

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad-500043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	COMPUTA	COMPUTATIONAL AERODYNAMICS					
Course Code	AAE013	AAE013					
Programme	B.Tech						
Semester	VI AE	VI AE					
Course Type	Core	Core					
Regulation	IARE - R16						
		Theory		Practio	cal		
	Lectures	Tutorials	Credits	Laboratory	Credits		
Course Structure	3	1	4	3	3		
Chief Coordinator	Ms. D Anitha, Assistant Professor						
Course Faculty		Ms. D Anitha, Assistant Professor Mr. G Satya Dileep, Assistant Professor					

COURSE OBJECTIVES:

The course	e should enable the students to:
I	Discuss the fundamental aspects of numerical discretization and the major theories, approaches and methodologies used in computational aerodynamics.
II	Analyze to build up the skills in the actual implementation of computational aerodynamics methods boundary conditions, turbulence modeling etc by using commercial CFD codes.
III	Demonstrate the applications of CFD for classic fluid dynamics problems and basic thoughts and philosophy associated with CFD.
IV	Understand the various grids used in practice, including some recommendations related to grid quality and choose appropriate data structure to solve problems in real world.

COURSE OUTCOMES (COs):

CO 1	Understand the applications of CFD in various engineering fields and to generate governing equations in conservative and non-conservative form.
CO 2	Understand the mathematical behavior of partial differential equations and classify into hyperbolic, parabolic and elliptical natures.
CO 3	Acquire the concepts of finite difference method through discretization and grid generation techniques.
CO 4	Identify different CFD techniques available for different partial differential equations.
CO 5	Explore the concepts of finite volume methods, and its difference from finite difference method.

COURSE LEARNING OUTCOMES (CLOs):

AAE013.01	Understand the necessity of CFD tool as both research and design areas in modern
	computational world
AAE013.02	Explain the applications of computational fluid dynamics tool in various engineering branches
	other than aerospace engineering.
AAE013.03	Define different types of manometers and explain buoyancy force, stability of floating bodies by
	determining its meta centre height.
AAE013.04	Recognize the selection of type of flow from the finite control volume and infinitesimal small
	fluid element depending upon the requirements.
AAE013.05	Develop the governing equations required for computational aerodynamics in both conservation
	and non-conservation forms.
AAE013.06	Explain the need of classification of quasi linear partial differential equations by Cramer's rule
	and Eigen Value Method.
AAE013.07	Understand the concepts of range of influence and domain of dependence for a flow field.
AAE013.08	Explain the general behaviour of the partial differential equations which falls in hyperbolic,
	parabolic and elliptic equations.
AAE013.09	Demonstrate the CFD aspects of the hyperbolic, parabolic and elliptic equations in aerodynamic
	problems and physical problems.
AAE013.10	Distinguish between explicit and implicit approaches that are needed for solving different finite
	differential equations.
AAE013.11	Explain the Consistency analysis and von Neumann stability analysis of finite difference
	methods and physical significance of CFL condition.

AAE013.12	Discuss the different types of grids available for different flow fields available in computational
	fluid dynamics.
AAE013.13	Understand the need for generating grids for solving the finite differential equations in analyzing
	a flow field.
AAE013.14	Describe the various CFD techniques available for solving the finite differential equations for a
	flow field.
AAE013.15	Discuss the aspects of numerical dissipation and numerical dispersion and explain the
	applications of each in CFD techniques.
AAE013.16	Explain the technique of pressure correction method with the need of staggered grid and its
	philosophy.
AAE013.17	Explain the numerical procedures for analysis like SIMPLE, SIMPLER SIMPLEC and PISO
	algorithms and differentiate with regular CFD techniques.
AAE013.18	Discuss the concepts of finite volume method and explain the difference from finite difference
	method for solving different flow field.
AAE013.19	Demonstrate the need of finite volume discretization and its general formulation of a numerical
	scheme in finite volume method.
AAE013.20	Understand the principle of two dimensional finite volume methods in solving flow fields with
	finite control volume.

TUTORIAL QUESTION BANK

	UNIT – I					
	INTRODUCTION TO COMPUTATIONAL AERODYNAMICS					
Part - A(Short Answer Questions)						
		Blooms	Course	Course		
S.NO	QUESTIONS	Taxonomy	Outcomes	Learning		
		Level		Outcomes		
1	Define substantial derivative with example.	Understand	CO 1	AAE013.04		
2	State the detachment distance in blunt nosed body	Understand	CO 1	AAE013.04		
3	State any two applications of CFD in engineering.	Remember	CO 1	AAE013.02		
4	Define divergence of velocity in aerodynamics.	Understand	CO 1	AAE013.04		
5	State the local derivative with the suitable example.	Understand	CO 1	AAE013.04		
6	List the forces in Newton's second law in diagrammatic form.	Understand	CO 1	AAE013.04		
7	Distinguish conservative and non-conservative form of the governing equation for control volume.	Remember	CO 1	AAE013.04		
8	State the proper physical boundary condition for a viscous flow	Understand	CO 1	AAE013.04		
9	Mention the applications of CFD in industrial manufacturing.	Remember	CO 1	AAE013.04		
10	Distinguish the Newtonian and Non-Newtonian fluids.	Understand	CO 1	AAE013.03		
	Part - B (Long Answer Questions)					
1	Which three disciplines is CFD derived from? Discuss some of the	Understand	CO 1	AAE013.01		
	advantages of using CFD?					
2	How CFD is helpful as a research tool, a design tool, and an educational tool	Understand	CO 1	AAE013.01		
	in analyzing fluid dynamical problems.					
3	What is substantial derivative? Derive the expression for time rate of change	Remember	CO 1	AAE013.04		
	of fluid element. Define local derivative, convective derivative.					
4	Illustrate the use of conservation form of the equations so important for the	Understand	CO 1	AAE013.02		
	shock-capturing method by considering the flow across a normal shock wave.					
5	Develop the entire system of governing equations in conservation form for	Remember	CO 1	AAE013.02		
	computer programming convenience.					
6	Explain the computer architectures and list the types of computer	Understand	CO 1	AAE013.02		
	architectures. Compare and contrast the viscous flow and inviscid flow.					
7	Explain the physical meaning of Divergence of Velocity that frequently	Remember	CO 1	AAE013.04		
	appears in the equations of fluid dynamics. Define substantial Derivative and					
	explain its physical meaning.					
8	Discuss some of the applications of CFD and explain why it is so important	Understand	CO 1	AAE013.02		
	in the modern study of fluid mechanics?					

9	Discuss how Computational Fluid Dynamics is vital in the following fields.	Remember	CO 1	AAE013.02
	a) Automobile engineering b) Industrial manufacturing.			
10	Describe the steps involved in Computational Fluid Dynamics (CFD)	Understand	CO 1	AAE013.03
	process.			
	Part - C (Analytical Questions)			
1	List out the models of flow for a continuum fluid. Differentiate the control	Remember	CO 1	AAE013.04
	volume and infinitesimal fluid element fixed in space with the fluid moving			
	through it with the help of neat sketch.			
2	Explain how the continuity equation derived from these flow models can be	Remember	CO 1	AAE013.04
	converted from conservative to non-conservative form.			
3	Derive momentum equation in conservation form using infinitesimal small	Understand	CO 1	AAE013.04
	fluid element moving with the flow.			
4	Derive energy equation in conservation form using infinitesimal small fluid	Remember	CO 1	AAE013.04
	element fixed in space for compressible in viscid flow.			
5	Write short notes on non-conservative form of governing equations. Derive			
	continuity equation in non-conservation form using infinitesimal small fluid	Remember	CO 1	AAE013.04
	element moving in space.			
6	Explain and Differentiate shock fitting and shock capturing methods with the	Understand	CO 1	AAE013.04
	suitable diagram.			
7	Derive the generic form of a partial differential equation used in CFD and	Remember	CO 1	AAE013.04
	explain the significance of each term.			
8	Derive energy equation in conservation form using infinitesimal small fluid	Understand	CO 1	AAE013.04
	element moving in space for compressible viscous flow.			
9	Derive energy equation in conservation form using infinitesimal small fluid	Remember	CO 1	AAE013.04
	element fixed in space in terms of internal energy for compressible flow.			
10	Derive continuity equation in conservation form using infinitesimal small	Remember	CO 1	AAE013.04
	fluid element moving with the flow.			
	UNIT II			
	MATHEMATICAL BEHAVIOR OF PARTIAL DIFF	ERENTIAL		
	EQUATIONS AND THEIR IMPACT ON COMPUTA	ATIONAL		
	AERODYNAMICS			
	Part – A (Short Answer Questions)			
1	Define quasi linear partial differential equations.	Understand	CO 2	AAE013.05
2	Define characteristic curve and its uses.	Understand	CO 2	AAE013.06
	Classify the quasi linear partial differential equations by determining value of		+	
3		Understand	CO 2	AAE013.07

4	Define compatibility equation for method of characteristics.	Remember	CO 2	AAE013.07
5	State the boundary layer equations.	Understand	CO 2	AAE013.06
6	List the types of flow are governed by the elliptic equations.	Remember	CO 2	AAE013.08
7	List the types of fluid dynamic flow fields are governed by parabolic equations.	Remember	CO 2	AAE013.06
8	List the advantage of the compatibility equation	Remember	CO 2	AAE013.06
9	Explain well-posed problems with example for numerical analysis.	Understand	CO 2	AAE013.07
10	When an equation is called Parabolized Navier-Stokes equation.	Remember	CO 2	AAE013.08
	Part - B (Long Answer Questions)	1		1
1	Classify the system of equation form the general equation for a conic section from analytical geometry and derive the expression.	Understand	CO 2	AAE013.05
2	Illustrate the characteristic curve with the suitable diagram. Differentiate the left running and right running characteristics with the suitable example.	Understand	CO 2	AAE013.05
3	Explain the mathematical and physical nature of flows governed by parabolic Equations with an illustration of a steady boundary layer flow.	Understand	CO 2	AAE013.05
4	Explore the boundary layer flow for the parabolic equation by considering the nose region with the neat sketch.	Remember	CO 2	AAE013.06
5	Illustrate the typical transient temperature distributions in a constant property fluid, starting from an impulsive increase in Tw2 from T1 to T2 at time zero.	Understand	CO 2	AAE013.07
6	Explicit the general behavior of the different classes of partial differential equation – impact on physical and computational fluid dynamics with suitable example for each.	Remember	CO 2	AAE013.06
7	Elucidate the domain and boundaries for the solution of hyperbolic equations for the three dimensional steady flow.	Remember	CO 2	AAE013.06
8	Discuss the domain and boundaries for the solution of hyperbolic equations for the one and two dimensional unsteady flow with the suitable diagram.	Remember	CO 2	AAE013.08
9	How will be the mathematical behaviour of various types of partial differential Equations?	Understand	CO 2	AAE013.08
10	Discuss the domain and boundaries for the solution of elliptic equations for the two dimensions with the suitable diagram	Understand	CO 2	AAE013.08
	Part - C (Analytical Questions)	•		•
1	Classify the following set of equations for irrotational, two-dimensional, inviscid, steady flow of a compressible flow using Eigen value method: $(1 - M_{\infty}^2)^{\frac{-1}{2}} + \frac{-1}{2} = 0$ $\frac{-1}{2} - \frac{-1}{2} = 0$	Understand	CO 2	AAE013.05

	Where u', v' are small perturbation velocities measured relative to the free			
	Stream velocity.			
2	Explain the classification of the following quasi-linear partial differential	Understand	CO 2	AAE013.05
	equations using Cramer's rule:			
	$a_1(\partial u/\partial x) + b_1(\partial u/\partial y) + c_1(\partial v/\partial x) + d_1(\partial v/\partial y) = f_1$			
	$a_2(\partial u/\partial x) + b_2(\partial u/\partial y) + c_2(\partial v/\partial x) + d_2(\partial v/\partial y) = f_2$			
	Where u and v are dependent variables, continuous functions of x and y and			
	a_1 , a_2 , b_1 , b_2 , c_1 , c_2 , d_1 , d_2 , f_1 , f_2 can be functions of x, y, u and v.			
3	Discuss the physical behaviour of flows governed by hyperbolic equations	Remember	CO 2	AAE013.07
	with an example of steady, inviscid supersonic flow over a two dimensional			
	circular arc airfoil.			
4	Discuss the physical behaviour of flows governed by parabolic equations	Understand	CO 2	AAE013.07
	with an example of steady boundary layer flows. Explain PNS model for			
	high speed flows and explain its merits.			
5	Classify the following partial differential equations according to their nature	Remember	CO 2	AAE013.07
	as elliptic, parabolic, hyperbolic			
	(a)Unsteady Thermal Conduction Equation			
	(b)Laplace's Equation (c)Second-order wave equation (d)First-order wave			
	equation			
6	Write short notes on the following:	Understand	CO 2	AAE013.08
	(a)Parabolized Navier-Stokes equations (b) Well-posed problems.	** 1	GO 2	
7	Discuss the mathematical and physical behaviour of flows governed by	Understand	CO 2	AAE013.08
	Parabolic equations with an example of unsteady thermal conduction in two			
	and three dimensions.	7	GO 2	
8	Discuss the mathematical and physical nature of flows governed by elliptic	Remember	CO 2	AAE013.08
	equations with an illustration of incompressible, inviscid flow. Explain			
	Neumann and Dirichlet boundary conditions.	I Induction 1	CC 2	A A E 012 07
9	What are characteristic lines? Explain the philosophy of the Method of characteristics. Consider the full velocity potential equation for the steady,	Understand	CO 2	AAE013.07
	two dimensional supersonic flows and determine the equation for			
	characteristic curves in the physical xy space and classify the nature of			
	velocity potential equation based on Mach number.			
	velocity potential equation based on Mach humber.			

	UNIT –III					
	BASIC ASPECTS OF DISCRETIZATION					
	Part – A (Short Answer Questions)					
1	What are the errors that influence numerical solutions the PDE?	Understand	CO 3	AAE013.09		
2	Define Courant number. What is the important stability criterion for hyperbolic equation?	Understand	CO 3	AAE013.09		
3	Define discretization error in numerical approach.	Remember	CO 3	AAE013.10		
4	Define Round-off error and its effects.	Understand	CO 3	AAE013.10		
5	Write disadvantages of the implicit approach.	Understand	CO 3	AAE013.10		
6	Define the need of grid point in discretization.	Remember	CO 3	AAE013.11		
7	State CFD technique and list the approaches.	Understand	CO 3	AAE013.09		
8	List out the types of errors and state them.	Remember	CO 3	AAE013.09		
9	Discuss about truncation error in numerical approach.	Understand	CO 3	AAE013.10		
10	Define first order forward difference with example.	Remember	CO 3	AAE013.13		
11	State reflection boundary condition.	Understand	CO 3	AAE013.11		
12	List the pros and cons of higher – order accuracy.	Understand	CO 3	AAE013.09		
13	Illustrate the discrete gird points.	Understand	CO 3	AAE013.09		
14	Define finite- difference modules.	Understand	CO 3	AAE013.09		
25	Write two differences between structured and unstructured grids?	Understand	CO 3	AAE013.11		
26	Draw triangular and Tetrahedral cells.	Understand	CO 3	AAE013.12		
27	Sketch the structured curvilinear body-fitted grid of the C-type.	Remember	CO 3	AAE013.12		
28	List out the methods for the curved solid bodies – non uniform Cartesian grids	Understand	CO 3	AAE013.11		
29	Sketch the structured curvilinear body-fitted grid of the O-type.	Remember	CO 3	AAE013.12		
30	Sketch the structured curvilinear body-fitted grid of the H-type.	Understand	CO 3	AAE013.12		
31	Sketch the Cartesian grid with non-uniform cell sizes for a cavity.	Understand	CO 3	AAE013.12		
32	Write the advantages of adaptive grid?	Remember	CO 3	AAE013.11		
33	Distinguish Cartesian grid and non-uniform Cartesian grids	Understand	CO 3	AAE013.12		
34	List out the types of Body fitted structured grids.	Understand	CO 3	AAE013.12		
35	Sketch the structured curvilinear body-fitted grid of the I-type for turbo machinery blades.	Understand	CO 3	AAE013.12		
	Part – B (Long Answer Questions)					
1	Obtain the expression for first - order forward difference and first - order	Remember	CO 3	AAE013.09		
	rearward difference by using the Taylor series.					
2	Explain Lax method for one dimensional wave equation and explain the	Understand	CO 3	AAE013.11		
	stability criterion for hyperbolic equations					

3	Explain the explicit formulation by using one dimensional heat conduction	Understand	CO 3	AAE013.10
3	equation as an example with its relative merits and demerits			
4	Construct the implicit finite difference module using seven point	Understand	CO 3	AAE013.10
4	spatial grid by considering one-dimensional heat conduction equation			
	which is parabolic partial differential solution.			
5	Elucidate the von Neumann stability method which is used to study the	Understand	CO 3	AAE013.10
	stability properties of linear difference equations.			
6	Construct a finite difference quotient by using the polynomial approach by	Remember	CO 3	AAE013.09
	assuming the boundary and obtain a expression for one sided finite			
	difference.			
7	List out the advantages and disadvantages of implicit approach and explicit	Understand	CO 3	AAE013.11
	approach.			
8	Illustrate the maximum and minimum wavelengths for the Fourier	Understand	CO 3	AAE013.10
	components of the round-off error.			
9	Justify stability criterion depends on the form of the difference equation by	Understand	CO 3	AAE013.10
	considering the first order wave equation which is a hyperbolic behavior.			
10	Define Courant number and Courant-Friedrichs-Lewy(CFL) condition.	Understand	CO 3	AAE013.10
	Interpret the physical behavior of CFL condition.			
	interpret the physical behavior of CLE condition.			
1	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H	Remember	CO 3	AAE013.11
	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type.	Remember		AAE013.11
1 2	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type.	Remember Understand	CO 3	AAE013.11 AAE013.12
2	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a	Understand		AAE013.12
	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts.		CO 3	
3	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for	Understand Understand	CO 3	AAE013.12 AAE013.12
2	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows.	Understand	CO 3	AAE013.12
3	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary	Understand Understand Remember	CO 3	AAE013.12 AAE013.12 AAE013.12
3	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration.	Understand Understand	CO 3 CO 3	AAE013.12 AAE013.12
3	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation	Understand Understand Remember	CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12
2 3 4 5	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation with suitable diagram.	Understand Understand Remember Understand	CO 3 CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12
2 3 4 5	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation with suitable diagram. Part - C (Analytical Questions)	Understand Understand Remember Understand Understand	CO 3 CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12 AAE013.12 AAE013.12
2 3 4 5	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation with suitable diagram. Part - C (Analytical Questions) Write short notes on the following properties of numerical solutions of fluid	Understand Understand Remember Understand	CO 3 CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12
2 3 4 5 6	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation with suitable diagram. Part - C (Analytical Questions) Write short notes on the following properties of numerical solutions of fluid flows: i) Stability ii) Consistency iii) Accuracy iv) Convergence.	Understand Understand Remember Understand Understand Remember	CO 3 CO 3 CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12 AAE013.12 AAE013.12
2 3 4 5	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation with suitable diagram. Part - C (Analytical Questions) Write short notes on the following properties of numerical solutions of fluid flows: i) Stability ii) Consistency iii) Accuracy iv) Convergence. Illustrate the time marching solution for constructing the explicit finite	Understand Understand Remember Understand Understand	CO 3 CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12 AAE013.12 AAE013.12
2 3 4 5 6	Discuss and sketch the structured multi-block body-fitted grid of the H-O-H type. Discuss and sketch the structured curvilinear body-fitted of the C-H type. Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts. Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows. Sketch the Cartesian mesh around a solid boundary with immersed boundary method and Sketch cut-cell configuration. Discuss chimera technique for the flexible block-structured grid generation with suitable diagram. Part - C (Analytical Questions) Write short notes on the following properties of numerical solutions of fluid flows: i) Stability ii) Consistency iii) Accuracy iv) Convergence.	Understand Understand Remember Understand Understand Remember	CO 3 CO 3 CO 3 CO 3	AAE013.12 AAE013.12 AAE013.12 AAE013.12 AAE013.12

3	Obtain the difference equation by considering unsteady, one-			
	dimensional heat conduction equation with constant thermal	Remember	CO 3	AAE013.11
	diffusivity with the neat sketch.			AAL013.11
4	Write down the expressions for the first order forward difference and first -	Understand	CO 3	AAE013.09
,	order rearward difference with respect to x and y. Sketch the appropriate			71112013.07
	finite- difference modules for each by using the discrete grid points.			
5	Sketch the finite- difference modules for second - order central	Remember	CO 3	AAE013.10
	second difference with respect to x, y and second - order central mixed			
	•			
	difference with respect to x and y by justifying the expression.	TT. 1 1	GO 2	A A E 012 11
6	Write down the expressions for the second order central second	Understand	CO 3	AAE013.11
	difference with respect to x and y. Sketch the appropriate finite-			
	difference modules for each by using the discrete grid points.			
7	Illustrate a stable case by comparing the numerical domain includeall	Understand	CO 3	AAE013.10
	the analytical domain and does not include all the analytical domain			
	with the neat sketch.			
8	Sketch the variation of round-off error as a function of x. Sketch and	Understand	CO 3	AAE013.10
	the sine function with the wave length L and L/2. From Fourier series			
	what is the wave number?			
1	Explain the importance of grid generation in CFD process and discuss the	Understand	CO 3	AAE013.11
	difference between structured grid and unstructured grid.	Chacistana		71112013.11
2	Elucidate the unstructured hybrid grid showing the regular quadrilateral or	Understand	CO 3	AAE013.12
_	hexahedra cells type structure near the solid walls.			11112010112
3	Define structured and unstructured grids. Discuss various configurations of	Remember	CO 3	AAE013.11
	Body-fitted structured grids and multi-block grids with the help of sketches.			
4	Summarize the hybrid grids of a turbine blade with film cool configuration	Understand	CO 3	AAE013.12
	for generation of unstructured grid with the suitable example.			
5	Elucidate the triangle or tetrahedral cells for generation of unstructured grid	Understand	CO 3	AAE013.12
	with the suitable example.			
6	Sketch the quad tree grid with hanging nodes, nodes around an airfoil with	Understand	CO 3	AAE013.12
	staircase boundary approximation			
	UNIT -IV			
	CFD TECHNIQUES			
	Part – A (Short Answer Questions)			
1	State point iterative method.	Understand	CO 4	AAE013.14
<u> </u>		1		1

2	To what extent does the addition of artificial viscosity effect the accuracy of the problem.	Remember	CO 4	AAE013.14
3	What is Relaxation technique?	Understand	CO 4	AAE013.14
4	Sketch the effect of numerical dispersion when initial wave at time t=0 and t>0.	Understand	CO 4	AAE013.14 AAE013.15
5	Define approximate factorization.	Remember	CO 4	AAE013.14
6	Write down the expression for relaxation factor.	Understand	CO 4	AAE013.14
7	What is Pressure correction technique?	Understand	CO 4	AAE013.16
8	Differentiate successive over relaxation and under relaxation.	Remember	CO 4	AAE013.16
9	What is the need for staggered grid?	Understand	CO 4	AAE013.14
10	Sketch the effect of numerical dissipation when initial wave at time t=0 and t>0.	Remember	CO 4	AAE013.14
	Part – B (Long Answer Questions)	L		L
1	Obtain an expression for second order accuracy in both space and time by using the Lax Wendroff method explicitly.	Understand	CO 4	AAE013.14
2	Obtain an expression for second order accuracy in both space and time by using the Maccormack method explicitly.	Understand	CO 4	AAE013.14
3	What is a Crank Nicholson technique? Explain its advantages in field of CFD techniques.	Remember	CO 4	AAE013.14
4	Obtain an expression for finite difference method, relaxation technique for the solution of elliptic partial differential equation. Explain its applications.	Remember	CO 4	AAE013.14
5	Elucidate the simple form of artificial viscosity by considering unsteady two dimensional flows.	Remember	CO 4	AAE013.15
6	Obtain an expression of computational module for x momentum equation for an incompressible viscous flow for the pressure correction formula.	Understand	CO 4	AAE013.14
7	List out the sequence of operation in a Computational fluid dynamics procedure which employs the SIMPLE algorithm with the flow chart.	Remember	CO 4	AAE013.16
8	Discuss the sequence of operation in a Computational fluid dynamics procedure which employs the SIMPLEC algorithm with the flow chart.	Understand	CO 4	AAE013.16
9	Elucidate the first step in the alternating direction implicit (ADI) technique by sweeping in the x direction to obtain T at time $t+\Delta t/2$.	Understand	CO 4	AAE013.14
10	What is the need for staggered grid and sketch? List out the advantages of staggered grid.	Understand	CO 4	AAE013.14
	Part - C (Analytical Questions)	L		L
1	Explain explicit MacCormack Technique for a steady, two-dimensional, supersonic, inviscid flow field in(x, y) space using the following generic	Understand	CO 4	AAE013.14

	conservation form without source terms: $\partial F/\partial x = -\partial G/\partial y$ where F and G			
	represent flux vectors formed from the governing equations.			
2	List out the sequence of operation in a Computational fluid dynamics	Remember	CO 4	AAE013.14
	procedure which employs the SIMPLER algorithm with the flow chart.			
3	List out the sequence of operation in a Computational fluid dynamics	Understand	CO 4	AAE013.14
	procedure which employs the PISO algorithm with the flow chart.			
4	Discuss the boundary condition for the pressure correction method with	Remember	CO 4	AAE013.14
	schematic of staggered grid by incompressible viscous flow.			
5	Elucidate the relaxation technique for the inviscid, incompressible, two	Understand	CO 4	AAE013.14
	dimensional, irrotational flow under explicit approach.			
6	Obtain an expression of computational module for y momentum equation for	Remember	CO 4	AAE013.14
	an incompressible viscous flow for the pressure correction formula.	Kememoer	004	
7	Elucidate the second step in the alternating direction implicit (ADI) technique	Remember	CO 4	AAE013.14
	by sweeping in the y direction to obtain T at time $t+\Delta t$.	Kememoer	004	
8	Discuss numerical dissipation and numerical dispersion in the context of	Understand	CO 4	AAE013.15
	Numerical solution to fluid dynamical problems			
9	Explain checker-board behaviour of velocity and pressure fields in central	Remember	CO 4	AAE013.16
	Discretization schemes using sketches and explain how such behaviour can			
	be avoided.			
10	State pressure correction technique. List out the process for the philosophy of	Remember	CO 4	AAE013.17
	the pressure correction method.			
	UNIT – V			
	FINITE VOLUME METHODS			
	Part - A (Short Answer Questions)			
1	Define Finite volume method and list the advantages and disadvantages	Remember	CO 5	AAE013.18
2	State control volume for the Finite volume method?	Understand	CO 5	AAE013.18
3	What is the basis of Finite Volume Method?	Remember	CO 5	AAE013.18
4	Discuss and sketch the incorrect finite volume decomposition.	Understand	CO 5	AAE013.18
5	Sketch the cell-centered and cell-vertex cells for structured grid.	Understand	CO 5	AAE013.18
6	Sketch the cell-centered and cell-vertex cells for structured grid.	Remember	CO 5	AAE013.18
7	Define residual in finite volume method.	Understand	CO 5	AAE013.18
8	Discuss the alternative formulation of the conservation condition.	Remember	CO 5	AAE013.19
9	Write down the expression used for the estimation of the area of an arbitrary	Understand	CO 5	A A E 012 10
	cell.	Onderstand		AAE013.19
10	Define one condition for finite volume selection.	Remember	CO 5	A A E 012 10
		Remember		AAE013.19
	1	I.	1	l

	Part - B (Long Answer Questions)			
1	Illustrate the conservative discretization on a one-dimensional form of conservation law by subdivision of a one dimensional space into mesh cells with the flux vector in x-component.	Understand	CO 5	AAE013.18
2	What do you understand by conservative discretization and explain the importance of it in FVM.	Understand	CO 5	AAE013.18
3	Obtain the formal expression of a conservative discretization by stating the theorem for the discretized equation.	Understand	CO 5	AAE013.18
4	Discuss the cell-centered approach for the structured finite volume mesh and unstructured finite volume mesh with the help of neat sketch.	Understand	CO 5	AAE013.18
5	Illustrate the non-conservative discretization on a one-dimensional form of conservation law.	Understand	CO 5	AAE013.18
6	Evaluate the fluxes for the upwind schemes and cell-vertex finite volumes methods, upwind schemes determine the cell face fluxes according to the propagation direction of the convection velocity.	Remember	CO 5	AAE013.18
7	Distinguish the non-uniform finite volume mesh and orthogonal non-uniform finite volume mesh with the suitable diagram.	Understand	CO 5	AAE013.19
8	Construct the standard finite difference discretization on the mesh by considering the two-dimensional diffusion equation and Cartesian grid.	Remember	CO 5	AAE013.18
9	Derive a finite volume estimation of gradients by considering control cell and applying trapezoidal integration formulas.	Understand	CO 5	AAE013.18
	Part - C (Analytical Questions)	1	I	
1	Explain cell-centered and cell-vertex discretization methodologies used in Finite volume approach with the help of sketches. What are the constraints to be satisfied on the choice of discretized control volumes for a consistent finite volume method?	Understand	CO 5	AAE013.18
2	Evaluate the fluxes for the upwind schemes and cell-centered finite volumes methods, upwind schemes determine the cell face fluxes according to the propagation direction of the convection velocity.	Remember	CO 5	AAE013.19
3	Distinguish the cell-centered approach and cell-vertex approach for the unstructured finite volume mesh with the help of neat sketch.	Understand	CO 5	AAE013.19
4	Illustrate the cell-vertex finite volume method with the example of two- dimensional control surfaces by selecting hexagonal control volume and trapezoidal control surface.	Remember	CO 5	AAE013.19
5	Distinguish the interpretation of finite volume methods from the finite difference and finite element approaches.	Understand	CO 5	AAE013.19

6	Obtain the general formulation of a numerical scheme. The formulation is to	Remember	CO 5	AAE013.18
	be valid for all possible cases such as structured gird or unstructured grids			
	either cell-centered or cell-vertex defines variables.			
7	Determine the basic formulation for the two-dimensional finite volume	Remember	CO 5	AAE013.18
	method by using the area of an arbitrary plane quadrilateral.			
8	Derive a finite volume estimation of gradients for an arbitrary quadrilateral	Understand	CO 5	AAE013.20
	by noticing differences Δy grouped for opposite nodes with the suitable			
	diagram.			
9	Discuss the upwind scheme on Cartesian mesh by considering the	Remember	CO 5	AAE013.20
	discretization of the Two-dimensional linear convection equation and the			
	fluxes are f=aU and g=bU.			
10	Derive a finite volume estimation of gradients by application of the Gauss	Remember	CO 5	AAE013.19
	divergence theorem for two dimensional control cells.			

Prepared by:

Ms. D. Anitha Assistant Professor

HOD, AE