f = S jﬁﬂi: 2xyz° T + X223+ 3x?yz?k =—4i — 4] +12k at (2,1,-1).
ox oy oz

Greatest value of the directional derivative of f = |Vf| V16 +16+144 = 411.

8: Find the directional derivative of xyz*+xz at (1, 1,1) in a direction of the normal to the surface
3xy?+y=z at (0,1,1).
Sol:- Let f(x, y, z) = 3xy*+y-z=0

Let us find the unit normal e to this surface at (0,1,1). Then

q—3y2 of — =6xy +1,q=—1.

OX oy oz

V£ = 3yPi+(6xy+1)j-k

(Vf)(o 1) = 3|+] -k = n

n 3I+j—k_3l+j—k

g= =
|n| v9+1+1 J11

Let g(x,y,z) = xyz?+xz,then

a—g=y22+z, % xza—g—ny+x

OX oy oz

Vg=(yz*+2)i+xz%j+(2xyz+x)k

And [Vg] 1,11 = 2|+j+3k

Directional derivative of the given function in the direction of € at (1,1,1) = Vg.¢€

.. 3i+j—-k) 6+1-3 4
=(2i+j+3Kk). = =
(@}+3k) ( V11 j V11 V11
9: Find the directional derivative of 2xy+z? at (1,-1,3) in the direction of i + 2j+3k.
Sol: Let f=2xy+z’then a_ 2y, a_ 2X, T
OX oy 0z

grad f= ZE% =2yi +2xj +2zk and (grad fat (1,-1,3)= —2i + 2] + 6k

given vectoris a=i+2j+3k=al=v1+4+9 =14

Directional derivative of f in the direction of a is

avf (i+2j+3k)(-2i+2j+6k). —-2+4+18 20
Bl J14 Vo 4




10: Find the directional derivative of ¢ = x?yz+4xz? at (1,-2,-1) in the direction 2i-j-2k.

Sol:- Given ¢ = x’yz+4xz*

o¢ 2 09 o¢

T _oxyz + 477, X =x%7, 77 = x?y + 8xz.
x oy a

Hence V¢ = Zi_[i—af:i'(nyz +47%) + x*z+k(x*y +8xz)

V¢ at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k.
The unit vector in the direction 2i-j-2k is

_ 2i—j-2k. 1,. .
V4+1+4 3( : )

Required directional derivative along the given direction = V¢. a
= (8i-j-10K). 1/3 (2i-j-2K)
= 1/3(16+1+20) = 37/3.
11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in which

temperature changes most rapidly with distance from the point (1,1,1) and determine the maximum

rate of change.
Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by Vt.

We have Vt = (i_g+ ]ﬁ+ Egj(xy +VZ +2X)

OX oy (64

=i(y+2)+ jz+X)+k(x+y)=2i +2j+2kat (1,1,1)

Magnitude of this vector is 22 122 422 =12 = 2.3

Hence at the point (1,1,1) the temperature changes most rapidly in the direction given by the
vector 2i + 2] + 2k and greatest rate of increase = 2+/3.
12: Findthe directional derivative of ¢(x,y,z) = x?yz+4xz? at the point (1,-2,-1) in the direction of
the normal to the surface f(x,y,z) = x log z-y? at (-1,2,1).
Sol:- Given ¢(x,y,z) = x’yz+4xz” at (1,-2,-1) and f(x,y,z) = x log z-y* at (-1,2,1)

Now V¢ = ?71%]+%R
X

oy oz
= (2xyz +4z%)i + (x*2) ] + (X*y + 8xz)k
(Va2 = 2O +4(-1)%Ti + [ (<) j1+[Q*)(-2) +8(-DIk —— -~
= 8i — j —10k

Unit normal to the surface

\%i
f(x,y,z)=x 1| -yOis —
(x,y,2)= x log z- y* is v

~of .of -—of - = X=
Now Vf=i1—+ j—+k—=1logzi+(-2 +=k
|6X+Jay+ o, = o9 (-2y)] ,

At(-1,2,1), Vf= |og(1)i‘—2(2)j+‘T1E —_4j—k




Vi —4j-k. —4j-k.
Vf|  J16+1 17

L - \%i
Directional derivative = V¢. W
~4j-k. 4+10 14

VAN VANV

= (8 — j—10k ).

13: Find a unit normal vector to the given surface x’y+2xz = 4 at the point (2,-2,3).
Sol:- Let the given surface be f = x’y+2xz — 4

On differentiating,

i=2xy+22,i=x ,— = 2X.
OX oy oz

grad f = ZI% =i(2xy +22)+ jx* +2xk

(grad f) at (2,-2,3) =i(—8+6)+4 ] + 4k = 2i +4j + 4k
grad (f) is the normal vector to the given surface at the given point.

. : \%i i +2j+2k). —i+2j+2k
Hence the required unit normal vector -— = 24 +2)+2K). _ —1+2)+2K

Vil 2Jir27+22 3

14: Evaluate the angle between the normal to the surface xy= z* at the points (4,1,2) and (3,3,-3).

Sol:- Given surface is f(x,y,z) = xy- z°
Let N, and N, be the normal to this surface at (4,1,2) and (3,3,-3) respectively.

Differentiating partially, we get
of of of

-217.

x Ty VT
grad f = yi +xj —2zk
= (grad f) at (4,1,2) =i +4j—4k

m,= (grad f) at (3,3,-3) = 3i +3] + 6k

Let 6 be the angle between the two normal.

n.n, (i+4j—4k) (3i+3j+6k)

0080 nJn,| V1+16+16 " V9+9+36

(B+12-24) -9
J33v54 /3354

15: Find a unit normal vector to the surface x?+y?+2z* = 26 at the point (2, 2 ,3).

Sol:- Let the given surface be f(x,y,z) = x*+y*+2z% — 26=0. Then

i:2x, i: 2y,i:4z.
OX oy oz




grad f = Zl_g—f = 2Xi+2yj+4zk
X

Normal vector at(2,2,3) = [Vf |22 = 4i +4 j +12k
Vi 4@ +]+3k) T+]j+3k
V] 411 J11

16: Find the values of a and b so that the surfaces ax>-byz = (a+2)x and 4xy+z°= 4 may intersect

Unit normal vector =

orthogonally at the point (1, -1,2).
(or) Find the constants a and b so that surface ax*-byz=(a+2)x will orthogonal to 4x?y+z°=4 at the

point (1,-1,2).
Sol:- Let the given surfaces be f(x,y,z) = ax®-byz - (a+2)X------------- (1)
And g(X,y,2) = 4xX%y+z3- 4emmmeeeaeee 2)

Given the two surfaces meet at the point (1,-1,2).
Substituting the point in (1), we get
at2b-(a+2) =0 = b=1

Now a =2ax—(a+2), a =—bzand a =—hy.
OX oy oz

vi=Y i'(;i = [(2ax-(a+2)]i-bz+bk = (a-2)i-2bj+bk
X

= (a-2)i-2j+k = n;, normal vector to surface 1.

a—g=8xy, a—g=4x2,a—g=322.
OX oy oz

Also

Vg = ZEZ—?( = 8xyi+4x°j+3z%k

(VO)@-1,2) = -8i+4j+12k = 0, , normal vector to surface 2.

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2).
[V [[Va]=0= ((a-2)i-2j+k). (-8i+4j+12k)=0

—-8a+16-8+12 = a =5/2

Hence a = 5/2 and b=1.

17: Find a unit normal vector to the surface z= x*+y? at (-1,-2,5)
Sol:- Let the given surface be f = x*+y*-z

ﬂ:2x, i=2y,i=—1.
OX oy oz

grad f = Vf = Zl_(;i = 2Xi+2yj-k
X

(VF) at (-1,-2,5)= -2i-4j-k

VT is the normal vector to the given surface.




. : \%i
Hence the required unit normal vector = W =

—2i—4j—k i) L SURE PR
Ve + (07 + (-2 V21 Jar 4T

18: Find the angle of intersection of the spheres x*+y*+z* =29 and x*+y?*+z° +4x-6y-8z-47 =0 at the
point (4,-3,2).
Sol:- Let f = x*+y*+z% -29 and g = x*+y*+z% +4x-6y-82-47

Then grad f= AN jg+ I 2xi +2yj +2zk and
OX oy oz

grad g = (2x+4)i +(2y—6)j+(2z—-8)k
The angle between two surfaces at a point is the angle between the normal to the surfaces
at that point.
Let A, = (grad f) at (4,-3,2) =81 —6]+4k
m,= (grad f) at (4,-3,2) = 12i =12 — 4k
The vectors n, and n, are along the normal to the two surfaces at (4,-3,2). Let 6 be the angle

between the surfaces. Then

n.n, 152

P .

.0 =cos™ 19
29

19: Find the angle between the surfaces x*+y*+z =9, and z = x*+y*- 3 at point (2,-1,2).

Cos 6=

Sol:- Let ¢1 = x*+y?+z% -9=0 and ¢,= x*+y?-z- 3=0 be the given surfaces. Then
V1= 2xi+2yj+2zk and V¢, = 2xi+2yj-k
Let n,= V¢, at(2,-1,2)= 4i-2j+4k and
n,= Vi at (2,-1,2) = 4i-2j-k
The vectors n, and n,are along the normals to the two surfaces at the point (2,-1,2). Let 6 be the
angle between the surfaces. Then

_(4i-2j+4k) (4i-2j-k) 16+4-4 16 _ 8
| V16+4+16 V16+4+16  6v21  6J21 3J21

)

nn
Cos9= 12
|n1 n,

-0 :cos‘l(

%,‘00
H

3

20: If & is constant vector then prove that grad (a .7 )=a




Sol: Let a = ali' +a, ] + aSIZ , Where a;,ap,a3 are constants.

a.r=(aj+a,]+ak).(xi+yj+zk)=ax+a,y+a,z
0
ox
grad (a.F)=aji +a,j+ak =a

21: If Vo= yzi +2x + xyk , find ¢.

2 —a L@ _a 2 @n-
(ar)=a, Y (ar)=a,, pe (ar)=a,

Sol:- We know that V= i’i+ jﬁ+ Ei
OX oy oz

Given that Vo= yzi + zxj + xyk
o¢ o¢ 9 _

Comparing the corresponding coefficients, we have — = yz, -~ = zx,— = xy

OX oy 0z
Integrating partially w.r.t. X,y,z, respectively, we get
$= xyz + a constant independent of x.
$= xyz + a constant independent of y.
¢= Xxyz + a constant independent of z.

Here a possible form of ¢ is ¢= xyz+a constant.

DIVERGENCE OF A VECTOR

Let f be any continuously differentiable vector point function. Then i'.zf—x+ j.% + E.% is
called the divergence of f and is written as div f .

i.e., div f_:i_.§+ ].iﬂz.q: i 9, ]QHZQ f

OX oy oz oX "oy oz

Hence we can write div f as

div f=V. f

This is a scalar point function.

. PN H o i, f — 0 1 8f2 8f3

Theorem 1: If the vector f = fii+f, j+ f;k,thendiv f = + —

Prof: Given f= fi+f,j+fk

OX OX OX OX
_of . of  of _of
Also .0~ Similarly j.i:—zand k.ﬂ=%
oX 0OX oy oy oz oz
_ (of
We have div f=2|. — :%Jr%JF%
oX oXx oy oz
Note : If f is a constant vector then %,%,%are ZEeros.
ox oy oz

-.div f =0 for a constant vector f .

Theorem 2: div (f +g) = div f +divg




Proof: div (f +g)= Z|—( g) ( ) Z|— =div f +divg.

Note: If ¢ is a scalar function and f isavector function, then
-0 -0 =0
). @V)p=lajil—+]—+k—
(i). (@V)¢ { (6x Iy azﬂ¢
- O - O — 0
=l@i)—+(@.j)—+@k)—
{(al)ax+(aj)ay+(a )&}é

=\ 0P =0 - OP
{(a.l)&ﬂa.ngﬂa.k)g}
:Z(a.f)%. and

(ii). @v)f :Z(a.i')%_(.by proceeding as in (i) [simply replace ¢ by f in (i)].

SOLENOIDAL VECTOR

A vector point function f is said to be solenoidal if div f =0.

Physical interpretation of divergence:

Depending upon f in a physical problem, we can interpret div f (= V. f).

Suppose F (x,y,zt) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though time has
no role in computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to
measure the rate per unit volume at which the fluid flows out at any given time. The divergence of
F measures the outward flow or expansions of the fluid from their point at any time. This gives a
physical interpretation of the divergence.

Similar meanings are to be understood with respect to divergence of vectors f from other
branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics,

electricity and magnetism etc.

SOLVED PROBLEMS

1:1f f = xy%i +2x%yzj —3yz?k find div f at(1, -1, 1).
Sol:- Given f = xy?i +2x?yzj —3yz°k .

Thendiv = Zuy 2 af———(xy )+ — (2x yz)+ ( 3yz2) =y*+2x°z-6yz
ox oy oz

(div f)at(1,-1,1)=1+2+6 =9

2: Find div f when grad(®+y*+z3-3xyz)




Sol:- Let ¢p= x>+y*+z°-3xyz.

Then 22 _ax? —3yz, o¢ =3y? —3zx,% =3z% —3xy
x oy oz

L 0p 208 0B _ars e p o,
grad ¢_|8_x+15+k5_3[(x yoI +(y° —2zx)J+(z2° —xy)k]

or ot o _

- 0 ) 0 ) 0 )
div f = Y + pe 6_x[3(x —yz)]+5[3(y —zx)]+§[3(z —xy)]

= 3(2x)+3(2y)+3(22) = 6(x+y+2)
3:If f= (x+3y)i +(y—22)j+(x+ pz)k is solenoidal, find P.
Sol:- Let f = (x+3y)i +(y—22)j+(x+ pz)k = fi+f, j+ T,k
We have %=1, izl, s =p
OX oy oz

%+ EY + s = 1+1+p =2+p
oX z

div f =
since f issolenoidal, we havediv f =0 =2+ p=0=p=-2

4: Find div f = r"F. Find n if it is solenoidal?

Sol: Given f = r"f. where T =xi+yj+zk and r =|r|
We have r? = x?+y?+7°
Differentiating partially w.r.t. x , we get

or O oy OF _ X
ox

x r'
Similarly qzlandg: :
oy

r o0z r
f=r"(xi+yj+2zk)

I IV IO R
div f = &(r ><)+@(r Y)+§(r z)

L or L or 4 or
="t —x+r" "t =yt —z 4"

OX oy oz
2 2 2 2
X r
:nr”l[ P yr T }+3r” - nr”l(T)+3r” =nr'+3r"= (n+3)r"

Let f = r"F be solenoidal. Thendiv f =0

(n+3)"=0 = n=-3

5: Evaluate V.(%)where F=xi+yj+zkandr =] .
r

Sol:- We have

T =xityj+zkand r = X% + y? + 22




or _x or_y o _z
— ==, —=2 and—==
oX r.oy r T
g rr_s =F. 1= i yjrizk = hithj+k
Hence V. (Lj SULIWNCL N
ré ox oy oz
We have f.= rix= oy 1, K+ I
x "ox
B @ — 3Xr -4 5 = 3X2 -
ox y

V. (LS) => M =3r°-3r°) x?
OX
=3r3-3r°r? = 3r3-3r3 =0
6: Find div F where F = xi + yj + zk

Sol:-Wehave F= xi +yj+zk = fi+f, j+ f,k

. of, of, of 0
div r= = —3= — —(2)=1+1+1=3
r 8x+8y pe () ay(Y)+az(2) +1+

CURL OF AVECTOR

Def: Let f be any continuously differentiable vector point function. Then the vector function

defined by ix Zf—x+ ]x%ﬂ?x% is called curl of f and is denoted by curl f or (Vx f).

curl f = ix Zx—f ]x%ﬂ?x%:Z[i&%}

Theorem 1: If f is differentiable vector point function given by f = f,i + f, j+ f,k thencurl f =

(af afj (8fl 8f3J= (af2 aflJ_
I+ ——— ]+ —=—-——1
oy oz oz 0OX ox oy

Proof : curl f = le—(f) le—(f|+f1+fk) Z[% %j

Note (2) : If f isa constant vector thencurl f = 0




Theorem 2: curl (5 + 5): curla +curlb

Proof: curl(@+b)= Zi’x%(aib)

1. Physical Interpretation of curl

If Wis the angular velocity of a rigid body rotating about a fixed axis and Vis the
velocity of any point P(X,y,z) on the body, then W =% curl V. Thus the angular velocity of rotation
at any point is equal to half the curl of velocity vector. This justifies the use of the word “curl of a
vector”.

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl V=0 is said to be

Irrotational.
Def: A vector f is said to be Irrotational if curl f = 0.
If fis Irrotational, there will always exist a scalar function ¢(x,y,z) such that f =grad ¢.
This¢ is called scalar potential of f .
It is easy to prove that, if f =grad ¢, then curl f =0.

Hence Vx f =0 < there exists a scalar function ¢ such that f = V¢.

This idea is useful when we study the “work done by a force” later.

SOLVED PROBLEMS

1:1f f = xy?i +2x%yz j—3yz? k find curl f at the point (1,-1,1).
Sol:- Let f = xy?i +2x%yz j—3yz’k . Then

i ] k
curlf':fo':ig 9
ox oy 0z
xy? 2x*yz —3yz°
-+ 0 0 < O 0 —( 0 0
=1| —(=3yz?) - —(2x* + | = (xy?) = —(=3yz?) |+ k| — (2x%yz) — — (xy?
[ay( yz°) az( yZ)J J(az(XY) ax( y )) [ax( yz) ay(xy )J

=7(-32% - 2x%2)+ j(0—0)+ K (4xyz — 2xy) = —(32% + 2x2y i + (4xyz — 2xy Kk
=curl f at(1,-1,1)= —i —2k.

2: Find curl f where f = grad(+y*+z°-3xyz)
Sol:- Let ¢p= x*+y*+z°-3xyz. Then




grad ¢= Zf% =3(x* —y2)i +3(y? —2x) j +3(z% — xy)k

curl grad ¢= Vx grad ¢=3 aﬁ
X

2o —
.9?|Q) =

x> —yz y*—z1x z°—xy
=3i(-x+x)-j(-y+y)+k(-z+2)]=0
seurl £=0.
Note: We can prove in general that curl (grad ¢)=0.(i.e) grad ¢ is always irrotational.

3: Prove that if T is the position vector of an point in space, then r"f is Irrotational. (or) Show that
curl(»*#) =0

Sol:-Let = xi+yj+zk andr=|f| ..r’=x*y’+z"

Differentiating partially w.r.t. ‘x’, we get

2r q:2X3q=§,
OX oX r

Similarly o_y andq _Z
oy r oz r
We have r"r = r"(xi +yj+ k)

k

_ 0
Vx('r)= |-

(r'r) 5

j
9
oy

yr’

_ran_gn =ﬁn_ﬁn _g”_i“
S Len-Zem| i Ze- Lo e -2

foryo w2 f)

=nr"?[(zy - yz)i + (x2 — zx)j + (xy — yz K]

n n

Xr r

=nr"?[0i +0j+0k]=nr"2[0]=0
Hence r"F is Irrotational.

4: Prove that curl F=0
Sol:- Let 7= xi +Vj+zk

— - a — = A A A ~
curl F=>"i xa—(r):Z(|X|):0+0+ 0=0
X
.. T is Irrotational vector.
. axr a 3r
5: If & is a constant vector, prove that curl (—BJ:——3+—5(§.F).
r

Sol:- We have 7= xi + yj + zk




_=i_y_:jy_=iz

OX oy z

If |F| =rthen r*=x"+y“+z

qu,q_l,andﬂzf

X r oy r oz r
axr r

r r r

_ _Xi axr i aXi_—%—x‘ ix(@axi) 3x- (3
”Iax(rajl[ﬁ r(ar)}—rs r|(ar)
_(ih)a- ()i

Let &= ali'+a2]+a3k.Then i.a=a, etc.

0 (Exr) e 3
i ax[ = J >, = ~(xa—a,r)

Zix%(airjzza ai _ Z(xz_ a,xr)

r re

3a a_3_a( )+ (ax+a2y+a32)

6: Show that the vector (x® — yz)i +(y® —zx) j +(z®> —xy)k is irrotational and find its scalar
potential.

Sol: let f=(x*—vyz)i +(y?*—2x) j+ (2 = xy)k

] j k
Then curl f =2 9 9 =>i(-x+x)=0
OX oy oz
X>—yz  yi-zx z*-xy
- f is Irrotational. Then there exists ¢ such that f =V¢.
09 ¢ 9P (2 e 2 = 2 "
= 1— —= (X" —yz2)i + —2xX) J+(2° —xy)k
vl ay 62 (X" =y2)i +(y ) 1+ (2" —xy)
Comparing components, we get
0
af—x —-yI=>¢= I X —yz)dx———xyz+ f.(y,2).....(0
op _ - y’

E:y —zx:>¢:?—xyz+ f,(z,%)......(2)




0 z*
—¢:22—xy:>¢:——xyz+ .06 Y).n(3)
oz 3

From (1), (2),(3), ¢=%—xyz

) :%(x3 +y® +2%) — xyz + cons tant
Which is the required scalar potential.

7: Find constants a,b and c if the vector f = (2x+3y +az)i + (bx+2y+3z) j+(2x+cy +32)k is
Irrotational.

Sol:- Given f =(2x+3y+az)i +(bx+2y+3z) j+(2x+cy +32)k

I ] k
-_ |0 0 0 - . _
Curl f= |— — — =(c-3)i—-(2—-a) j+(b-3)k
ur x Y . (c-3)i-(2-a)j+(b-3)

2X+3y+az bx+2y+3z 2x+cy+3z

If the vector is Irrotational then curl f =0
s2-a=0=a=2b-3=0=b=3c-3=0=c=3

8: If f(r) is differentiable, show that curl { 7 f(r)} = 0 where I = xi + yj + zk .

Sol:r=7=yx*+y*+z°

r2 — X2+y2+22

:qu:ZX:gzi,similarlygzl,andq:—
OX ox r oy r oz r

curl{ 7 f(r)}= curl{f(r)( xi +yj+zk )}=curl (x.f()i +y.f(r)j+zf()k)
i j k

_|9 9 9 |-yl _9

== 5 pe Z{ oy [ 1= 2 I (r)]}

xf (r) yf (r) zf (r)

TN PPN S IR o F: P DENG RPN 4
ZI{Zf (r)a—yf (V)E}—Z'[Zf (r)r yf (r)r}

=0.

9: If A is irrotational vector, evaluate div( A xT) where T = xi + yj +zk .
Sol:We have T = xi +yj + zk
Given A is an irrotational vector
VXA =0
div (A Xr)=V.(AXT)
=T1.(VXA)- A .(VxT)




j k
Now VXT= o 9 2oy 2z—gy —][gz—ngﬂz Ey—gx =0
OX oy 0z oy oz oXx oz ox"~ oy
y

5 A (VXT)=0 ...(3)

Hence div ( A x7)=0. [using (2) and (3)]

10: Find constants a,b,c so that the vector A =(x+2y +az)i +(bx—3y —z) j + (4x+cy +22)k is
Irrotational. Also find ¢ such that A = V.

Sol: Given vector is A =(x+2y+az)i +(bx—3y—2z) j+ (4x+cy +22)k
Vector A is Irrotational = curl A = 0

] j k

0 0 0

= |— — —_
OX oy 0z
X+2y+az bx-3y—-z 4x+cy+2z

=(@c+Di+(@-4)j+b-2)k=0

=(@C+Di+@-4)j+(b-2)k = 0i +0j+0k

Comparing both sides,

c+1=0, a-4=0, b-2=0

c=-1, a=4,b=2

Now A =(x+2y+4z)i +(2x—3y—7) j+(4x—y+22)k , on substituting the values of a,b,c

we have A =Vy.
99 9¢

= A=(X+2y+42)i +(2x—-3y—2) J+(4x—y+22)k = %7 j
OX oy oz

Comparing both sides, we have

Z—¢ =X+2y+47 == X?[2+2xy+4zx+1(y,Z)
X

o¢ _

PV 2X-3y-2 =¢= 2Xy-3y*/2-yz+f(z,X)

o¢

~ = Ax-y+27 == 4xz-yz+77+f3(X,Y)
z

Hence ¢= x%/2 -3y*/2+Z°+2xy+4zX-yz+C

11: If o is a constant vector, evaluate curl VV where V = oxT .




_ - 0 _ - | Ow or
Sol:curl (oxT)= Y Ix—(axF)= > I x| —xTF + —
( ) Z ax(w ) Z ><{ax ) ZUxax}

=> ix[0+wxi] [.ax(bxc)=(ac)b —(ab)c]
=Y ix(wxi) =Y [([NHo-({[.w)il=) o-> (l0)i=3v-0=20

Assignments
LIf f =&Y +j+k) findcurl f.

2.Provethat f = (y+2)i +(z+X) j+(x+y)k is irrotational.
3. Provethat V.(ax f )=—a .curl f where & is a constant vector.

4. Prove that curl (ax F):Z a where a is a constant vector.

5.1f f = x%yi —2zx j+2yzk find (i) curl f (ii) curl curl f .

OPERATORS
Vector differential operator V
The operator V = i'g+ ]i + IZE is defined such that V¢= i'%+ j%-i- R% where ¢ is a
OX oy oz OX oy oz
scalar point function.
Note: If ¢ is a scalar point function then V= grad ¢= le—¢
X

(2) Scalar differential operator a .V
o 00 O ,_ - Of . .
The operator a .V = (a.l)— +(a.j)— + (a.k) —= is defined such that
OX oy oz

0 -0 .- 0p
(a.v)o= (a-l)&+(a-l)g+(a-k)g

_oof o of __of
And (a.V)f=(ail)—+(a.j))—+(@k)—
(a.v) ()ax(J)ay( )82
(3). Vector differential operator a xV
The operator a xV= (ax i')E +(ax j)§+ (ax IZ)Q is defined such that
OX oy oz
(i). (éxV)(I):(axi')%Jr(ax j)%ﬂaxﬁ)%

(i). (axv). f=(a |).ax+(a j).ay+(a k).az

i). (a '_—erq_ _xTxﬁ _x_xg_
(iii). (axV)x f =(axi) 6x+(a 1) 6y+(a k) pe

(4). Scalar differential operator V.

The operator V = . ].i + k.9 is defined such that V. f = 1.
x oy ez

+
ol
Q=

2|
+
2|

Note: V. f is defined as div f It is a scalar point function.




(5). Vector differential operator V x

The operator V x = i'><2+ jxi+ IZ><2 is defined such that
ox oy oz

o of of of
Xf=ix—+jx—+kx—
OX oy oz

Note : Vx f is defined as curl f . It is a vector point function.
(6). Laplacian Operator V?

_ 0 _¢ _¢ _% _ 82¢: 82 82 82 _ )
v-vg=2l ax['a ”ay 82] Zax2 [6x2+8y2+6‘22]¢ Ve

2 2 2
Thus the operator V= 0 >+ 0 >+ 0 > Is called Laplacian operator.
oX® oy° oz
Note : (i). V2p= V.(V¢) = div(grad ¢)
(ii). If V2$=0 then ¢ is said to satisfy Laplacian equation. This ¢ is called a harmonic
function.

SOLVED PROBLEMS

1: Prove that div.(grad r™)= m(m+1)r™? (or) V4™ = m(m+1)r™? (or) VA(r") = n(n+1)r"?
Sol: Let F=xi +yj+zk andr = || then r* = x*+y?+2%,

Differentiating w.r.t. ’x’ partially, wet get 2rﬂ =2X = or =X .
OX ox r

Slmllarly ao_Y -2

oy r oz r
Now grad(r™) = Zf%(rm):merml%:Zi'mrm1§:Zi'mrm‘2x
~.div (grad r™) = Z%[ r™?x]= mZ[(m 2)rms = SOy 2}
—mZ[(m 2)r™x? + ] [(m 2)r”‘4Zx +yrm 2]

= m[(m-2)r™*(r? )+3rm'2]

= m[(m-2) r™?+3r™?]= m[(m-2+3)r™?]= m(m+1)r™?,
Hence V2(r™) = m(m+1)r™?
d rad

2: Show that V2[f(r)]= T
r dr

=f(r) +% f*(r)wherer = |F|.
. 0 cc1,.,0 sl

Sol: grad [f(r)] = Vf(r)= > i &[f MN1=Dif (r)a—; =>if (r)%

- div [grad f(r)] = V[f(r)] = V.V1(r)= Z%[ f l(r)ﬂ

L= P Ox ()

r2




r(f“(r)g)r(x+ fl(r)j— fl(r)x(:j

r2

=2

rf“(r))r(x+ rfL(r)— fl(r)x()r(j

2

=2
erﬂ(r)ix”fl(r)—x2 )

r

anr) _____Zfim_ifimZ\_
=02 - L
- £+ 2 £1()

3: If ¢ satisfies Laplacian equation, show that V¢ is both solenoidal and irrotational.

r

Sol: Given V2¢ = 0 =div(grad ¢)= 0 = grad ¢ is solenoidal

We know that curl (grad ¢) = 0=grad ¢ is always irrotational.

4:Show that (i) (& .V)¢=a .V¢ (i) (7 .V)T =2

Sol: (i). Let @ = a,i +a,]+a,k . Then

LI D

a.v= (a1|+a2J+a3k)(|a—X+ 5 ka)—aiﬁx+azay+a3az
_¢ 0p 4. 99
S(a.V)e= a1 +a, 8y+a p

Hence (a.V)¢=a .Vo

(ii). T = xi +yj+2zk

“I

ar - oF . 0 —
. =1, —=]j,—=Kk
" ox oy 0z

— — 5 — ar = = I —
(a.v)r= Zala(r)=2a1&=a1| +a,j+ak=2a

5: Prove that (i) ( f xV).T=0  (ii). (f xV)xF= -2f

Sol:(i)(fxv).r=z(fxi‘)%=Z(fxi‘).i‘:o

Y NPT B

(II)(fXV)—(fxl)&x(ij)ax(ka)E
(fxV)xr_(fxl)x_+(fx1)xE+(fxk)x__z(fxu)xu =3 [(fiyi-f]

= (f)+(f.)j+(fk)k=3f =T -3f =271




6: Find div F , where F = grad (x*+y*+z°-3xyz)
Sol: Let = x*+y*+z3-3xyz. Then
F =grad ¢

= Zi%:axz —y2)i +3(y? —2x) j +3(x* = xy)k =F,i + F, j + F,k (say)

ndiv F= O O 6x+6y+62= 6(x+y+z)
OX oz

i.e div[grad(C+y*+2°-3xyz)]= VA(C+y*+2°-3xyz)= 6(x+y+2).

7: If f= (x*+y*+z%)™ then find div grad f and determine n if div grad f= 0.

Sol: Let f= (xX*+y?+z®)"and T = xi + yj + zk

r=[f|= r* =x*+y*+2°

=>f(n =" =r"

~f(n=-2nr""!

and fY(r) = (-2n)(-2n-1)r?"2= 2n(2n+1)r>"?

We have div grad f = V*f(r)= f1(r)+2/£1(r)= (2n)(2n+1)r?"2 -4n r>"?
= r?2[2n(2n+1-2)]= (2n)(2n-1)r>"?

If div grad f(r) is zero, we getn=00r n=%.
:(2—n)A N n(r.

j r" r

Sol: Wehave F = xi +yj+zk and r=|F| = {x* +y* +2°

. ar j—
Tox
2 = x*+y?+z2%....(1)
Diff. (1) partially,

AxF

n

A)r
+2 '

n

8: Prove that Vx(

2r Q:ZX:Q:E, similarly g=1andg=5
OX r oy r oz r
AxT -0 ((AxT)
VX =Y ix—|—+=~
(e g
O((Axr)) =~ o(r) = |ri—rnr" |or
Now — =Ax—| — |=AX| ——— | =
ax( r j X r”j { r’ }ax
[ ne -2
EOLEIUEN T
i r r r




_Axi
=

rxg((ﬂxf)j:fx(xxlr)_ X I x(AxT)
ox\ r’

— D x(Axr)

Let Ai+A j+AK. Then i A=A

L0 (AxP)) _(A-Ai) nx .~
o ax( - j—[ - j —[xA—AF]

r

(AxT) A-Ai) nx  ~
and X x ax( J Z( - J Irn+2[XA AT]

n

I_—rm AT Ak Ay s A)

2A_N g, M xR n)A+rrI2 (AF)

n n n+2
r

Hence the result.

VECTOR IDENTITIES

Theorem 1: If & is a differentiable function and ¢ is a differentiable scalar function, then prove

that div(¢a )= (grad ¢p). a +¢ div a or V.(¢a )= (Vo). a +o(V.a)

Proof: div(¢§):v.(¢§):2i.§(¢5)

o oa
_Z( a+op— j Z(I&aj Z('&}’
Z( ja{Zn—j =(Vo).a +¢(v.a)
Theorem 2:Prove that curl (¢ & )= (grad ¢p)x a +¢ curl a

Proof : curl (¢@)=Vx(¢a)= i x%(gfﬁa‘)

- Six( 22y @ ) 5(i% a5 [i 2

=Voxa +(Vxa )o=(grad p)xa +¢ curl a
Theorem 3: Prove that grad (2 .b )= (b.V)a+(a.V)b +b xcurla+a xcurlb

Proof: Consider

axaur (a)zax(wa):axz(ixg_g]




:Zax[fng
...a—xcuna:zr(a.g_zj_(g_v)g 0

Similarly, b xcurlb :Zi’(
(1)+(2) gives

_ I~ T s I e o ) [P~
axcurlb +b xcurla_Z(a.&j (av)b +Zl(b'6xj (b.V)a

—axcurlb+B xcurl 3+ @v)b + (B.v)a =Zi‘(a

:Zi‘%(a.ﬁ)
=v(a.b)=grad (a.b)

Theorem 4: Prove that div (axb) = b.curla —a.curl b

Proof: div (axb) =Zi'.§(§x5) :Zi'{g—ix5+

ZZF-@%XE}FZE{E x%}

x|

aBJ
ax—

| Xx—

OX

oa
OX

j.a_z(r

ob
X_

OX

|

= (Vxa)b —(Vxb).a=b.curla—a.curlb

Theorem 5 :Prove that curl (@xb)=adivb —bdiva+(b.V)a—(a.v)b

ob

3

Proof : curl (§x5)=2i_x§(§x5): Zi_x{%x5+§x

Zi_x(a—;xBJnLZi_x[éx@—Ej
- {(T.E)%-(i‘i—ijﬁ}}j{@ @ja—(i‘.a)g}
:Z(B|)%—Z(T.%j5+2£i_.§]a‘—(a. T%)E

Q|




=(b.V)a—-(vVa)b +(Vb)a-(av)b
=(Vb)a—(va) +(b.V)a-(av)b
=adivb —bdiva+(b.V)a—(a.V)b
Theorem 6: Prove that curl grad ¢ = 0.

Proof: Let ¢ be any scalar point function. Then

;00,09 0
grad ¢_Iax+18y+k =
i ] k
o o 0
curl(gradg¢) = F E =z
op 99 99
ox oy oz

(06 20\ (06 0\ o[ 678 _;
= \oyoz ozoy oX0z 07X Xy  Oyox

Note : Since Curl(gradg) =0, we have grad ¢ is always irrotational.
7. Prove that diveurl f =0

Proof : Let f =fi+f,j+ f,k

sourl f=Vxf = 9
X

Q| —y

k

9

0z

f, f, f

(LB (D Ly g
oy oz oX oz oX oy

div curl T=v.(vxFy=2 [ F_ _3(%_@}2 o, o
ox\oy oz) oy\ox oz) oz\ ox oy

_82f3 _82f2 _62f3 +82f1 +82f2 _62fl 0
OX0y 0OX0Z Oyox oyorz 010X OLoy

Note : Since div(curl f)=0, we havecurl f is always solenoidal.

Theorem 8: If f and g are two scalar point functions, prove that div(fVg)= fV2g+Vf. Vg

Sol: Let f and g be two scalar point functions. Then

Vg = %9, ja—9+125—9

OX oy oz




Now g =it 8,519 N
x oy a

V(ng)——( agj+ £ %9 +i[fa—9j

oXx\_ ox) oy\ oy) oz\ oz

82g+829+6zg of o, of o, of &g

-

o oy oxt ) \axax eyey ez
=fv’g+ |i+1i+kaf i 99 ja—g K99
OX oy oz ax oy 0z
= fV2g+Vf. Vg
Theorem 9: Prove that Vx(Vxa )= V(V.a)-V?a .
Proof: Vx(Vxa) = Zi_xag(VxE)
X
a -~ o0a - oa

Now 1| ><£(V><a)_|><2 i xa—a+1x—+k X —
OX 0 OX oy

0z

|

- (- ¢%a -~ oa - oa
=1 X[ I X—+] +k x
OX OXoy OX01Z
=i x| I x—5 [+1 x| Jx +1 x| Kk x
X OX oXoz

3

S Vx(Vxa)=V(v.a)-V’a

i.e., curlcurla = grad diva—V?a

SOLVED PROBLEMS
1: Prove that (Vf xVg)is solenoidal.
Sol: We know that div (2 *b ) = b.curla—a.curlb

Takea=Vfand b= Vg

Then div (Vf x Vg) = Vg. curl (Vf) - V. curl (vg)=0_ = Curl(Vf) =0 =curl(Vg)

. VI xVgis solenoidal.




2:Prove that (i) div{(an)E}z—Z(BE) (ii) curl{(F.E)xb}zﬁxawhere a and b are constant
vectors.
sol: (i)

div{(Txa)xb} =div[(T-b)a - (a.b)r]

=div(rb)a—(a.b)

=l

- [(r.B)divm a.grad (r.E)] —[(a.ﬁ)divnr. grad (5.5)}
Wehavediv a =0,divi =3,grad (ab) =0
div{(an)xB} =0+a.grad (ra)-3(aa)

=a Y i(ib)-3(ab)
—ab-3(ab)=—2(ab)
=-2(ba)

(ii) curl {(an)xt_)} =curl [(F.B)a—(a.t_))?}
=curl (F.B)a—curl (55)_

—(FB)curI5+ grad (r b)

(r b)xa( curl Eil

0+V
bxa Since grad (_b)

«a
0)
b
-2

3: Prove that V{V.L} =

F.
r r?

r . O0(T
Sol: Wehave V| — |= ) i.—| —
(fj Z 3X( J

r

2[5 @25

:EZi_i_irz :§_1:g
r r? rr r




4: Find (AxV)¢, if A = yz%i - 3xz% j +2xyz k and ¢ = xyz.

Sol : We have
i i k
AXV= |yz° —3xz°  2xyz
9 9 0
OX oy 0z

—il 9 (a2 RN ikl 2 (vz2) - 0 (axz?
= I{ax( 3xz%) ay(zxyz)} JL}Z(VZ ) aX(ZXyZ)}rk{ay(yZ ) ax( 3xz )}
=i (-6X2-2X2)- j (2yz-2yz)+ K (2+32%)=-8xz -0 j +42°k

5 (AXV)d, = (-8xz i +422k )xyz = -8x%yz%i +4xyz*k

Vector Integration

Line integral:- (i).[lz.d r is called Line integral of IE along ¢

Note : Work done bylE along acurve cis J.IEd r

PROBLEMS

1. 1f F (x%-27) i-6yz j+8xz2 k, evaluate 7. dr from the point (0,0,0) to the point (1,1,1) along the
Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).

Solution : Given F = (x2-27)i -6yz]+8xzzlz
Now r= xi+Yyj+zk = dr =dxi+dyj+dzk

F.dr = (x%-27)dx — (6yz)dy +8xz%dz

0] Along the straight line from O = (0,0,0) to A = (1,0,0)
Here y =0 =z and dy=dz=0. Also x changes from 0 to 1.
_ 1 3 1
- X _
J F.dr:j (x%-27)dx = | ——27x :l—27=£
A g 3 o 3
(i) Along the straight line from A = (1,0,0) to B = (1,1,0)

Here x =1, z=0 = dx=0, dz=0. y changes from 0 to 1.




o Fldr= Jl.(—6yz)dy=0
y=0

AB
(iti)  Along the straight line from B = (1,1,0) to C = (1,1,1)
x=1=y _ dx=dy=0 and z changes from 0 to 1.

_ _ 1 1 3 1
j F.dr= J'8x22dz: J'8xzzdz: 821" _8
z=0 7=0 3 0 3

BC

ey - _ 88
(|)+(||)+(|||):(J: dr =3

2. If IE :(5xy—6x2)i+(2y-4x)], evaluate } F dr along the curve C in xy-plane y=x*from (1,1) to
(2,8).

Solution : Given F :(5xy-6x2)i +(2y-4X) j=-mm (1)
Along the curve y=x?, dy =3x* dx

F =(5x*-6x%) i +(2x3-4x) j, [Putting y=x in (1]
dr= dxi+dy]j=dxi +3x%dx ]
F.dr = [(5x*-6x%) i +(2-4) 1. { dx i+ 3x2dx_j}

= (5x* — 6x%) dx+(2x3 — 4x)3x%dx
= (6x°+5x*-12x3 -6x)dx

- _ 2
Hence I F.dr:j(6x5+5x4—12x3—6x2)dx

y:)(3 1

6 5 4 3
=162 152 12X 67 |- (x*+x¢-3x' -2x)
6 5 4 4 1

=16(4+2-3-1) — (1+1-3-2) =32+3 =35
3. Find the work done by the force F = zi+x]+ yE, when it moves a particle along the arc of the
curve I = cost | +sint j-t kKfromt=0tot=27
Solution : Given force F = zi+ x] +y k and the arc is r = cost | +sint ]-tE
I.e.,, X =cost,y=sint, z=-t

sdr=(-sint i +cost j-k)dt

IE.dF: (-t i+cost ]+sint E). (-sint i+ cost ] E)dt= (tsint + cos? t —sin t)dt




o n
Hence work done = j F.dr = j (tsint+cos’t—sint)dt
0 0

< 1+cos 2t

= [t(~cost)|}" j( sint)dt + j

2z
dt— [ sint dt
0
1(, sin2t)”
= — 27— (cost)Z” +§[t+TJ +(cost |*
0

ILQE—Q—D+%Q@+Q—D=%M+H=—E

PROBLEMS

1 : Evaluate jl_:.ndS where F = zi + xj— 3y’zk and S is the surface x* + y* = 16 included in the

first octant between z =0 and z = 5.
Sol. The surface S is x* + y* = 16 included in the first octant between z = 0 and z = 5.

Let b=x2+y* =16

hen V=i ik _oxit 2y
oxXx "oy oz
unit normal n = Vo _ Xi+y] (0 x*+y? =16)
‘V(p‘ 4
Let R be the projection of S on yz-plane
Then IF ndS = _UFn ‘dydz‘ ................ *
n.i
Given F =zi + xj— 3y%zk
F.n= —(xz +Xy)
- - X
and n.l=—
4

In yz-plane, x =0,y =4
In first octant, y varies from 0 to 4 and z varies from 0 to 5.

4 5 X2+ Xy \dydz
L)

4

jl_:.ndS

r j: (y +2)dz dy

y=0

90.




21 If F = zi + xj— 3y’zk, evaluate _[I_:.ﬁdS where S is the surface of the cube bounded by x =
S

0,x=a,y=0,y=a,z=0,z=a.
Sol. Giventhat S is the surface of thex =0, x=a,y=0,y=a,z=0,z=a, and F = zi + Xj—

3y?zk we need to evaluate II_:.ﬁdS.
S

Y a

Q
P
0 A %
R
(i) For OABC
Eqgnis z = 0and dS = dxdy
n =—k
[Fnds = —[° [ w2 dxdy=0
31 x=0 y=10
(i) For PQRS
Egnisz =aand dS = dxdy
n =k
_ a a a*
F.ndS = y(@)dy) dx =—
é[ ><1|.0 ( y;l.O ) 2
(iii) For OCQR
Egnisx =0, and n =—i, dS =dydz

S[F.ndS = yL ZL 4xzdydz =0

(iv) For ABPS

Egnisx =a, and n =—i,dS=dydz

S[I_:.ﬁds = yL ( Zjo 4azdz)dy =2a*

(v) For OASR

Egnisy =0, and n :—],dS=dxdz




[Fnds = ja jayzdzdx:o

y=0  z=0
(vi) For PBCQ
Egnisy=a, and n =—], dS = dxdz
[Fnds = - ja fayzdzdx =0
Se y=0 z=0

From (i) — (vi) we get

4 4

J'I_:.ﬁdS:O+a— £0+ 220 40— ad= O
8 2 2

VOLUME INTEGRALS

Let V be the volume bounded by a surface r=f (u,v). Let F (1) be a vector point function define

over V. Divide V into m sub-regions of volumes 6V;,dV,,...0V, ...V,

Let P; (1) be a point in oV, . Then form the sum Iy, = Z IE(ri)cSVi. Let m — o0 in such a way that

i=1
oV, shrinks to a point,. The limit of I, if it exists, is called the volume integral of IE (; ) in the

region V is denoted by J.Ii(ri) dv orJ Fdv.
\Y \

Cartesian form : Let Ii(r) =Fi+F,i+F,kwhere Fy, Fy, F5 are functions of x,y,z. We know that

dv = dx dy dz. The volume integral given by

J.Iidv =_|.”(F1 it F, i+ F IZ)dx dydz = i”J-Fldxdydz +]I”F2 dxdydz +I2J'“F3 dxdydz




SOLVED EXAMPLES
If F=2xzi-x+ yzi? evaluatejf dv where V' is the region bounded by the
%

Example | :

surfaces x=0, x=2,y=0,y=6,z=x2,z=4.
Solution : Given F = 2xzi —xj + y*k. . The volume integral is

J'de=ﬂ (2xzi - xj + y*k)dxdy dz
v

2 6, 4 2 6 4 - 26 4
=FJ j szmdydz-}] j jxd.:dydmjj [ o
x=0 y=0 =y x=0 y=0z=¥ x=0y=0

2 6

2[ T[uzlj,mw-f [ ot

x=0 y=0 x=0y=0

_z[j x(16-x* e dy - Jjj (4-x")edy ~k I ]‘yz(ngag)dxdy
x=0y=0 x=0) y=0

>~
—
A
[ =]
o~
N
R
)
&
S

2 2 2
I(l6x - )(y )od - j(4x—x3)(y)g J‘(x2 (%l}dx

x=0 x=0 ,

6\2 4\? 3
_1{8:: -—] (6)- ,{21 -—} 6) -k [4:-%} (2—;1)
0 0

0

=1287 - 247 - 384k

Vector Integral Theorems

Introduction
In this chapter we discuss three important vector integral theorems: (i) Gauss divergence

theorem, (i1) Green’s theorem in plane and (iii) Stokes theorem. These theorems deal with

conversion of

0] .[ F.nds into a volume integral where S is a closed surface.
S

(i) j F.d r into a double integral over a region in a plane when C is a closed curve in

C
the plane and.




(iii) '[ (VxA).r_lds into a line integral around the boundary of an open two sided
S

surface.

1. GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If F is a continuously differentiable vector
point function, then

jdidev:jﬁ.r] ds
\Y% S

When n is the outward drawn normal vector at any point of S.

SOLVED PROBLEMS

1) Verify Gauss Divergence theorem for F = (x* — yz)T — 2x° yJ + zk taken over the surface of
the cube bounded by the planes x =y = z = a and coordinate planes.
Sol: By Gauss Divergence theorem we have

j F.ndS = j divFdv
S V

[ i o @

RHS = JJ J (3x* — 2x°* + 1)dx dv dz J J J (x? + 1) dx dv dz J J [1; —x)c. dy dz

o oo o

.:[H—Jra}dydz—T{%3+a}()’)od2—(—+ajajd2—(—+aJ(a)=%5+a3 ...... 0

0

(=]
=]
[=]

Verification: We will calculate the value of I F.ndS over the six faces of the cube.

Q) For S; = PQAS; unit outward drawn normal nn =1

x=a; ds=dy dz; 0<y<a, 0<z<a y
g s
~Fn=x'—yz=a’-yzsincex=a ; :
A
” F.ndS = I j (a’- yz)dydz B
z=0y=0 Z :

- @

- Ve

a‘y——=z dz
=0

Il
[ —




(i) For S, = OCRB; unit outward drawn normal i = —i

X=0; ds=dy dz; 0<y<a, y<z<a
Fi=—(x¥—yz)=vzsincex=10

@ fird (i a
- _ Ve
JJF‘?’M5= J J vZdydz = J[T} zdz
s ==03=0 z=p- ¥=0
Pl c 1
as [ . a” 3
S [t
=0

(i) ForS;=RBQP; Z=a;ds =dxdy; 7 =k

0<x<a, 0<y<a

Frn=z=a sincez=a

~ [ [Fnds = j j adxdy =a’.....(4)
S, y=0 x=0

(iv)  ForS,;=O0ASC;z=0; 7 =—k ds = dxdy;

0<x<a, 0<y<a

1)

il =—z=0 sincez =10
/]

(V) For Ss = PSCR; y = a; i1 = j, ds = dzdx;

|l

AdS=0..(5)

0<x<a, 0<z<a

F.l=—2x%y = —2ax? sincev=an
. £
J J FdS = J J:ﬁj—zaxf}a‘za‘x
55 *=0220
a
.[ (—2ax’z)2_,dx
x=0
fx3\" —265 .

(vi) For Sg=0BQA;y=0; 1 =—j, ds = dzdx;

0<x<a, 0<y<a

F.i=2x%y=0sincey =0

o —
‘_‘_-_\
T
=
o
LAy
I
=

(L.
LS
1)
|
o
Ly
Il
(S
[
+
(] L‘—-—\
L‘_-_\
+
" L‘—-—\
L‘_-_\
+
L S—
—
+
LS
L S—
+
o
o




o - _ .
—+a?= J J J V.F dvusing (1)

3

Hence Gauss Divergence theorem is verified

2.Compute [(ax® + by® + cz*)dS over the surface of the sphere x*+y*+z° = 1

Sol: By divergence theorem jE.ﬁdS =[, V.F dv
S

-

Given F.ii = ax” + by

- Normal vector 7i to the surface ¢ is
Vo= i£+]ﬁ+ﬁ2 (X +y?+2° =1)=2(xi + y j + ZK)
ox "oy oy

‘. Unit normalvector =n = 2(xi+yj+12k)

S En=F.(Xi+Yy]+2zk) = (ax? +by? +cz2) = (axi+by j + czK).(xi + y j + zK)

=Xi+yj+zk Since x2+y?+2°=1

ie, F=axi+byj+czk V.F =a+b+c
Hence by Gauss Divergence theorem,

- ) . . 4
J (ax~+ by- +cz")dS = J (a+ b+ c)dv = (a—b—c]b’=?‘r(ﬂ—b—c)

5
dq

[Efﬂce V= is the volume of the sphere of unit radius

3)By transforming into triple integral, evaluate | [ x® dy dz + x*y dz dx + x* dx dy where S is
the closed surface consisting of the cylinder x*+y? = a and the circular discs z= 0, z=b.

Sol: Here F, = x*,F, =x"v,F, =x"zand F=F1+Fj+FRk

aFl _3X2,£= Xz,%: 2

L= X
OX oz
A= RS S B NI Y




A

TN
et

/

:
\i .
O

By Gauss Divergence theorem,

OF O OF) avar
oy

”(x3dydz +xydzdx + x*zdxdy = j j I 5x*dxdydz

”dedz+|: dzdx + F,dxdy = f”[

2

=5 j a]x ixzdxdydz

—ay-_\Ja?-x? 2=0

a?-x? b

20_[ _[ I x*dxdydz [Integrand is even function]
0 0 z=0

- ff x[zjdxdx—zﬂbf f w?dxdy

= 20b f:r[_v]“&“ —x dx=2-ﬂbfx val—x? dx
2

o

a’ sin’ @ 4 a? — a?sin? 6 (acosfdh)

Il
b
=]
B\.ﬂ
R T

[Put x=asin@ == dx=acos&dé when x=a:>6?=%and x=0=68=0]




= 20a*b fgsinzﬁ' cos*@8df = 5a*b fc_(E sin 8 cosf)* df =5a*b J’Ei_ffs;ﬂ de
m/2 5{-[;-;"} [ﬂ-] a7
= —|= —ma'o
o 2

B Sa*bh [E gin 48
2 4

4: Applying Gauss divergence theorem, Prove that [ ¥ .7idS =3V or [7 .ds = 3V
Sol: Let ¥ = xT + vj + zk we know that div 7 = 3

By Gauss divergence theorem, If.ﬁds = j divFdv

Take F=7 == J F.das = J 3 dlV = 3V, Hence the result

£

5: Show that [, (axT +byJ + czk).ndS = ? (@ + b+ c), where S is the surface of the sphere
X2+y?+z°=1.
Sol: Take F = axT+ byvj+ czk

divE=, % R _ e

ox oy oz

By Gauss divergence theorem, js F.nds = j V.FdV =(a+b+c) j dV =(a+b+c)V
4
We have V= 3 nr® for the sphere.Herer =1
== 4
.-.jF.nds =(a+b+c)—
) 3
6: Using Divergence theorem, evaluate

I J;, (xdydz+ ydzdx +zdxdy),where 5;x2+y2+22=a2

Sol: We have by Gauss divergence theorem, IE.ﬁdS = I divFdv

L.H.S can be written as [(F, dvdz + F,dzdx + F;dxdy) in Cartesian form

Comparing with the given expression, we have F1=x, F,=y, F3=z

of OF, OF
oy oz

. [divFdv = [3dv =3V

Then divF = =3

Here V is the volume of the sphere with radius a.

SV= ﬁ7za3
3

Hence [ [(x dv dz + v dz dx + =z dx dy) = 4na®




7: Apply divergence theorem to evaluate I I (X+z)dydz + (y + z)dzdx + (x+ y)dxdy S is the surface

of the sphere x*+y*+z%=4

Sol: Given ” (X+2z)dydz + (y + z)dzdx + (x + y)dxdy

Here F1 = x+z, F, = y+z, F3= x+y

LS L L Y PO LS WL LS S T

X oy oz ax 8y E3
By Gauss Divergence theorem,

ok 8F oF.

” Fdydz + F,dzdx + F,dxdy = J.”( N a—;j dxdydz

J J J 2dxdydz = ZJ dv = 21

[:;'IT(EZJS] = E':—F [for the sphere, radius = 2]

I
)

8: Evaluate Ig F.mds, if F= xyTl+ 2]+ 2yzkover the tetrahedron bounded by x=0, y=0, z=0
and the plane x+y+z=1.

Sol: Given F = xyT+ z°J + 2vzk, then div. F = y+2y = 3y

1 1-x1-x-y
IFndS IdIVFdV—I I I 3ydxdydz
x=0y=0 z=0
11 1?'.". 1 '.|.T_'a.'
x=0y=0 #=0 =0
1‘ 2 2 371 1 2 _ s s
=5 | [—"__i_"_ =3 [(1—1) Cx(1-x)? (1-%) l""""'
2 2 3 2 5 3
x=0 o d
_, %|f:l—;-,_-j (l_ijl — 3 (1_:-,_) _El_fl.'j;'i_ 1
= J 2 3 J 6 T g
e o o

9: Use divergence theorem to evaluate I I F.dS where F =x%i+y%j+2°k and S is the surface of the

sphere x*+y*+z% = r?
Sol: We have

F= 00 L0+ 2 @) =3y +7)

~.By divergence theorem,




—

V.Fav = [ [ [V.Fav :.[”3()(2 + Yy +z%)dxdydz
\
=3 J J J r*(r’sin B dr d6 d ¢)
r=08=0¢=0
[Changing into spherical polar coordinates x = rsinfcos¢g,v =rsinfsing,z = rcosf]

Lo -

[ird T &I

JJF.cﬁ:S J JT;'sinE Jn’cp dr df

5 r=08=0 &=0

:ST j r4sin6’(27z—0)drd0:67zjf r“ﬁsinede}dr

r=06=0 r=0 [0
L? @
= 6m J r*(—cos8)] dr = —EHJ r*(cosm — cos Q) dr
r=0 o
i - -
. r*]°  12na®
=12m J rrdr = 12m|—| =
5 . 5
] .

10: Use divergence theorem to evaluate f [ F.ds where F = 4xi — 2y%j + z*kand S is the

surface bounded by the region x?+y?=4, z=0 and z=3.
Sol: We have

divF =V.F =3(4x)+§(—2y2)+ﬁ(22) —4-4y+2z
OX oy oz

Bv divergence theorm,

J1 J F.ds =J1 J J 7.Fdv

[

1
|
2
I
|
B
'
ta
1]
=]




va—x* Vid—x

= J J 21dv —12 J vdv | dx

- rom— r—

—Wa—x” —wa—x~

0

= f [21>< 2 4sz dy 12(0)]dx

[Since the integrans in forst integral is even and in 2" integral it is on add function]

-

=42 J [u)c: dx

-

2 2
=4ZIx/4—x2dx=42x2.fa/4—x2dx
2 0

x . . 4 _11. e
= 04 [— 4 —x- +— sin —]
2 2 21,

T
= &4 [E' —2.5— E'] = 84n

11: Verify divergence theorem for F = x*i + y*j + z*k over the surface S of the solid cut off by

the plane x+y+z=a in the first octant.

Sol; By Gauss theorem, jf.ﬁds = I divFdv

Letgp = x+ v +z—a bethe given plane then
b 100,08
OX oy oz

'a¢ - - T
sgradg= ) i—=i k
gradg =" PRl

grad¢ 1+j+k
lgrad ¢| V3

Unit normal =

Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a = y=a-x

Also when y=0, x=a

‘n.k
@ a-x 224 2 2 B g2—X ) ] ]
= J J — = J J [x=4+ v  +(a—x—y)]dxdy [sincex +v+z=a]
x=0 y=0 ‘1".'3. e d_"p' o =0
1/~

= chc Jr;_x[E vt 4+ 2v? — 2ax + 2xy — 2av + a*]dx dy
. o—x

[, 28 . .
= 2x v+ 3 T xyT —2axy—ay- +a vy
=0 Iyl

dx




J1 [2x%(a— x) —%[a —x) ¥ +x(a—x)*—2ax(a—x)—ala—x)*+ a*(a —x)dx

.-.jF.nds =j(—§ x° + 3ax? —2a2x+ga3jdx=a—, on simplification...(1)
) 3 3 4
Given F = x%i + y2]+ 22k

dlvF——(x)+—(y)+ (z) 2(X+y+2)

oy
Now IﬂleF dv = 2]1 ajxa_x[_ (X+ y+z)dxdydz
x=0y=0 z=0
=2 1 J [ [1—1.]——ﬂr o dx dv
=08, '*
=2 J J (a—x—v) [1—1. —ﬂ_;_k dx dy
P

I
V]

Zo—x

|:.
Hence from (1) and (2), the Gauss Divergence theorem is verified.

12: Verify divergence theorem for 2x2y i -y? j +4xz2k taken over the region of first octant of the
cylinder y?+z%=9 and x=2.

(or) Evaluate _[ J- F.ndS, where F :2x2yi-y2] +4xz%k and S is the closed surface of the region in the

first octant bounded by the cylinder y>+z° = 9 and the planes x=0, x=2, y=0, z=0
Sol: Let F =2x%yi -y j +4xz°k

V.Ez—(2x)+ (y)+ (4xz) 4xy —2y +8xz




E D
g
C s
9 —3 Z
B
LT s s

2 349"

fffﬁ'*ﬁdt’: f f f (4xy — 2y + 8xz)dz dy dx

x=0y=0 =z=0

—
-

3 -
r R e
z
= f f (4xy — 2v)z + 8x ?] dy dx
¢ o =

z=0

= f f 42y =299 =37 + 4x(9 - yP) | dy dx
o0

[(1—2x)(—=21)v9 — ¥? + 4x(9 — v?)] dy dx

3
!
= 2 g : .34 3
= J-H[l—zxju‘ + 4 (9;:—2) dx
0 o e

= J{E (1—2x)[0—27] + 4x[27 — 9]} dx = f[—ls(l —2x) + 72x]dx

b L

2 2
[—18(x —x2) + 72"7} — _18(2—4) +36(4) = 36 +144 = 180...(1)
0

F.n ds for all the five faces.

=

Now we sall calculate

L'1"«-.____-‘

j F.ndS = j F.ndS + j FndS+..... .+ j F.ndS
s 5

S2 S5




Where S; is the face OAB, S, is the face CED, S; is the face OBDE, S, is the face OACE and Ss is
the curved surface ABDC.

(i) onS;: X:O,ﬁ:—i -.F.n=0 Hence IE.ﬁdS
() onS,:x=2,n=i.Fn=8y

9—72

L 3 3 yz 9-2*
;[F .ndS :! E[ 8ydydz :'([8[?)0 dz

=4J(9—:fjd:= (9_——) =4(27-9)=72
o 3 o
(i) On S,:y=0,n=—j.. .. F.n=0 Hence jE.ﬁds

(iv)OnS;:z=0n=—k. F.A=0. Hence J F.nds =

vy’ +2%) 2y j+2zk B y]+zE_ yj+zk
‘V(y2+22)‘ Jay +427 \4x9 3

(V)On S, :y*+2°=9,n=

3 3 e
F_n=y+—4xzand n_kzézé 9_y2

—_d.1

[Cy *I . Where R is the projection of 5; on xy — plane.

Hence [, F.7ids = [ [_ F

2 3

= J [Ma’a dy = J J [4x(9— ) — ¥ [9 —_‘»'::I_%] dy dx

9 —
I v x

o y=0

- -

P

x- A
= J 72x dx — 18 J dx =72 (?) —18(x); = 144 — 36 = 108
|: b |:

Thus [ F.ds=0+72+0+0+108=180... ... (2)

Hence the Divergence theorem is verified from the equality of (1) and (2).

13: Use Divergence theorem to evaluate ”(xi+ yij+ zZE).ﬁds.Where S is the surface bounded by

the cone x*+y?=z% in the plane z = 4.

p—

Sol: Given [ [(xT+ yj +z%k).fi.ds Where S is the surface bounded by the cone x%+y?=z% in the

plane z = 4.




,1_

Let F = x1+vj+=z

Bv Gauss Divergence theorem, we have

[[ersevezmma = [[[r.ra

- 0 0 0,
Now V.F =— (X)+—(y)+—(2°) =1+1+22=2(1+2
ow ax() ay(y) az() (1+2)

On the cone, x* + y* =z°and z=4 = x* + y* =16

The limits arez=0tod,v=o0to+/16—x7 ,x =0 to 4.

JJJL Fd J j JEEI—:)dx-d_urd:

ENE T

=2J' .;J [[:]E—E—:L}dxd}'

16—x?

4 4
2[ [ [4+8ldxdy=2x12] [y1y dx
0 0 0

= 24 J V16— x?dx =24 | /16— 16 sin® 8 .4 cosBdf

|:.

mk____‘ul_ﬂ

[putx =4sind = dx=4cosfdb. Also x=0=60=0 and x=4:>0=%]

T

2
4\J1—sin® @ cos OO =96><4Icos2 6déo
0

Oy [N

.-.”jvﬁdv=96x4
\%

JJJ'L_ Fd,=9524j4«‘ 1—sin 28 case.:fe—%raljmsfe de
o o
[ 1+ cos26 (11 cos2@
=96 24J df = 96X4 J [—— ]
2 2 2

o o

1 lsinEE":_l
=384 [— +— = 96

2 2 2

14: Use Gauss Divergence theorem to evaluate [ [ (yz°T+ zx*J+ 22°k).ds, where S is the

closed surface bounded by the xy-plane and the upper half of the sphere x*+y*+z*=a®
above this plane.

Sol: Divergence theorem states that




J1 J F.a’s=J1 J J V.F dv

£

Here VF——(yz )+ay(zx )+ (22 )=4z

I!E.ds = .[_V['[4zdxdydz

Introducing spherical polar coordinates X =rsin&cosg, y =rsindsin ¢,

z =rcoséthen dxdydz = r’drd@d¢

”F dS—4i j j(rcose)(r sin @drd9d )

r=00=0 =0

- o
a T 2m

= J J 73 5inf cos @ J dep | dr di
»=08=0 #=0
=4, J J r3sinf cosf (2w — 0)dr df

r=08=0

o

= 4 J 73 U gin 28 d8

r=0 o

dr = 4 J‘T‘E [—

r=0

cos 26T
J far
2/,

=(—-2m) fc'_:TE (1—1)dr=0

15: Verify Gauss divergence theorem for F = x°T + y°J + z* k taken over the cube bounded by
x=0,x=a,y=0,y=a,z=0,z=a.
Sol: We have F = x°*T + v3] +

vE:aﬁ( )+ (y)+ (z) 3x? +3y? +37°

=3 J J J(l"—x'—:'jdldua’:
z=0y=0x=0
2 '?.fl_g ) a
=3 J J (——1'1'—_'1) dy dz
3 )
z=0y=0 o
- - .fﬂg
=3 J J [——m——a:‘)a’u dz
W
z=0y=0

3




To evaluate the surface integral divide the closed surface S of the cube into 6 parts.

i.e., S;:Theface DEFA :S,: The face OBDC £
S, : The face AGCO ; Ss: The face GCDE c S
Ss: The face AGEF  : Sg: The face AFBO R 0
J J F.7Ads = J J F.7ds + J J F.Ads + L J J F.fds B A
= S 52 S z :

OnS,,wehaven=1Lx=a

”Eﬁds‘ I [ (a%i+y*]+2°%k)idydz

z=0 y=0
J JF fds = J J‘[asf—us_,?—:"'k} 1dydz
5, =0 y=0
= J J a’dy -:1':=a°J (v)§ dz
=0 y=0 ¢

= a*(2)§ = a°
OnS,wehaven=—-L,x=0
”Eﬁds_j _[(y j+2 k)( i)dydz:O

2=0 y=0

P ra hAaare 3 — T ar —
OnS,,wehaven=J,v=a

[[Fros= ] | privarTeey s =o' | | o =afate-atio}

220 x=0 220 x=0
=a’
OnS,we haven=—jJ,vy=0

sz
J JF nds = J J[:ﬁ.sf—:sk} (—j)dx dz =
5, =0 x=0
OnS-wehaven=kz=a

a a

.o

=




@ @ i)

= J J a’dx dyv = a? J (x)3dy = a*(v)s = a°
y=0x=0 o

On 5., we have i = —kz=0

J J F.nds = J J (x3T+ v3y). [:—E}dx dyv= 0

5 y=0x=0

ThiLSJ JF.ﬁd3= a®+04+a°+0+a°+0=34°

5

Hence J JF.ﬁa’S = J J V.F dv

5

.. The Gauss divergence theorem is verified.

I1. GREEN’S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S].

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous
functions of x and y having continuous derivatives in R, then

[ﬁ Mdx + Ndy = ﬂ(a—N M xdy.

c RLOX oy

Where C is traversed in the positive(anti clock-wise) direction

A
A
Y=l | B
- X =0
X=a %
®
SOLVED PROBLEMS

Verify Green’s theorem in plane for $(3x° — 8v*)dx + (4v — 6xv)dy where C is the region
bounded by y=yx and y=x"~ .
Solution: Let M=3x2-8v* and N=4y-6xy. Then

M aN

L= —16y,5.= —6y

n.-|51-




We have by Green’s theorem,

oN oM
fimac Ny - H(&——

” (@ —~ @]dxdy = H (16y — 6y )dxdy

&
-10Hydxdy 1oj I ydydx =10 I ( Zj dx

Xny

=5 f (x — x= )dl—S[T—i]i_E‘(__l}z

o |: = >

ra | o

(1)
Verification:
We can write the line integral along ¢
=[line integral along y=x~(from O to A) + [line integral along v *=x(from A to O)]
=l,+1,(say)
5 dy

Now fizfj:.;.{[Sl': —8(x?)?]dx + [4x? — 6x(x*)] 2xdx} [ y=x°= E = 21‘]

:f:(ﬁxa +8x% — 20x¥)dx = —1
And I—T[(sz 8x)dx+(4\/§ 6x%) L dx}—}(sz 11x+2) dx =
2_1 2’\5 _l -

s T heges

=3/2-

From(1) and (2), we have Djde+ Ndy = ﬂ(ﬁ—% xdy.
R

ox oy

Hence the verification of the Green’s theorem.

Evaluate by Green’s theorem f.; (v —sinx)dx + cosx dy where C is the triangle enclosed by
the lines y=0, x==, Ty = 2x.

Solution : Let M=y-sinx and N = cos x Then




N oN .
2M_1 and —=-ginx
By dx

.. By Green’s theorem m Mdx + Ndy = ”(ﬁ M xdy.
C R

ox oy
= J'(y—sin X)dx +cos xdy = ﬂ (=1-sin x)dxdy
c R

:-_J’::E: fic[l + sinx) dxdy

=- [T (sinx + 1) V1377 dx
:_T:J:_:E: x(sinx + 1)dx

7%
- I 1(—cos x + x)dx

0

:%Z[X(—COSX+ x)]:

-

:T'[x(— cosx + x) +sinx —AT] N
L - |:.

P
&

-

-2 2 \ -2 [x* ™ 2
—[—1'6051'———51H1'] =—[——l]=—(———]
T 2 o i g \ s

Evaluate by Green’s theorem for 95': (x° — coshv)dx + (v + sin x)dv where C is the rectangle

with vertices (2.0}, (=, 0}, (=, 1), (0,1).

Solution: Let M=x* — coshv,N = v + sinx

M _ o BN _
e sinh y and 3. = COSX
By Green’s theorem, m Mdx + Ndy = H (G_N ™M xdy.
c R\OX 0Oy

(©, 1)
= [[1(x* —cosh y)dx + (y +sin x)dy = | | (cos x +sinh y)dxdy
1 y
c R

(r, 1)

= 95,; (x® —coshv)dx + (v + sinx)dy = fff[cosx + sinh o]

:Jf::c. J:-:.;.(CDS x + sinh y)dydx = J:—:c (yecosx + C'C'Sh.‘f:'é- dx

T

= I (cos x+cosh1-1)dx

x=0

=m(coshl — 1)

A Vector field is given by F =(siny)i+ x(1+cos y) j
Evaluate the line integral over the circular path x*+v* = a*, z=0
(i) Directly (ii) By using Green’s theorem

Solution : (i) Using the line integral

(m, Q)




gSEF. dr = 95': Fidx + Fdy = 95': sin ydx + x(1 + cosy)dy

=msin ydx + x cos ydy + xdy = [ﬁd(xsin y) + xdy

Given Circle is x*+v* = a®. Take x=a cos# and y=a sin 8 so that dx=-a sin 8 48 and
dy=acosfdfand & =0 — 2w

+ $F.dr= f;x d[a cosfsin(a sinf)] + fc_:x a( cosf)a cosf df
=[a cos@sin(a sin #)]3* + 4a” IEF: cos® 8 df

=0+ 4a2.%.% = rra’

(i1)Using Green’s theorem

Let M=sin v and N=x({1 + cosv). Then

oM_ , N_eq 1 ,
75— C0S) and E_'__*_—(l cosvy)

By Green’s theorem,

ON oM
iy [ 242 by
[[jsin ydx + X(1+cos y)dy = _U (—Cos Y +1+cos y)dxdy = ” dxdy
c R

= .|..|.dA=A=7ra2('.' area of circle=za?)
R

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is verified.

Show that area bounded by a simple closed curve C is given by 145 xdy — vex and hence find the

area of
X2 y2
(1) The ellipse x=acos @, y =bsing (i.e)g +F =1
(ii )The Circle x=acosf,y = asinf (i.e)x” + vy~ = a’
Solution: We have by Green’s theorem dex+ Ndy = ” N _M xdy
c RT\LOX oy

Here M=-y and N=x so that ? =-1 mdg— =1

[ﬁxdy —ydx = 2_[ dxdy = 2Awhere A is the area of the surface.
c R

%_]r xdy —yvdx = A
(i)For the ellipse x=aces8 and y=bsinf and 8 = 0 — 2x
- Area, 351:%95 xdy — yvdx = %J'E:F[[a cos@)(bcosf) — (b sinf (—a sind))]d @

=Zab _JFE_:'TECGS:E 4 sin?8) df = 2ab(8)2" = £ (27 — 0) = 7ab




(ii))Put a=b to get area of the circle A=ma*

6: Verify Green’s theorem for fc[(l'_v + v3)dx + x*dy], where C is bounded by y=x and
y=x"

Solution:By Green’s theorem, we have Ujde+ Ndy = “.(@ M xdy
C R

ox oy

Here M=xy +v* and N=x~

c2

The line y=x and the parabola y=x- intersect at O(0,0) and A(1,1)

Now [[]de+Ndy jde+Ndy+Ide+Ndy ...... (1) (D)

C2

Along ¢, (i.e.y = x7), the line integral is

1
Ide+ Ndy = I[x(xz) +x*]dx + x*d (xz)J‘(x3 +x* +2x%)dx :J‘(3x3 +x*)dx
G G c 0

Along €, (i.e.y = x) from (1,1) to (0,0, the line integral is

J. Mdx + Ndy = I (XX +Xx?)dx + x%dx [+ dy = dx]

C C2

]

—f 3x dx =3 f v dx =3 (AT] = (x*)§ =0-1=-1 ....(3)
From (1), (2) and (3), we have
[ Mdx+Ndy= =—1=2=
c 20 20
(4
Now

”(a—N—aﬂjd xdy =”(2x—x—2y)dxdy

=[G = x%) — (2% —x9)]dx = [1(x* = x%)dx




.05

From(4)and(5), We hav E[ﬁl\/ldX#— Ndy = ”(——Ededy

Hence the verification of the Green’s theorem.

Using Green’s theorem evaluate fE[E xyv — x)dx + (x° + v*)dy, Where “C” is the closed

curve of the region bounded by y=x* and v* = x

Solution:

The two parabolas ¥* = x and v = x~ are intersecting at O(0,0),and P(1,1)
Here M=2xy-x* and N=x~ +y~

M _ BN
"E_h and —— = 2x
Hence 5~ — = = 2r—2x =0
By Green’s theorem IMdX+ Ndy = ”.[% —%}d dy
N
i.e. I(ny x2)dx + (x> + y*)dy = '[ I(O)dxdy 0
Xny

E Verify Green’s theorem for fc[(S 1% — 8y?)dx + (4v — 6xv)dyv] where ¢ is the region bounded
by x=0, y=0 and x+y=L1.

Solution : By Green’s theorem, we have
oN oM
Mdx+ Ndy = (———jd dy
I S

Here M=3x" — 8y~ and N=4y-6xy




A (1,0)

M _ —-16y and N _ -6y
oy OX

Now [Madx+Ndy = [ Mdx+Ndy+ [ Mdx+Ndy+ [ Mdx-+Ndy...(1)
c OA AB BC

AlongOA,y=0 -~ dyv =0

1 - P 1
_J:M Mdx + Ndy = -ch- 3x-dx :(T] =1

“ 3

Along AB, x+y=1 . dyv = —dx and x=1-y and y varies from 0 to 1.
1
| Mdx+Ndy = [[3(y—1)° -8y*)(~dy) +[4y +6y(y —D]dy
AB 0

:f: (—=5v? — 6y +3)(—dy) + (6v* — 2v)dy

1

=117+ 4y = 3)dy = (11242 - 3y)
e 3 & ]

= +2-3=1

Along BO, x=0 - dx =0 and limits of y are from 1t0 0

|:.
[, Mdx+ Ndy = [ 4ydy = (45) = (2yD)i= -2
- 1

-
& F

from (1), we have | Mdx + Ndy =1 +E o=

o

Now I I [@ —%]dxdy = Jl. T (-6y+16Yy)dxdy
R

ol |

oX oy

x=0 y=0

1-x

=10 J;-izc- [qu—; _1,'.:1’_1'] dx =10 Jrci [T] dx

|:.

=2 [(1-1° - (1- 0=

From (2) and (3), we have J'de+ Ndy =“{86—N—% xdy
c R X

Hence the verification of the Green’s Theorem.




a Apply Green’s theorem to evaluate 95':[2 P —yvi)dx + (x*+ v¥)dy,where cis

the boundary of the area enclosed by the x-axis and upper half of the circle x* + v* = a*

Solution : Let M=2x* — v* and N=x* + v* Then

oM N
— = —2yand — = 2x
dy - dx

/, S
7
f

@) a
Figure
By Green'sTheorem, I Mdx + Ndy = “.(%—N—%jdxdy
c R X

JI@x® = y?)dx+ (x* + y*)dy] = [ [ (2x+ 2y)dxdy

=2[[(x+y)dy

:ZJ: fEF r(cos@ +sinf).rd Bdr

[Changing to polar coordinates (r,&7, r varies from 0 to a and § varies from 0 to =]

= II@x* = y?)dx+ (¢ + y*)dy] = 2] r*dr [ (cos 6+ sin 6)d g
c 0 0

:2.':?;[1—1)=;'T“:

Find the area of the Folium of Descartes =2 + v3 = 3axy(a = 0)using Green's
Theorem.
Solution: from Green’s theorem, we have

g

- i 4B
[ Pdx + Qdv = [I [—— 8\ dxdy
- Q ) SR LA By )

By Green’s theorem, Area = %[ﬁ(xdy — ydx)

Considering the loop of folium Descartes(a>0)




3at 3at? d ( 3at d ( 3at?
Let x= Yy = ,Then dx =| — dtand dy =| — dt
e Te {dt(lﬂsﬂ d {dt(lHSH

The point of intersection of the loop is [%a%aj =t=1

Along OA, t varies from 0 tol.
%QSE:L'-:{}'—}'.:{::;] = f (

) [E () e (355 [2 (25 )] e

1 j 3at | 3at(2—t°) | 3at’|3a(l-2t%)

24 |1+ (1+t3)2 1+t (1+t3)2
_sg® o1 frtlz-ef ) (1-27) I TS o
2 jﬂ- [Ei—rz.'-z BEESE ]dr_ P jc- (1+£3)F dt
21 ;2 5 2 1.2 3
=9a J-t +§3 =9a J-t (l+3t3)dt
2 5 (1+t7) 2 9 (1+1°)
ZESF fc1.1 —dt [Put 1+t° = x = 3t7 dt = dx
L.L.:x=1, U.L..x=2]
92 £t dx 9a’ %1 3a’ .
=— | —.— =—— | —dx =——sq.units(a>0).
2 1x* 3t 6-!.2 e (@0)

: Verify Green’s theorem in the plane for fc(x‘ —xy)dx + (v — 2xy)dy
Where C is square with vertices (0,0), (2,0), (2,2), (0,2).

Solution: The Cartesian form of Green’s theorem in the plane is

Ide+ Ndy = ”(@—@jd dy

oy
Here M=x* — xv? and N=v* — 2xv
gM_ wZand 2 = oy
C ey 3 xv - and . 2y
Y4 y=2
C <
¢ —ea
"\
x=0 v Qo
o +-
(20)

Evaluation of [ (Mdx + Ndy)




To Evaluate [_(x* — xy®) dx + (y¥* — 2xy)dy, we shall take C in four different segments viz (i)

along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).

(i)Along OA(y=0)

|

[y x*dx = (5)

-:IJE_

fc[:a.': —xvdx + (v? = 2xv)dv =

(iAlong AB(x=2)

fc(x: —xv3dx + (v? —2xv)dv = f; (v*—4y)dy [vx=2,dx=0]

2= (- 5) =5(-3) -
(iii)Along BC(y=2)
_J:_,[x: —xv¥)dx + (v — 2xv)dy = f:&[:c: —8x)dx [vyv= v =10]

(X 4] = (8 16)-20

—[3 4x JO— (3 16} ...... (3)
(iv)Along CO(x=0)

w55 0

jc(l': —xv)dx + (v? —2xv)dy = _J’:D_v: dx [vx=0,dc=0]= (?]ﬂ = -3
Adding(1),(2),(3) and (4), we get
j(xz—xy3)dx+( —2xy)dy 816,40 8_24 g4 ..(5)

3

c

oN oM

dxd
ay] g

Here x ranges from 0 to 2 and y ranges from 0 to 2.

”(aN oM

Evaluation of ”[

22
dedy = .[ j (=2y + 3xy?)dxdy
00

. ]: dy

|:.

"_:I,r
2xy ——1.

=f5 (=

g

2
:!(—4y+6y2)dy = (—2y2 +2y3)z

=-8+16=8
From (5) and (6), we have
Ide+ Ndy = ”(aN M ]dxdy

Hence the Green’s theorem is verified.

oy

(1

(4

...(6)




111. STOKE’S THEOREM

(Transformation between Line Integral and Surface Integral)

[INTU 2000]

Let S be a open surface bounded by a closed, non intersecting curve C. If F is any

differentieable vector point function then gﬁc F.dr=

_J; curl F.7ds where ¢ is traversed in the positive direction and
1 {5 unit outward drawn nermal at any point of the surface.
Prove by Stokes theorem, Curl grad ¢=0

Solution: Let S be the surface enclosed by a simple closed curve C.
& By Stokes theorem

L(mm"f grandg).it ds = L("-?x?cﬁ;].ﬁ ds = gsc Vo.dr = Eﬁc"?cp. dr

(106,588 608 (o oy ok
_m( Pl ¥ +k aZJ.(IdX—i— de+kdz)

c

_f(0¢ . 09 o¢
_qj(&dx+—dy+5dzj=jd¢=[¢]p

oy
S eurl gradg.fi ds =0 = curl gradg =0

prove that I¢cur| f.dS = J};ﬁ.dF—J‘curl gradgx fdS

Solution: Applying Stokes theorem to the function ¢ f

jgﬁ.d? = jcurl (;ﬁ).ﬁds = j(grad;zﬁx? +¢cur|?)ds
J.¢curl?.ds = j¢?.d?—jv¢x?.ds

3: Prove that ¢ fVf.d7 = 0.
Solution: By Stokes Theorem,
I(FVf).dr=[curlf V. ds=[[ fourlVf +Vf xVf n ds

[

- Iﬁ.ﬁds =0 curlvf =0and Vf xVf =0]

: Prove that[ﬁ fvg.dr= I(Vf x Vg )nds

Solution: By Stokes Theorem,
[]]( ng.dF) = I[Vx( fvg)nds = I[Vf x Vg + feur Ig radg Jnds

c

= [[Vf xVg].nds [ curl(gradg) = 0]

where P is any point on C.




Verify Stokes theorem for F = —y37 + x5, Where S is the circular disc
xt+yiElz=

Solution: Given that F = —y*7 + x*j. The boundary of C of S is a circle in xy plane.

x® 4+ y7 = 1,z = 0. We use the parametric co-ordinates x=cosf, y = sinf,z = 0,0 < § < 2m;
dx=-sinf d& and dy =cos¢& d¢&
955 F.dr = L Fidx + F,dy +Fdz = _ —y3dx +x3dy

:fc.:xf—zinaﬁ(—ginﬂj + cos®Bcosfldl = JF.;.:F(CGFL"E" + sin*@)de
_rim P 2 — rim 1 r2m . 2
=, (1 —2sin’8 cos 6)d6=["" de —3J, (2sinf cos8)* dé

— 2w 1 p2m ., 2 _ _ _ 1 pI= _
=1, dﬂ—;fc_ sin”2d8 = (2 — 0) ;jc- (1 — cos48)df

-
T

o [tpg it qpag| =, 2w _gm _3m
=0 [ Lo mshmm]ﬁ =2m -2 =T 2
3 7k
_ 8 8 8 a2 L ma
NowV X F =] — 3 2= = k(3x 3v)
_1'.-3 1.3 0

w [(Vx F).fids =3 [ (x* + y?) k. fids

We have (k.n)ds = dxdy and R is the region on xy-plane

j];["? X F).fids = 3 f_[q[x: + v dx dy

Put x=r cos®, v = r sin@.. dxdv = rdr d@

risvarying fromQtoland 0= @ < 2m.

(VX F) fids = 3 J';:E_ J’!_i:c_ff.rdr do = —“

L.H.S=R.H.S.Hence the theorem is verified.

ﬁ If F = yi+(x—2xz)j—xyk, evaluate I(V X F).ﬁds . Where S is the surface of sphere

el - -

x~+v-+z-=a",above the xv — plane.

Solution: GivenF = v + (x — 2xz)j — xvk.

By Stokes Theorem,
J(vx F).ﬁdzzjﬁ.dF =J; Fidx + Fydy + Fydz = | ydx + (x —2xz)dy — xydz
Above the xy plane the sphere is x* + y*+=a”,z =0

J F.dr = J_m’x + xdy.
c c
Put x=a cos 8,y=asinf so that dx = —a sinfdf, dyv = acos8d8 andfd =0 — 2n

e

J F.dr = J ) (a sinf) (—a sinf) df + (acosf)(acosd)df
c o




-

=a® " cos26 df = a [”J]EF —2(0)=0
Verify Stokes theorem for F = (2x — v)T— ¥z°J — v*zk over the upper half surface of the
sphere x* + v* + z? = 1bounded by the projection of the xy-plane.
Solution: The boundary C of S is a circle in xy plane i.e x* + v*=1, z=0
The parametric equations are x=cos8, v = sin8,8 = 0 — 2m

dx = —sing df, dy = cos8 df

IE.dF :_[Eldx+E2dy+E3dz :I(Zx—y)dx— yz*dy — y?zdz
f x — y)dx(since z =0 and dz = 0)
2z 2 2z
=—I (2cos@—sin@)sinOd o = Isinzede—fsin 26d6
0 0 0

Lo -
£TC

2r  1-cos28

=[7T, T2 dp — [T sin26 df = |26 — 2sin2e +1.cos26

|:.

:%(2:'{ —0)+0 —%. (cos4m — cos0) =

"-""l'-'.l.- )
E’ln.- =

i
Again 7 x F=| = =1(—2yz+2yz) —j(0—0) +k(0+ 1) =k

2x—v —vz© —y°=z

» [(V X F)ds=, k.7ids = [_ [ dxdy

Where R is the projection of S on xy plane and k. 7ids = dxdy

— I 1
Nowffdxdu—clj f ln’udl—clf_ Wl1—xidx=4 1'\rl—x-—lsmix
- |:

=4 [%sin_1 l] =2"=m

~. T he Stokes theorem is verified.

8: Verify Stokes theorem for the function F = x* 7+ xv j integrated round the square in the plan
z=0 whose sides are along the lines x=0, y=0, x=a, y=a.

Solution: Given F = x* 7+ xvJ

7
C r=a B(a’a)
(0, a)
X=a
o) Adla o)

Fig. 13




By Stokes Theorem, j5(? X F).fds= IE.dF

[
_ |3 E
Now V x F=|7- 3

=Tl T
Il
=
<

Bx
x- Xy

LH.S=[(Vx F].ﬁds:jy(ﬁ.ﬁ)ds = _[ ydxdy

7. k.ds = dxdy and R is the region bounded for the square.

» [(VX F)ads = f; f; ydydx = ET

R.H.S. :IE.dF :J.(xzdx+ xydy)
Cc C

But [F.dFf=[ F.df+[ _F.di+[ F.df+[ F.dF
()Along OA: y=0, z=0, dy=0, dz=0

5]

v f Fedi= [ xdx =

I'.!Jl

(i)Along AB:x=a, z=0,dx=0,dz=0
[Fadr= j'aydy Sl
0 2

(iii)Along BC: y=a,z=0,dy=0,dz=0

o [, F.dF = [°0dx =1a®

(iv)Along CO: x=0, z=0, dx=0, dz=0

« [ F.dr = [°0dy =0

1

Adding [ F.dF = Zad +2a +-a? +0 =247

(R

Hence the verification.

9: Apply Stokes theorem, to evaluate [ﬁ(ydx+ zdy + xdz) where c is the curve of intersection of the

-

sphere x? + v* + z? = a” and x+z=a.
Solution : The intersection of the sphere x* + v* + z* = a” and the plane x+z=a. is a circle in the
plane x+z=a. with AB as diameter.

=

Equation of the plane is x+z=a= =+ = =1

]

..OA=0B=ai.e.,, A=(a,0,0) and B=(0,0,a)
~. Length of the diameter AB=+/a*+a* +0 =ay2
Radius of the circle, r=—

Let F.dr = ydx 4+ zdy 4+ xdz = F.dF =F. [ 1dx + jdy + En’:} = ydx + zdy + xd=z




vE
-

Let # be the unit normal to this surface. it = 7

Then s=x+z-a, VS —i4ke A== = :‘

3
|
3]

Hence ¢ F.d7 = [ curl F.ids (by Stokes Theorem)

(74740 (Fhs = (G 5) s

&

= .'n:‘\l ma”

:-*.,"E_JFS ds = —/25 = —*.,’E[i

-
= A

10: Apply the Stoke’s theorem and show that f_-,- [ curl F.7ids = 0 where Fis any vector and S =

- el -

x-+y-+=zo=1

-

Solution: Cut the surface if the Sphere x* + v + z* = 1 by any plane, Let 5, and S,denotes its

upper and lower portions a C, be the common curve bounding both these portions.
~.[eurlF.ds=[F.ds+[Fds

s 5 S
Applying Stoke’s theorem,
[eurlFds=[FdR+[FdR=0
s S )
The 2" integral curl F.d5 is negative because it is traversed in opposite direction to first integral.
The above result is true for any closed surface S.
11: Evaluate by Stokes theorem gﬁc[x' +v)dx + (2x — z)dy + (v + z)dz where C is the boundary
of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).
Solution: Let F.d7 =F. [ dx +jdv + Ed:} =(x+v)dx+(2x —z)dy + (v + z)dz
ThenF=(x+v)T+ (2x—z)j+ (v +2)k
By Stokes theorem, ¢_F.d7 = [ [ curl F.7ids

/8(1,1,0)

P A(1,0,0)




Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B
Are zero. Thereforeit = k. Equation of OA is y=0 and

that of OB, y=x in the xy plane.

. curl F.ads=curl F.K dx dv = dx dvy
QSEF. di = Jrf__ dx dy = f_j:_ dA =A =areaof the A OAB

=-0A X AB=1y1x-1
2 2 2

12: Use Stoke’s theorem to evaluate [ fs curl F.7dS over the surface of the paraboloid
Z+x°+y’ =1z>0where F=yi+zj+xk
Solution : By Stoke’s theorem

j curlF.ds = mE.dF = j (Vi +2j +xK).(>idx + jdy + kdz)
= j ydx (Since z=0,dz=0) ......(1)

Where C isthecircle x? + v* =1
The parametric equations of the circle are x=co=8, v = =sinf
o odx = — sinf df

Hence (1) becomes

sin? 0d9:—4x1x£:—7t
2 2

O v [ N

2z 2z
fourlFds= [ sino(-sin@)do = [ sin” 0do =4
S =0 6=0

13: Verify Stoke’s theorem for F = (x* + v*)T— 2xvj taken round the rectangle bounded by the
lines x==a,v =0,v = b.
Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).
Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.
We have to prove that § F. d7 = [ curl F.7ids
QSEF. dr = 955{[1': +v3)T — 2xvih { tdx + jdv)
zgsc (x* + v ) dx — 2xvdy

“Jag Tge Tlep T Jpa (D)




C(-a,b) y=b Bla,b)
<
X=-a Y - AX=2a
- —PX
D(-a,0) O vy=0 A(a,0)

(i) Along AB, x=a, dx=0
from (1), [, = jj_’zc_—za_v dv = —2a [—] = —ab?

(i)Along BC, y=b, dy=0

x=—a 3 -a z
f 1), | = | (x*+b*dx= X oipx| =222 2ab?
rom (1) j _[ ( ) {3 } ; ab

BC x=a X=a

(iii) Along CD, x=-a, dx=0

from (1), J' = } 2aydy = Za{yél_b — _ab?

CD y=b

(iv)Along DA, y=0, dy=0

from (1), I = T X*dx = {Xg}a 2

DA x=-a X=—a

(i)+(ii)+(iii)+(iv) gives

= —4ap-

a” .
3

f §F.d7 = —ab?-—— —2ab* — ab’+
4 3
Consider [_curl F.idS

Vector Perpendicular to the xy-plane is @ = k

T
;e g
~ocurl F= Ep
(1.: o _"..':j _21.-1‘.. 0
Since the rectangle lies in the xy plane,

7 = k and ds =dx dy

js curl F.ndS = js —4vyk. kdx dv = J:-:z—.: juzc —4dydx dy

(2)

. b b
[ [~y dxdy=4 [ y[x] dy=—4 ] 20y

y=0

y=0




:—4-:1[_1':]_5’,:,} = —4ab? (3)
Hence from (2) and (3), the Stoke’s theorem is verified.
14: Verify Stoke’s theorem for F = (v —z + 2)T+ (vz + 4)7 — xzk where S is the surface of the
cube x =0, y=0, z=0, x=2, y=2,z=2 above the xy plane.
Solution: Given F = (v —z + 2)i+ (vz + 4)j — xzk where S is the surface of the cube.
x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.
By Stoke’s theorem, we have [ curl F.fids = [ F.d7
7 k
= 2 |=w0+w) —J—z+D+RO-D=yi-(1-2)]-k
+2 v+4 —x=

f?KFﬂdS—ff—ldxdu (vz=0,dz=0)=—4 (1)
Tofind [ F.d¥
[F.di=[((y—z+2)T+ (yz+4)] - xzk) . (dxT + dyf + dzF)

= [[(y—z+ 2)dx + (yz + 4)dy — (x2)dz]
Sis the surface of the cube above the xy-plane
~z=0 =dz=20
o [Fdi= [(yv+ 2)dx+ [ 4dy
Along 04, v =0,z=0,dy = 0,dz = 0, x change from 0 to 2.
[Fade=2[x13=4 ... Q)
Along EC,v = 2,z =0,dy = 0,dz = 0,x change from 2to 0.

j 4dx = 4[x]5=-8 ... .3)

Along 4B, x = 2,z = 0,dx = 0,dz = 0, v change from 0 to 2.
2

[Fdr=[ady=[4y] =8 .. 4)
0 0

Along €0,x = 0,z = 0,dx = 0,dz = 0,y change from 2 to 0.
S} 4dy = -8 (5)

Above the surface When z=2

Along 0'4', [*Fdr=0 ...(6)

Along A'B',x = 2,z = 2,dx = 0,dz = 0,y changes from 0 to 2

[Far=[@y+4ay= 2{3’;} +4[y] =4+8=12 (7

0 0

Along B'C',y = 2,z = 2,dy = 0,dz = 0, X changes from 2 to 0
[JEdr=o0 .(8)




Along €'D',x = 0,z = 2,dx = 0,dz = 0,y changes from 2 to 0.

I(2y+4):2{y7} +4[y] =12 (9)

2
(2)+(3)+(4)+(5)*+(6)+(7)+(8)+(9) gives

JFd7=4-8+8-8+0+12+0-12=—4 .....(10)

By Stokes theorem, We have

[ F.d7=] curl F.7ids=-4

Hence Stoke’s theorem is verified.

: Verify the Stoke’s theorem for F = ¥7 + zj + xk and surface is the part of the sphere

x4+ v-+ z° =1 above the xv plane.
Solution: Given F = yi+ zj+ xk over the surface x> + v* + z? = 1 is xv plane.
F Ad7= el B
We have to prove [_F.d7=[ [ Curl F.Ads
F.d7=.(yi +zj + xk). (d=T + dyj + dzk)=ydx + zdy + xdz
e r4L vz = r - T3 v 1] 3 i i
ICE}Fdh zdy + xdz) = [ ydx (inxyplane z=0,dz = 0)
Let X= cosf, v = sinf = dx = —sinf df,dy = cos8 df

-

fc F.d7 = _J:f yv.dx = .ch._.'r vdx [ x*4+yv* =1,z=0]

=[77 sin8 (—sinB)dé = —4 [T sin>6 df

o 78 g = 4 [(22) s

-

1x T
=-4 [[:.ﬂ—] - ':'] =—4 [?] = -7 (1)
T 7 k _
CurlF=|g/dx d/dy d/oz|=—-(0+]+k)
v Z x
Unit normal vector 71 = :— = iz X1+ vji+zk
I v rl % ax*+ T_"."' -z

Substituting the spherical polar coordinates, we get
= sinf cosgpT+ sinf sinp 7+ cosBk
s~ Curl F.n = —(sinf cos ¢ + sinf sin ¢ + cosf)

_ % 2z
“curIF.nds= j I (sin@cos ¢ +sinGsin ¢ +cosd)sin dOd ¢

6=0 $=0

= Jrl;j [sinf sin ¢ — sinf cos ¢ + ¢cosf] ™ sinfd8

P
TS &

=2 JFET: cosOsinBdl = —m JFET: cin28d6 = (—;T:I [—cosfﬁ']

I
:'ﬂi(—]_— ]_j = —7 cn(2)

From (1) and (2), we have




[ F.d7=[[Curl F.Ads = —n
~ Stoke’s theorem is verified.
16: Verify Stoke’s theorem for F = (x2 — yz)i+2xy] over the box bounded by the planes

x=0,x=a,y=0,y=b.

Solution :

0,b)C B(a, b)
|

0 A(a,0)

Stoke”’s theorem states that IEdF = ICurIE.ﬁds

Given F = (x? — v3)T+ 2xvj

i ik
CurlF=| 9 %y 0/, =1(0,0)~1(0,0) +k(2y +2y) = 4yk
X*—y> 2xy 0

R.H.S= qurIE.ﬁds = I4y(R.ﬁ)ds

Let R be the region bounded by the rectangle
[:E.ﬁ}ds =dx dy

a a b a
ICurIE.ﬁds = j j' 4ydxdy = _[ {4%2} dx = 2b” I 1dx
S x=0 x=0

X=0 y=0 0
=2b*(x)8 =2ab?

To Calculate L.H.S

F.df = (x* —v3)dx + 2xv dy

Let O=(0,0),4 =(a,0),E = (a,b) and

C=(0,b) are the vertices of the rectangle.

(i)Along the line OA

y=0; dy=0, x ranges from 0 to a.

[, Fdi= [ x*dx= [AT]: :E?

o




(i)Along the line AB

x=a; dx=0, y ranges from 0 to b.

jAS F.dr = j:l‘_’zc_(zx_vj dy = [za %Lzab:
(iii)Along the line BC
y=b; dy=0, x ranges fromato 0

_ _ 90 3 0 38
jF.dr: j (xz—yz)dx:{——bzx} =O—(——b2a]
A 3 3

a

(iv) Along the line CO
x=0,dx=0,y changes from b to 0
0
J.F.dF= .[ 2xydy =0
y=b
Adding these four values

ad -"l
J Fdr= T+ abt+ab? — 2 = 2ab?

a

LHS = RHS

Hence the verification of the stoke’s theorem.

17: Verify Stoke’s theorem for F=y* T — 2xyj taken round the rectangle bounded by

x==b, y=0,y=a.
Solution:
y
K s
=a
C < Y B
X=—by A X=b
D - > A y=0 » X
B j k
Curl A= a-’;a:i_' alfla v a.f'fl.ﬁ: = -4y.E
y2 —2xvy Q

For the given surface S, 7= k




SA(Curl F).in = —4y
Now [ (Curl F).7ids = [| —4ydxdy
a b
= j { j —4ydx}dy
y=0|_x=-b

b

[-4xy] dy

-b

O ey

= [ —8bydy =[-4by’ || =—4a’b.......(1)

J;F..:ff =~ jﬂﬂ_ Jr.ﬁ.s_ Bc ' Jep
IFI d-].? = }.-: d.').' _ 21._1._..0!'}.-
Along DA, y=0,dy=0 = [ F.d7 =0 (" F.dr=0)
Along AB, x=b,dx=0

[ Fodi=[7_ —2bydy=[-by’ | =-a’b
Along BC,y=a,dy=0

fgc F.dr= fb_b a’dx=—2a’b

Along CD, x=-b,dx=0
[, F.di= [ 2bydy=[-by’ | =-a.

| F.d7 =0-a’b—2a’b —a’b=—4a’h - 2)
From (1),(2) | F.d7 =[] (Curl F).7idS

Hence the theorem is verified.

19: Using Stroke’s theorem evaluate the integral jc F.d7 where

F=2v?1+3x°j -(2x+z)k and C is the boundary of the triangle whose vertices are
(0,0,0),(2,0,0),(2,2,0).
Solution:

I J k
cul =9, %5, 9/a. | =2i+(@6x-ayk

-

2y~ 3x* —2x—z

—p <

> - » X
(0,0) A (2,0)




Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane .
S =k

~ (Curl Fy.7i= 6x-4y

Consider the triangle in xy-plane .

Equation of the straight line OB is y=x.

By Stroke’s theorem

j Fdr= j j (curl F).nds

= P (ex—ay)dxdy = 2 | (6x —4y)dy]dx

- j.[ny—ZyZJZ dx = Jf,:.:(ﬁl': — 2x%)dx
x=0
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1. THE GAMMA FUNCTION

The gamma function may be regarded as a generalization of n! (n-factorial), where n is any positive
integer to x!, where x is any real number. (With limited exceptions, the discussion that follows will
be restricted to positive real numbers.) Such an extension does not seem reasonable, yet, in certain
ways, the gamma function defined by the improper integral

.% )
rx)=| e 'de (1)
JO

meets the challenge. This integral has proved valuable in applications. However, because it cannot
be r presented through elementary functions, establishment of its properties take some effort. Some
of the important ones are outlined below.

The gamma function is convergent for x > 0. It follows from eq.(1) that
From (1): T'(x+1)= J tre~tdt
0
Integrating by parts
ol 00 00
I'(x+1)= [tx (E—)] + xj e df
-1 0 0
A = {0 — 0} +xT'(x)
o TP(x+1) =a(x) (2)

This is a fundamental recurrence relation for gamma functions. It can also be written as
I'x)=(x-DI'(x —1).

A number of other results can be derived from this as follows: If x = n, a positive integer, i.e. if n >
1, then

['n+1) = nl'(n).
n(n—1)'(n—1) since I'(n) = (n—1)['(n —1)
nn—1)(n—2)'(n—2) since I'n—1)=(n—-2)'(n—2)

I

I

n(n—1)(n—2)(n—3)...1I'(1)

= ‘wlil(1)
But T'(l) = Pt Ydt= [ ]y =1
=5 I'n+1)=n! (3)
Example:

D7) =8l = 720, ['(8) = 7! = 5040, I'(9) = 40320
We can also use the recurrence relation in reverse
Dz+1)=al(z) = D(z)=1zl

xr




What happens when x = 1? We will investigate.
r@) = J: 126 dt

Putting t = u?, dt = 2udu, then
r@) = J:b wle™2u du = ZJ: e du.

Unfortunately, r e du cannot easily be determined by normal
0

means. It is, however, important, so we have to find a way of getting
round the difficulty.

Evaluation of r e*dx
0

LetI = r e*dx, then alsol = r e dy
0 0

LI = (r e‘*zdx) (r e‘yzdy) = r J " P gy dy
0 0 0 Jo

ba = 6x 6y represents an element of area in the x—y plane and the
integration with the stated limits covers the whole of the first
quadrant.

4 %Sy

Converting to polar coordinates, the element of area éa = r 66 ér. Also,
x24+y2=r2
M e—(xz"'yz) —_ e“’z

For the integration to cover the same region as before,

Y
rde

i the limits of rare r =0 tor = oo
|
r ly the limits of # are # =0 to 0 = «/2.
|
1

VT
' 2
fe-xz d:c:‘—/z-"r (5)




Before that diversion, we had established that
r(l) = zr’ e du
0

We now know that J e du= iz-% I’(%) =7
0

From this, using the recurrence relation I'(x + 1) =xI'(x), we can
obtain the following

Negative values of x

I'(x+1)

Since I'(x) = , then asx — 0, I'(x) - oo .. I'(0) = oo0.

The same result occurs for all negative integral values of x — which does
not follow from the original definition, but which is obtainable from
the recurrence relation.

Because at x = -1, I'(-1)= icl)) =00
x=-2, I'-2) = %2 = 00 etc.
1 y TG
AlSO, at x=—§, F(—E)z—lz—‘Zﬁ
2

Lol
and at x=-3, I‘(-%):M:é\/,'r

So we have
(a) For n a positive integer
I'(n+ 1) =nl'(n) =n!
'1)=1; r'0)=o00; I'(—n)==o00

®T@)=vE (-} =-2/7

I‘(2=2; (—§)=3\/7_r
r) =3 r-=-2va
R 14




Example:

el
Evaluate | x’e*dx.
Jo

We recognise this as the standard form of the gamma function

(00
rix)=| tletdt with the variables changed.
Jo

It is often convenient to write the gamma function as

= [~ x-terdx
Jo

Our example then becomes
00 00
I'= J xe*dx = J X le*dx  wherev=............
0
. 0
i.e. J x’ e* dx =T'(8) = 7! = 5040
0

Graph of y =T'(x)

Values of I'(x) for a range of positive values of x are available in
tabulated form in various sets of mathematical tables. These, together
with the results established above, enable us to draw the graph of

y=T(x).
X 0 05 10 15 20 25 30 35 40
I'(x) | oo 1772 1000 0-886 1-000 1-329 2:000 3-323 6-000

X —0-5 -1-5 -2-5 -3-5
I'(x) | -3-545 2-363 —0-945 0-270

Yy
6_
U y=T(x)

4

2_._
: + - -+ ; t + -
-4 -3 ~2 1 0 1 2 3 4 X

42

M=




Example:

00

Evaluate J x3 e dx.
0

00

If we compare this with I'(v) = [ x"1 ¢ dx, we must reduce the
0

power of e to a single variable, i.e. put y = 4x, and we use this
substitution to convert the whole integral into the required form.

y=4x . dy=4dx Limits remain unchanged.
The integral now becomes ............

I=J°°(X)3e—y_dz

1 [* 1
IZFJ Ve Ydy=zT(v) wherev=............
ro ylevdy = j ye’dy v=4
0
1
= T = e,
1 1 6 3
- — = — ! —_——— —
I 256F(4) 256 (31 256 128

Review of Properties of Power Series

A power series in (x-a) is an infinite series of the form

Cot €1 (x-8) + € (x-8)2 +----= > ¢, (x—a)" (6.1)

n=0

Series of (6.1) is also called a power series centered at a. The power series centered at a=0 is

often referred as the power series, that is, the series Z c,x" A power series centered at a is
n=0

called convergent at a specified value of x if its sequence of partial sums Sy(x) =

N
Z c,(x—a)", thatis, {Sn (x)} is convergent. In other words the limit of {Sy (x)} exists. If
n=0
the limit does not exist the power series is called divergent. The set of points x at which the
power series is convergent is called the interval of convergence of the power series. For R




>0, a power series »_ ¢, (x—a)" converges if |x —a‘ <R and diverges if |x —a‘ >R. If the series

n=0

converges only at a then R=0, and if it converges for all x then R=co. |x - a‘ <R is equivalent to

a-R<x<a+R. A power series may or may not converge at the end points a-R and a+R of this
interval.

A power series is called absolutely convergent if the series z c,(x—a)"| converges. A power
n=0

series converges absolutely within its interval of convergence. By the Ratio test a power series
centered at a, series given in (6.1) is absolutely convergent if L= |x-a| lim | C”—“ | is less than

n

1, that is, L <1, the series diverges if L>1, and test fails if L=1. A power series defines a

function f(x)= Z c,(x—a)"whose domain is the interval of convergence of the series. If the
radius of convergence R>o, then f is continuous, differentiable and integrable on the interval
(a-R, a+R). Moreover f(x) and [f(x)dx can be found by term by term differentiation and
integration. Convergence at an endpoint may be either lost by differentiation or gained through
integration.

Lety = i c, X"

n=0

y'= > ncx"*
n=0

y’=> n(n-1c,x"?

n=0
We observe that the first term in y' and first two terms in y' are zero. Keeping this in mind we
can write

n-1

nc,x 6.2)

<
1]

Ms LDV

n(n—1)c, x"?

=}
Il
N

Identity property: If Z c,(x—a)" =0, R>o for all x in the interval of convergence, then

¢,=0 for all n.




Analytic at a point:

A function f is analytic at a point a if it can be represented by a power series in x-a with a

()
positive or infinite radius of convergence. A power series where cp= f Ea) , that is, the series
n!
= f"(a) . . .
of the type Z C, —|(X —a)" is called the Taylor series. If a=0 then Taylor series is called
n=0 n

Maclaurin series. In calculus it is shown that €, cos X, sin X, In (x-1) can be written in the form

of a power series more precisely in the form of Maclaurin series. For example
2

X
e =1+X+—+----

2

3 X5
SiNX=X—"—+—----

3 5l

2 X4 XG
cosXx=1-—+——-—"—+----

20 4 o
for | x| < oo.

Arithmetic of Power Series:

Two power series can be combined through the operation of addition, multiplication, and
division. The procedures for power series are similar to those by which two polynomials are
added, multiplied, and divided. For example:

. x2  x3 x4 X3 x5 x7
e'sinx={1+X+—+—+—+---- | X——+ - +----

2 6 24 6 120 5040
= (D)x +x* + —1+1jx3+ ST S N (IR N N
6 2 6 6 120 12 24
x®  x°
=X+ X - --
3 30

Since the power series for * and sin x converge for | x | <o, the product series converges on
the same interval.

Shifting the Summation Index: In order to discuss power series solutions of differential
equations it is advisable to learn combining two or more summations as a single summation.

6.2 Solution about Ordinary Point :

We look for power series solution of linear second-order differential equation about a special
point:
2

d d
a,(x) 5 +a,()  +a,(x)y =0 (6.4)
where a; (x) # 0.




This can be put into the standard form
2
dy  a()dy a0, _,
dx®>  a,(x)dx a,(x)
2
or d—Z P L o)y =0 (6.5)
dx dx

A point X, is said to be an ordinary point of the differential equation (6.4) if P(x) and Q (x) of
(6.5) are analytic at x,, that is, P(x) and are Q(x) represented by a power series. A point that is
not an ordinary point is called a singular point.

o0

A solution of the formy =» ¢ (x—x,)" is said to be a solution about the ordinary point
n=0
Xo.

Power series solution about an ordinary point:

-\ n ; dy dy2 -
Let y=> c,x" and substitute values of y, d—:y,d ~=y'in (6.5)
n=0 X X

Combine series as in Example 6.1, and then equate all coefficients to the right hand side of the
equation to determine the coefficients c,. We illustrate the method by the following examples.

We also see through these examples how the single assumption that y= Z c,X" leads to two
n=0

sets of coefficients, so we have two distinct power series y; (X) and y,(X) both expanded about

the ordinary point x=0. The general solution of the differential equation is y=C;y;(X)+Cay2(X),

infact it can been shown that C;=c , and C,=c;.
2

d7y

X2

The differential equation + Xy =0 is known as Airy’s equation and used in the study of

diffraction of light, diffraction of radio waves around the surface of the earth, aerodynamics
etc. We discuss here power series solution of this equation around its ordinary point x=0.
Example 6.2 Write the general solution of Airy’s equation y'+xy=0.

Solution: In view of the remark, two power series solutions centred at 0, convergent for ‘x |<oo

exist. By substituting y=>" ¢ x", y"=>" n(n—-1)c,x"? into Airy’s differential equation we
n=0 n=2
get
y'+xy=>"c,n (N-Hx"? +x>_ ¢, x",
n=2 n=0
=> c,n (n-Hx"2 +> ¢ x" (6.6)
n=2

n=0




As seen in the solution of Example 6.1, (6.6) can be written as y"+xy=2c,+ Z [(k+1)

k=1
(k+2)Cis2+Ci1]X*=0 (6.7)
Since (6.7) is identically zero, it is necessary that coefficient of each power of x be set equal to
zero, that is,
2¢,=0 (It is the coefficient y x°) and
(k+1)(k+2) Cxs2+Ck-1=0, k=1,2,3 - - - -- - - - . (6.8)
The above holds in view of the identity property. It is clear that c,=0. The expression in (6.8) is
called a recurrence relation and it determines the ¢ in such a manner that we can choose a
certain subset of the set of coefficients to be non-zero. Since (k+1)(k+2)=0 for all values of k,
we can solve (6.8) for ¢« in terms of cy.;.

C k-1

Chip= - — KL k=123 --- 6.9
T K Dk +2) . (6.9)
For k=1, ¢c3 = - Co
2.3
Fork=2,c4=- Co
3.4
—_ —_ CZ —_
Fork=3,c5=- —= =0 asc,=0
4.5
_ _ ¢ _ 1
Fork=4,ce=- — = Co
5.6 2.3.5.6.
Fork=5,cy=- —C4—_ 1 c,
6.7 3.4.6.7
Fork=6.C= - —5 =0 as cs=0
7.8
c 1

Fork=7.cg=- =& =— Co
8.9 2.3.5.6.8.9.

c, 1 .
9.10 3.4.6.7.8.10 "

Fork =8, Ccio=-

c
Fork=9, c;;=- —2— = 0as cg=0
10.11

and so on,

Substituting the coefficients just obtained into y= Z c,x"
n=0

=CoHCIX+CoX2HCXC+CaX X+ Cax P +Cox +CexB+Cox P +C X 10- - - -

we get

y=Co+C1X+0

_Coye Giyaigp S0y % xy0- Co ®— ! X0 +0+----
23" 34 2356  3.4.67 235689, 3467910

After grouping the terms containing ¢, and the terms containing c;, we obtain
y=CoYy1(X)+C1Y2(X), where




y1(x)=1- LENCIE S 1 X% 4----
2.3 2.3.5.6 2.3.5.6.8.9
" kK
& 23----(3k—1)(3K)
Yo(X) = X - N S 1 X0 4o
3.4 3.4.6.7 3.4.6.7.9.10
— X+Z (-1 % 3K 1
L 34----(3K)(3k+1)

Since the recursive use of (6.9) leaves ¢y and c; completely undetermined, they can be chosen
arbitrarily.
y=CoYy1(X)+C1y2(x) is the general solution of the Airy’s equation.

Example 6.3 : Find two power series solutions of the differential equation y"-xy=0 about the
ordinary point x=0.

Solution: Substituting y :z c, x" into the differential equation we get

n=0
y"-Xy= i n(n—21c x"? - icn X"t

n=2 n=0

= Y(k+2)(K+1Dc,,, X - ¢, X
k=0 k=1

=2¢, + i[(k +2)(k+1Dc, ., —C,_, X"
k=1

Thus ¢, =0,
(k+2)(k+1)Cks2—Ck-1= 0
and
1

Chr = v Ty
(k+2)(k+1)
Choosing ¢,= 1 and ¢;=0 we find

Cs :1,04 =C5 =0,Cq L and so on.
6 180

Copk=123..

For co=0 and c;=1 we obtain

1 1 .
c; =0,c, =—,C5 =Cc4 =0,,c;, =—— and so on. Thus two solutions are
12 4

y1 = 1+ 3x3 4 L %o 4 - and
6 180
y VLV S Ve S
? 12" 504




6.3 Solutions about Regular Singular Points — The Method of Frobenius:

A singular point xo of (6.4) is called a regular singular point of this equation if the
functions p(x) = (x-Xo) P(x) and q(x)=(X-Xo)*Q(x) are both analytic at xo. A singular point that
is not regular is said to be on irregular singular point of the equation. This means that one or
both of the functions p(x)=(x-Xo) P(x) and q(x) = (x-X0)*Q(x) fail to be analytic at Xo.

In order to solve a differential equation given by (6.4) about a regular singular point we

employ the following theorem due to Frobenius.

Theorem 6.1 (Frobenius Theorem)

If X=X, is a regular singular point of the differential equation (6.4), then there exists at least one

solution of the form y=(x-xo)" Z c,(x=x,)" = ch (x—x,)™" where r is constant to be
n=0 n=0

determined. The series will converge at least on some interval 0<x-xo<R.

The method of Frobenius:

Finding series solutions about a regular singular point Xo is similar to the method of previous

section in which we substitute y= Z c,(x—x,)™" into the given differential equation and
n=0

determine the unknown coefficients c, by a recurrence relation. However, we have an

additional task in this procedure. Before determining coefficients we must find unknown

exponent r. Equate to 0 the coefficient of the lowest power of x. This equation is called the

indicial equation and determines the value(s) of the index r.

If r is found to be number that is not a non negative integer, then the corresponding solution

0

y= Z c,(x—=x,)"" is not a power series. For the sake of simplicity we assume that the
regular singular point is x=0.

Example 6.4 Apply the Method of Frobenius to solve the differential equation 2x y"+3y’-y=0

about the regular singular point x=0.




Solution: Let us assume that the solution is of the form
y= > c,x"" then

n=o0

o0

y'=> c,(n+rx™

n=0

y'= i c, (n+r)(n+r-1x"2,

n=0

Substituting these values of y', y" and y" into 2x y"+3 y'-y=0, we get

o0

> e (n+nM+r=Dx"*+3 > ¢ (n+nx" = > ¢ x™ =0.
Shifting the index in the third series and combing the first two yields Z c,(n+r)

n=0

(2n+2r+)x™t ->" ¢, x"=0

n=0

Writing the term corresponding to n=0 and combining the terms for n>/ into one series,
Cor2rH L)X+ S [, (N+T) (2n+2r+1)-Coa]X™ = 0

Equating the C(;:el1‘ficients of X" to zero yields the indicial equation

Cor(2r+1)=0

Since co= 0, either r=0 or = - %

Hence two linearly independent solutions of the given differential equation have the form

y1 = Fo (X) =i c,x" and

n=0
y2=F _;,,(X) =x" Z X"
n=0

Since cy(n+r) (2n+2r+1) -c,.1=0 for all n > 1, we have the following information on the
coefficients for the two series:
1
— ~Cn1
n(2n+1)
1 *
—Cn—l
n(2n-1)

Q) Co is arbitrary, and for n>1, c,=

(i)  c’oisarbitrary, and for n>1,c, =

Iteration of the formula for ¢, yields

1 2 2c,
n=1,¢;= —Cy,=——C,=—2
1.3 1.2.3 3
2
n=2, C,= lclz L CO:ZCO
2.5 2.3.5 5!
=3 c= Lo - L 2’c, 2°c,
1 2 - -

3.7 3.7 9 7!




Each term of ¢, was multiplied by % to make the denominator (2n+1)!. The general form of c,

is then
2"c
Cn= -
(2n+1)!
- x. . 2"c,
Similarly, the general form of ¢, is found to be ¢, = (2!

The two solutions are

0 n . o0 2h
=c XY= Co X2 D = X"
7 °Z(2n+1)! Vo= 0o X 2, (2n)!

n=0 n=0

Y, IS not a power series.

Example 6.5 Apply the method of Frobenius to obtain two linearly independent series solution
of the differential equation 2x y" — y'+2y= 0 about a regular singular point x=0 of the

differential equation.

Solution: Substituting yzz c X", y'= Z ¢, (n+nx™* and

n=0 n=0

n+r-1

y'= Y e (n+r)(n+r—1)x

into the differential equation and collecting terms, we obtain

2X Y- y+2y=(2r-31)cox + > [2(k+r-1) (k)i -(KH)Ciet 2041]X =0,
k=1

which implies that
2r2-3r=r(2r-3)=0

and
(k+r)(2k+2r-3)ck+2ck-1=0.

The indicial roots are r=0 and r:§.For r=0 the recurrence relation is cx = - & , k=
2 k(2k —3)

1,23,----




and ¢; = 2¢g, Co= - 2Co, C3= gco

For r= 3 the recurrence relation is cx = - 2Ci1 , k=1,2,3,- - - - and
2 (2k +3)k
C1=- =C,,C, =—C,,C __ 4 c
T 502 T gp 0t T gy 0
The general solution isy = C; (1+2x-2x2+£x3+- -2 )+Cy X2 (1-3 +£x2-i X34 - - )
9 5 35 945

SPECIAL FUNCTIONS

Introduction

Many Differential equations arising from physical problems are linear but have variable
coefficients and do not permit a general analytical solution in terms of known functions. Such
equations can be solved by numerical methods (Unit — 1), but in many cases it is easier to find a
solution in the form of an infinite convergent series. The series solution of certain differential
equations give rise to special functions such as Bessel’s function, Legendre’s polynomial.
These special functions have many applications in engineering.

Series solution of the Bessel Differential Equation
Consider the Bessel Differential equation of order n in the form

d? d .
ZdXZ+xd—i+(x2—nz)y:0 (i)

where n is a non negative real constant or parameter.
We assume the series solution of (i) in the form

X

y=> ax“" whereay=0 (ii)
r=0
Hence, Y _ D> a (k+r)x<r
dx =

d2y 0
—— = a (k+r)k+r-1)x<?
dX r=0




Substituting these in (i) we get,

Xziar (K+r)(K+r-1x? +xiar (k+ )X 4 (x2 — nz)iarxk” -0
r=0 =0 e

o0

i, a (k+r)k+r-Dx" +>a (k+r)x +> a x" —n*> a x*" =0
r=0 r=0 r=0
Grouping the like powers, we get

iar [(k+ NK+r-1)+(k+ r)—nz]xk” +iarxk+r+2 0

r=0 r=0
Zar[(k+r)2—n2]xk+r +> ax"? =0 (iii)
r=0 r=0

Now we shall equate the coefficient of various powers of x to zero
Equating the coefficient of x from the first term and equating it to zero, we get

ao[k2 —nz]zo. Since a, = 0,weget k> —n*=0, ..k=+n

Coefficient of xX*** is got by putting r = 1 in the first term and equating it to zero, we get
ie., al[(k +1)% — n2]= 0. Thisgives a, =0,since (k+1)°>—n® =0gives, k+1==+n
which is a contradiction to k = #n.

Let us consider the coefficient of X*" from (iii) and equate it to zero.
ie a, [(k +r)? — n2]+ a, ,=0.
—a,,

= keni-n] ()

If k = +n, (iv) becomes

) —a,,
a = . — .
' [(n+r)2—n2J [r2+2nrJ
Now putting r = 1,3,5, ....., (odd vales of n) we obtain,
M g 4 -
% =gnrg 0 "=

Similarly as, as, ..... are equal to zero.
i.e., aa=as=ar=...... =

Now, putting r =2,4,6, ...... (‘even values of n) we get,
a:_ao:_ao. a:_azz dy .
2 4n+4  4(n+D)’ ‘8n+16 32(n+)(n+2)’
Similarly we can obtain ag, as, ...
We shall substitute the values of a,,a,,a,,a,, - in the assumed series solution, we get
y=§oarxk”:xk(ao+a1x+a2x2+a3x3+a4x4+ ------ )

Let y; be the solution for k = +n




| a0 2 a0 4
y,=X|a,— X + X7 —eeeenn
4(n+1) 32(n+)(n+2)

x? x*
ie., =a,X"|1- + —ee v
=% { 22(n+1) 2°(n+)(n+2) } V)
This is a solution of the Bessel’s equation.
Let y, be the solution corresponding to k = - n. Replacing n be —n in (v) we get

x? x*
—a.x"1- + e Vi
2= { 22(-n+1)  2°(-n+1)(-n+2) } v
The complete or general solution of the Bessel’s differential equation is y = c1y; + CaY», Where
C1, C; are arbitrary constants.

Now we will proceed to find the solution in terms of Bessel’s function by choosing

1 .
a, =——=——and let us denote it as Y.

2" (n+1)

! = { (XJZ : [XT 1 }
e, Y,=———[1-| 2 | 2 e
2")(n+1) 2) (n+1) (2) (n+H(n+2)-2

x| 1 x ) ! 1
_(Ej [j(n+1 ( ] (n+1)§ n+1) ( ] +D)(n+2))(n+D -2 }

We have the result T'(n) = (n — 1) I'(n — 1) from Gamma function
Hence,I'(n+2) =(n+1)I'(n+1)and

I'n+3) =(n+2)T(n+2)=(n+2)(n+1)I'(n+1)
Using the above results in Y, we get

[x)“ 1 (sz 1 (xj 1 }
Y1: — EE—— b S [
2 I (n+1) \2) )(n+2) \2) )(n+3)-2

which can be further put in the following form
(XY D (XY, D (X)L, D (X
Yl_(zj J(n+D)- 0|£2j +}(n+2) 1( ) T3 ZI(ZJ " }
By ort]
2 )(n+r+1 2

Sy H -
2 )(N+r+1) -r!
This function is called the Bessel function of the first kind of order n and is denoted by Jn(x).

Thus Jn(><)=r§._o(;(‘1)r @ ﬁ




Further the particular solution for k = -n ( replacing n by —n ) be denoted as J.,(x). Hence the
general solution of the Bessel’s equation is given by y = AJn(X) + BJ.n(X), where A and B are
arbitrary constants.

Properties of Bessel’s function

1.3 ., (x)=(-1)"J,(x), where n is a positive integer.

Proof: By definition of Bessel’s function, we have

© i X n+2r 1
Jn(X):rZ:c;(_l) (Ej m .......... (1)

—n+2r
Hence, J_ (x)= > (-1)" [ﬂ - )
r=0

2 )(=n+r+1)-r!

But gamma function is defined only for a positive real number. Thus we write (2) in the
following from

. . X —n+2r 1
(0= (D) [EJ N S 3)

i(—n+r+1)~r!

Letr—n=sorr=s+n. Then (3) becomes

o X —N+2s+2n 1
J_n(x)= X (-1)"" (—j :
s=0 2

)(s+1)-(s+n)!
We know that I'(s+1) = s! and (s + n)! = ['(s+n+1)

o e X n+2s 1
=3 (-1)".| = I S
50 2 )(s+n+1)-sl

o X n+2s 1
=(-1)" 2(—1)5-( j :
$=0 >

2 (s+n+1)-s!

Comparing the above summation with (1), we note that the RHS is J,(X).
Thus, J_,x)=(-1)"J,(X)

2. 3, (—x)=(-1)"J,(x)=J_,(x), where n is a positive integer

n+2r
N < X 1
Proof : By definition, J,(x)= ) (-D)"-| = —
Y ) rzz(;( ) (ZJ J(N+r1+1) 1!
- X n+2r 1
J (=x)= 1)y .| == — =
n(=X) EO( ) ( ZJ )(N+r+1)-r!

M8

n+2r
e, = (—1)f.(—1)"*2r[5j : L

r=0 2 (N+r+1)-r!

n+2r
= (1) (1) (5] —t
r=0 2

J(nereD)n

Thus, J, () =(-D)"JI,(x)




Since, (-1)"J,(x)=J_,(x), we have J (-x)=(-1)"J,(x)=J _,(x)

Recurrence Relations:
Recurrence Relations are relations between Bessel’s functions of different order.

Recurrence Relations 1: di[x"Jn(x)]: x"J, 1(x)
X

From definition,

" X n+2r 1 » X 2(n+r) 1
nJ =x"S(-1) | 2 —_—- = 1) .2 — -
X dn(x)=x Eo( ) (2] (N+r+1)-r! Eo( ) (Zj (n+r+1)-r!

2( n-+r )X2(n+r )-1

. d _5 r
' &[X J“(X)]_Eo(_l) .2”+2'i(n+r+l)~r!

(n +r )Xn+2r—1

_ N < -1".
X E:O( ) 2n+2rfl(n+r)m-l‘!

© (n-1)+2r

r=0 i(n—1+r+1)~r!

Thus, Sheo,ool=xa,.00 1)

=x"Jp4(x)

Recurrence Relations 2: di[x—”Jn(x)]: X" (%)
X

From definition,
1

n+2r
- :nw_lf.lj —
K00 =x EO( ) [2 )(n+r+1)-r!
1

o X 2r
= Z(—l)r-[—) —_—

r=0 2 (n+r+1)-r!
d n © r 2rX2I’71
LM 00)= 20"
dx[ ] = 2n+2rm.r!
0 Xn+1+2(r—1)
=_X—n z(_l)l’fl .
r=1 2mH AT D) (ngr+1) - (r-1)!
Letk=r-1
- ‘ Xn+1+2k .
==X X(-1)"- =—x"J,1(x)
& 2 (naLeke D) K "
Thus, %[x‘”Jn(x)]:—x‘"JnH(X) """" 2

Recurrence Relations 3: Jn(x)zz—xn[Jn_l(x)+Jn+l(x)]

We know that %[X“Jn(x)]: x"J, 1(x)

Applying product rule on LHS, we get x"J3/(x)+nx"J3,(x)=x"J,,(x)
Dividing by X" we get 3/ (x)+(n/ x)3,(x) =3, 1(x)------- (3)




Also differentiating LHS of %[x—"Jn(x)]:—x‘”Jm(x), we get

X I () =nx "I (X)) = —x T L (X)
Dividing by —x™" we get —J3/(x)+(n/x)J,(x)=J,,1(Xx) ~====--- (4)
Adding (3) and (4), we obtain 2nJ,(x) = x[J,_1(X)+J 1 (X)]

ie., Jn(x)zz—xn[Jn,l(x)uM(x)]

Recurrence Relations 4: JA(x):%[Jn,l(x)—JM(x)]

Subtracting (4) from (3), we obtain 23/ (x)=[3, 1(x)=J3,.1(x)]

e, 3100=5[a (030 (x)

Recurrence Relations 5: J,ﬁ(x):%Jn(x)—JM(x)

This recurrence relation is another way of writing the Recurrence relation 2.
Recurrence Relations 6: J/(x)= Jn_l(x)—;Jn(x)

This recurrence relation is another way of writing the Recurrence relation 1.
Recurrence Relations 7: Jn+1(x):2—Xan(x)—Jn_1(x)

This recurrence relation is another way of writing the Recurrence relation 3.

Problems:

2 . 2
Prove that (a) Jl,z(x):\/;smx (b) Jl,z(x):\/;cosx
By definition,

n+2r
Jn(X)= z<—1)f-[fj S
r=0 2 J(n+r+1)-r!
Putting n = %4, we get

- X 1/2+2r 1

J = B L i —_—
wx00= 500 3]

X 1 x 2 1 x\* 1
J“Z(X):\g{r(slz)_[ﬂ r(5/2)1!+(EJ rai2 } 1)
Using the results T'(1/2) = v and T'(n) = (n — 1) [(n-1), we get
r(3/2)=%,r(5/2):¥,r(7/2):15;3/; and so on.

Using these values in (1), we get
J (x):\ﬁi_iz 4, x' 8
1 2|Jr 4 3Jzr 16 1572

Ix 2 x3 x O 2 x3 x5
— —_— — X__ +_ —ceecnes = —_— X__ +_ [
27 X 6 120 X7 3! 51




2 .
J X)=.—sinXx
172(X) ‘/ﬂx

Putting n = - 1/2, we get

o X -1/ 2+2r 1
Vua0=EC (5]

r=0 2

i(r+1/2)-r!

B 2 4
i () e ()
12 2| r(1/2) \2) r(3/2y \2

Using the results I'(1/2)
) (X)_\fl_zzi xta
VNI TE 4 Tr 16 3dr2

2 4
/_{1_1 L }
xz|© 2t 4l

2
Jl/z(X)=\/%cosx

2. Prove the following results :

(a) Js/o(x)= \/7|:
(b) J5/,(x)= \/7{

Solution :

sin x——cos x:l and

cos x+—sm X:|

We prove this result using the recurrence relation J,(x) zzi
n

Putting n=3/2in (1), we get Jl,z(x)+J5,2(x)—

Js/z(X)=§Js/z(X)—31/z(X)

_3 fi SINX—XCOS X | fi '
X\ 7x X X

2 | 3sinx—3xcos x—x?2 sinx 2 (3-x%)
J5/2(X)=1— > =4 2
7X X 7X X

Also putting n =- 3/2 in (1), we get

1
T — }
=rand T'(n) = (n— 1) [(n-1) in (2), we get

[30200)+30,1(x)]

Js/z(x)

. 3
sin X ——Cos X
X

3
375/2(X)+371/2(X)2—;373/2(X)

-5/2(X)——§J —ar2(X)=J4,(X) = [TSJ[—JZJ[M}—ECOSX

) 2 | 3xsinx+3cos x—x? cos X 213 . 3-x2
ie, Jg(X)=[— > = |—| = sinXx+———cos X
X TX| X X

3, Showthat—[J (x)+Jn+1(x)] 2[nJ§(x)—(n+l)J§+l(x)]

Solution:




LH.S= %[Jﬁ(x)unil(x)]:2Jn(x>Jé(x)+2JM(x)Jé+1(x) ------- €
We know the recurrence relations
X)) =T ()= (x) e @)

X () =X, (X)=(N+1)J 4 (X)  ===--- 3)
Relation (3) is obtained by replacing n by n+1in x3/(x)=xJ,_;(x)—nJ,(x)

Now using (2) and (3) in (1), we get

LHS = %[Jﬁ(x)uril(x)]:2Jn(x)[;Jn(x)—Jn+1(X)}+2Jn+1(x)[3n(x)_“7”JM(X)}
:2—:Jr?(x)_zs]n(X)Jn+1(X)+2Jn+l(x)Jn(X)_2nT+1J§+1(X)

Hence, %[Jﬁ(x)uﬁﬂ(x)]:%[anz(X)—(n+1)Jn2+1(X)]

4. Prove that Jé’(x):%[Jz(x)—Jo(x)]
Solution :
We have the recurrence relation 3/ (x) :%[J w1 (X) =31 (X)] === (1)

Puttingn=0in (1), we get Jg(x)=%[J_l(x)—Jl(x)]=%[—Jl(x)—Jl(x)]=—Jl(x)
Thus, J3{(x)=-3,(x). Differentiating this w.r.t. x we get, 37 (x)=-3/(x) ----- (@)
Now, from (1), for n = 1, we get Jll(x):%[Jo(x)—Jz(x)].
Using (2), the above equation becomes

1 1

=30 (0 =730 00=3200kr35 () =5 [320) =3, ().

Thus we have proved that, Jé’(x):%[Jz(x)—Jo(x)]

5. Show that (a)jJS(x)dx=c—J2(x)—%Jl(x)

(b) ijg(x)dx=%x2[J§(x)+Jf(x)]
Solution :
(a) We know that %[x’”\]n(x)]z—x’n\]nﬂ(x) or [x"J,,,(x)x=-x"J, (x) ------ (1)

Now, jJ3(x)dx=jx2~x*2J3(x)dx+c:x2~jx*2J3(x)dx—j2xhx*2J3(x)dx}jx+c
=x? ~[—x‘sz(x)J—j2x[—x‘2J2(x)de+c(from (1) whenn =2)

:C—Jz(x)—jéJz(x)dx=c—J2(x)—§J1(x) (from (1) when n = 1)
Hence, ng(x)dx:c—Jz(x)—éJl(x)

(b) ijg(x)dx=J02(x)~%x2—j2J0(x)-Jé(x).%x2dx (Integrate by parts)




1

=Exzag(x)ﬂszo(x).Jl(x)dx (From (1) forn=0)
:%szé(x)ﬂle(x)-%[le(x)}jx { %[le(x)]:xJo(x)from recurrence relation (1)}

=§x2J§<x)+%[xJ1(x>]2=§XZ[J§(X>+J3(X>]

Generating Function for J,(x)

X1rt)  w
To prove that e2 = >t"J, (x)
N=—c0

or

X-1/t)

If n is an integer then Ju(x) is the coefficient of t" in the expansion of e?2

Proof:
We have eg(tfl“) =et/2 g/
2 3 _ _ 2 3
{1+(xt/2)+(xt/2) NEIE . }{u( xt/2) (-x/2)’ (-x/2)° }
il 2! 3! il 2! 3!
(using the expansion of exponential function)
xt X2t2 " Xn+1tn+1 X X2 (—l)an (_1)n+lxn+1
=1+ + 4ot + Feeennn 1-— + ————— Y 4
2.1 2221 2"nl 2™ (n+1) 2t-1 22¢%21 2"t"nt 2™ (n+1)
If we collect the coefficient of t" in the product, they are
Xn Xn+2 Xn+4
= — + [
2"nl 2" 2(naa) 2™A(n+2)12!
n n+2 n+4 n+2r
:i(zj _— [5) b1 (1] I :z(_l)r(zj S S O
n'\2 (n+1)11r{ 2 (n+2)121\ 2 r=0 2 I'(n+r+2)r!

Similarly, if we collect the coefficients of t™ in the product, we get J_n(X).
X(t-1/

Thus, e2 v it”\]n(x)
Result: eE(t_l/t)zJo(x)+ i[tu(—l)”r“]Jn(x)
n=1

Proof :
Y1y 1 w
e? = Yt"J,(x)= Zt"I,(x)+ Xt"I, (x)

n=—o0 n=—o0 n=0
= U000+ 35000+ S 3,00= 3000+ SUU DN 00+ T, (00 (0.000= (1) 3,00}

n= n= n= n=

Thus, e2 " = 3,(x)+ %[t”+(—l)”t’”]Jn(x)

Problem 6: Show that




@ Jn(x):iijrcos(ne—xsine)dﬁ, n being an integer
7o

(b) Jo(x):iffcos(xcos 0)de
o

(€) 32+232+233 432+ -1
Solution :

We know that 2" ™" = Jo(x)+ il[t” +(—l)”t_"}]n(X)

= Jo(X)+1I, (X)+12 I, (X)+t3T5(X)+------ FI () +t2T (X))t g (X) +---ee
Since J_,(x)=(-1)"J,(x), we have

R N TG (LI TRAES SRS T N0 SN VIS) FN— 1)

Let t = cosO + i sind so that t° = cosp® + i sinpd and 1/t° = cospo - i sinpé.
From this we get, t° + 1/t° = 2cosp6 and t” — 1/t” = 2i sinp0

Using these results in (1), we get

g2 _ ginsing =Jo(x)+2[3,(x)c0os 20+, (x)cos 40 +---]+2i[J; (X)sin@+ I3 (x)sin36+--]

Since ™Y = cos(xsind) + i sin(xsind), equating real and imaginary parts in (2) we get,
cos(xsin@)=Jo(x)+2[J,(x)cos 20+ J,(x)cos 40 +---| ----- (3)
sin(xsin@) =2[J,(x)sin@+J5(x)sin30+---] - 4)

These series are known as Jacobi Series.

Now multiplying both sides of (3) by cos né@ and both sides of (4) by sin n@ and
integrating each of the resulting expression between 0 and &, we obtain

J,(x), niseven or zero
0, nisodd
0, niseven
J,(x), nisodd

l7jrcos(xsin9)cos n&jez{
7o

and l}Tsin(xsine)sinn6d¢9={
7o

V.4 T T H _
Here we used the standard result [cos pocos qadd = [sin pasingado=1 5 T P=4
0 0 0, if p=g

From the above two expression, in general, if n is a positive integer, we get

Jn(x):%I[ws(xsinQ)cos nd+sin(xsind)sinnglde :%Zj:cos(na—xsina)d@

(b) Changing 6 to (n/2) 6 in (3), we get
0s(xC0s 0) = Jo(x)+2[J,(x)cos(7—20)+J,(x)cos(7—46)+--|
cos(xcos @) =Jy(x)—2J,(x)cos280+23,(x)cos40—---
Integrating the above equation w.r.t © from 0 to &, we get

Tcos(xcos 9)d6=7f[J0(x)—2J2(x)cos 20+2J,(x)cos 46 —-- |
0 0




sm20+2J4(X)sm49_m ~3,(x)-7
2 4 0

Tcos(xcos YO =|3y(x)-0-23,(x)
0

Thus, Jo(x)zijjrcos(xcos 0)do
7o

(c) Squaring (3) and (4) and integrating w.r.t. @ from 0 to x and noting that m and n being

integers

feos2(xsin@ X0 =[3, ()P -7 +4[3,(x)F %+4[J4(x)]2 %+
0

[sin?(xsing)do =43, (x)f 2 a,(0F 2
0

Orthogonality of Bessel Functions

If «and g are the two distinct roots of J,(x) = 0, then
0, if a#p

ngn(ax)Jn(ﬁX)dx={E[34(a)]2 =%[Jn+1(a)]2' if a=p

Proof:

We know that the solution of the equation
U+ xu + (AE -1 =0 - (1)
XV +x/ + (B - =0 - )
are u = Jp(ax) and v = Jn(X) respectively.

Multiplying (1) by v/x and (2) by u/x and subtracting, we get

x(u” v -uvh+ (' v—u)+ (B —Pxuv =0
or i{x(u’v—uv’)}z(,b’2 —az)xuv

dx
Now integrating both sides from 0 to 1, we get
(,6‘2 —az)}xuvdx: [x(u’v—uv’ )]; :(u’v—uv/ )X:l ------- (3)
0
_ _ , d _d d(ex)
Since u = Jy(ax), u’ = - [Jn(ax)]——d(ax)[.]n(ax)] ™ =ad,) (ax)

Similarly v = J,(8X) gives v/ :%[Jn(@()]zm,ﬁ(@() . Substituting these values in (3), we get

/ /
100 (@03, (o = Pal@nB)=An(e)dn(F) (g
0 p° -«




If o and B are the two distinct roots of J,(x) = 0, then J,(a) = 0 and J,(B) = 0, and hence (4)
reduces to TxJn(ax)Jn(ﬁx)dx=0.
0
This is known as Orthogonality relation of Bessel functions.
When 3 = a, the RHS of (4) takes 0/0 form. Its value can be found by considering o as
a root of Jo(x) = 0 and 3 as a variable approaching to a.. Then (4) gives
L adp (@), (B)
Lt [xJ J = Lt =2l
ﬂjagx n(ax)J, (A )dx ﬁja o’
Applying L’Hospital rule, we get

/ /
ﬂLt }xJn(ax)Jn(ﬁx)dx:ﬂLt M=1{Jé(a)}2 ________ (5)
%0 —a

23 2
We have the recurrence relation Jr’,(x):EJn(x)—JM(x).
X

Ia)=23 (a)-3,.4(a).Since J,(a)=0,wehaved/(a)=-3,..(a)
(04

Thus, (5) becomes ﬁ"t }xJn(ax)Jn(/ﬁ()dx=%{J,ﬁ(a)}2 =%{Jn+1(o¢)}2
*)D!O




