

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad-500043

## **MECHANICAL ENGINEERING**

## **TUTORIAL QUESTION BANK**

| Course Title      | DESIGN           | N OF MA  | ACHINE MEMBER         | RS           |            |         |
|-------------------|------------------|----------|-----------------------|--------------|------------|---------|
| Course Code       | AME01            | 12       |                       |              |            |         |
| Programme         | B.Tech           |          |                       |              |            |         |
| Semester          | V                | ME       |                       |              |            |         |
| Course Type       | Core             |          |                       |              |            |         |
| Regulation        | IARE -           | R16      |                       |              |            |         |
|                   | Theory Practical |          |                       |              | cal        |         |
| Course Structure  | Lect             | tures    | Tutorials             | Credits      | Laboratory | Credits |
|                   |                  | 3        | 1                     | 4            | -          | -       |
| Chief Coordinator | Dr. G V          | R Seshag | giri Rao, Associate P | rofessor     |            |         |
| Course Faculty    | Mr. V K          | V S Kris | shnam Raju, Associa   | te Professor |            |         |

#### **COURSE OBJECTIVES:**

| The co | ourse should enable the students to:                                                                                                                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι      | Develop an ability to apply knowledge of mathematics, science, and engineering Outcomes                                                             |
| II     | Knowledge of various design standards, safety, reliability, importance of dimensional parameters and manufacturing aspects in mechanical design.    |
| III    | Understanding the concepts of stresses, theories of failure and material science to analyze, design and/or select commonly used machine components. |
| IV     | To develop an ability to identify, formulate, and solve various machine members problems                                                            |

### **COURSE OUTCOMES (COs):**

| CO1 | Understanding design and analysis of power transmitting elements, selection of suitable materials and manufacturing processes. |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Analyzing the forces acting on various joints and their design.                                                                |
| CO3 | To develop an ability to identify, formulate, and solve various machine members problems                                       |
| CO4 | Ability to design and analyze shafts with different geometrical features under various loading conditions.                     |
| CO5 | Ability to analyze and design of different Springs for required application.                                                   |

### **COURSE LEARNING OUTCOMES:**

| AME012.01 | Understand various design variables and factors in the study of machine elements.  |
|-----------|------------------------------------------------------------------------------------|
| AME012.02 | Explain the steps involved in design process, BIS Codes of Steels.                 |
| AME012.03 | Understand the various Theories of failure, Design for Strength and rigidity.      |
| AME012.04 | Understand theories of failures, stress concentration and fluctuating stresses.    |
| AME012.05 | Explain estimation of endurance strength.                                          |
| AME012.06 | Ability to design lap and butt joints in riveted joints.                           |
| AME012.07 | Explain design of welded joints, effects various stresses.                         |
| AME012.08 | Explain the design procedure of various joints.                                    |
| AME012.09 | Understand the applications and comparison of various joints.                      |
| AME012.10 | Explain bolts of uniform strength.                                                 |
| AME012.11 | Understand various stresses in keys.                                               |
| AME012.12 | Ability to design procedure for keys.                                              |
| AME012.13 | Ability to design spigot and socket joint.                                         |
| AME012.14 | Understand Jib and Cotter joint and design procedure.                              |
| AME012.15 | Ability to design knuckle joints.                                                  |
| AME012.16 | Explain the design of shafts for complex loads.                                    |
| AME012.17 | Explain the design procedures of various shaft couplings.                          |
| AME012.18 | Ability to design shafts for various types of loading.                             |
| AME012.19 | Compare various shaft couplings and applications.                                  |
| AME012.20 | Ability to Design of various shaft couplings.                                      |
| AME012.21 | Understand of the basic features of springs.                                       |
| AME012.22 | Explain the design procedure for various springs.                                  |
| AME012.23 | Ability to design the various springs.                                             |
| AME012.24 | Compare applications of Extension springs.                                         |
| AME012.25 | Explain different types of end styles for helical compression and tension springs. |

# TUTORIAL QUESTION BANK

|       | UNIT-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                               |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|-------------------------------|--|--|
|       | FUNDAMENTALS OF MACHINE DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                      |                               |  |  |
|       | PART - A (SHORT ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                      |                      |                               |  |  |
| S No  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blooms                                 | Course               | Course                        |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Taxonomy                               | Outcomes             | Learning                      |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | level                                  | (COs)                | Outcomes                      |  |  |
| 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>D</b>                               | 00.1                 | (CLOs)                        |  |  |
| 1     | List out various factors to be considered while designing a component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remember                               | CO I                 | AME012.01                     |  |  |
| 2     | Illustrate the properties of non-metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand                             |                      | AME012.01                     |  |  |
| 3     | State the applications of non-metals in design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand                             |                      | AME012.01                     |  |  |
| 4     | Write the difference between ductile and brittle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Understand                             |                      | AME012.01                     |  |  |
| 5     | Define stiffness for axial loaded member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Understand                             |                      | AME012.02                     |  |  |
| 6     | Write about factor of safety under static loading and fluctuating loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember                               |                      | AME012.02                     |  |  |
| /     | Write short notes on design procedure based on strength and rigidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember                               |                      | AME012.02                     |  |  |
| 8     | Define fatigue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember                               |                      | AME012.02                     |  |  |
| 9     | Define fatigue stress concentration factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remember                               |                      | AME012.03                     |  |  |
| 10    | Define is stress concentration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remember                               |                      | AME012.03                     |  |  |
| 11    | Define is Theoretical stress concentration factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand                             |                      | AME012.03                     |  |  |
| 12    | what is notch sensitivity?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remember                               |                      | AME012.03                     |  |  |
| 13    | Define factor of safety for fatigue loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember                               |                      | AME012.04                     |  |  |
| 14    | Define completely reversed loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remember                               |                      | AME012.04                     |  |  |
| 15    | Define alternating loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remember                               |                      | AME012.04                     |  |  |
| 16    | Define repeated loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand                             |                      | AME012.04                     |  |  |
| 17    | Write equation for mean average stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand                             | CO I                 | AME012.05                     |  |  |
| 18    | Write equation for variable stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand                             | CO 1                 | AME012.05                     |  |  |
| 19    | Define stress ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remember                               | CO I                 | AME012.05                     |  |  |
| 20    | Explain manufacturing consideration in design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember                               | COL                  | AME012.05                     |  |  |
| G M   | PART - B (Long Answer Questions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DI                                     | a                    | G                             |  |  |
| S No  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blooms                                 | Course               | Course                        |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I axonomy                              | Outcomes             | Learning                      |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level                                  | (COS)                | (CLOs)                        |  |  |
| 1     | a Define "Machine Decign" and explain various stages with a flow chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand                             | CO 1                 | (CLOS)                        |  |  |
| 1     | h A cast iron link as shown in Fig is required to transmit a steady tensile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Onderstand                             | 001                  | AMIL012.01                    |  |  |
|       | load of 45 kN Find the tensile stress induced in the link material at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                      |                               |  |  |
|       | sections A-A and R-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                      |                               |  |  |
|       | B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                      |                               |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                               |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                               |  |  |
|       | $P \leftarrow 45 45 40 75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                      |                               |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                               |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                               |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                               |  |  |
|       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                      |                               |  |  |
|       | $\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ |                                        |                      |                               |  |  |
| 2     | a. What is factor of safety? Why is it necessary? List the important factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Understand                             | CO 1                 | AME012.01                     |  |  |
| 2     | a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand                             | CO 1                 | AME012.01                     |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand                             | CO 1                 | AME012.01                     |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take mean by 25%.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand                             | CO 1                 | AME012.01                     |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand                             | CO 1                 | AME012.01                     |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand                             | CO 1<br>CO 1         | AME012.01<br>AME012.02        |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a dustile steel her subjected to an axial</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand                             | CO 1<br>CO 1         | AME012.01<br>AME012.02        |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial torsile load of 40kN and a torsile memory of 16 x 105N mm Lies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand                             | CO 1<br>CO 1         | AME012.01<br>AME012.02        |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 15 E=2 x 105 MPa and Su= 210MPa</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand                             | CO 1<br>CO 1         | AME012.01<br>AME012.02        |  |  |
| 2     | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 1.5, E=2 x 105 MPa and Sy= 210MPa.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand                             | CO 1<br>CO 1         | AME012.01 AME012.02           |  |  |
| 2 3 4 | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 1.5, E=2 x 105 MPa and Sy= 210MPa.</li> <li>a. Define failure. What are the possible modes offailure?</li> <li>b. A shaft is designed based on maximum approximation of distortion as the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Understand<br>Understand<br>Understand | CO 1<br>CO 1<br>CO 1 | AME012.01 AME012.02 AME012.02 |  |  |
| 2 3 4 | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 1.5, E=2 x 105 MPa and Sy= 210MPa.</li> <li>a. Define failure. What are the possible modes offailure?</li> <li>b. A shaft is designed based on maximum energy of distortion as the criteria of failure and factor of safety of 2. The metarial word is 200%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand Understand Understand       | CO 1<br>CO 1<br>CO 1 | AME012.01 AME012.02 AME012.02 |  |  |
| 2 3 4 | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 1.5, E=2 x 105 MPa and Sy= 210MPa.</li> <li>a. Define failure. What are the possible modes offailure?</li> <li>b. A shaft is designed based on maximum energy of distortion as the criteria of failure and factor of safety of 2. The material used is 30C8 steel with Sy = 310 MPa. The shaft is cubiccted to an axial load of 40.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Understand Understand Understand       | CO 1<br>CO 1<br>CO 1 | AME012.01 AME012.02 AME012.02 |  |  |
| 2 3 4 | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 1.5, E=2 x 105 MPa and Sy= 210MPa.</li> <li>a. Define failure. What are the possible modes offailure?</li> <li>b. A shaft is designed based on maximum energy of distortion as the criteria of failure and factor of safety of 2. The material used is 30C8 steel with Sy = 310 MPa. The shaft is subjected to an axial load of 40 kN. Determine the maximum torque that can be arrived to an axial load of 40 kN.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand Understand Understand       | CO 1<br>CO 1<br>CO 1 | AME012.01 AME012.02 AME012.02 |  |  |
| 2 3 4 | <ul> <li>a. What is factor of safety? Why is it necessary? List the important factors that influence the magnitude of factor of safety</li> <li>b. Shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress as 70 MP.</li> <li>a. Define simple stress and give few examples of machine components subjected to simple stress.</li> <li>b. Determine the diameter of a ductile steel bar subjected to an axial tensile load of 40kN and a torsional moment of 16 x 105N.mm.Use factor of safety of 1.5, E=2 x 105 MPa and Sy= 210MPa.</li> <li>a. Define failure. What are the possible modes offailure?</li> <li>b. A shaft is designed based on maximum energy of distortion as the criteria of failure and factor of safety of 2. The material used is 30C8 steel with Sy = 310 MPa. The shaft is subjected to an axial load of 40 kN. Determine the maximum torque that can be applied to the shaft before yielding. Diameter of shaft is 20 mm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand<br>Understand<br>Understand | CO 1<br>CO 1<br>CO 1 | AME012.01 AME012.02 AME012.02 |  |  |

|    | subjected to a twisting moment of 120 N-m, simultaneously; it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|-------------|
|    | subjected to an axial thrust of 10 kN and a bending moment of 80 N-m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | Calculate the maximum compressive and shear stresses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | The load on a bolt consists of an axial pull of 10 kN together with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | transverse snear force of 5 kin. Find the diameter of bolt required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |             |
|    | 1 Maximum principal stress theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      |             |
|    | 2 Maximum shear stress theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |      |             |
|    | 3 Maximum principal strain theory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |             |
|    | 4 Maximum strain energy theory: and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |             |
|    | 5. Maximum distortion energy theory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |      |             |
| 6  | a. A cylindrical shaft made of steel of yield strength 700 MPa is subjected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand  | CO 1 | AME012.04   |
| -  | to static loads consisting of bending moment 10 kN-m and a torsional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |      |             |
|    | moment 30 kN-m. Determine the diameter of the shaft using two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |      |             |
|    | different theories of failure, and assuming a factor of safety of 2. Take E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |             |
|    | = 210GPa and poisson's ratio $= 0.25$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |             |
|    | b. Determine the diameter of a circular rod made of ductile material with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |             |
|    | fatigue strength (complete stress reversal), $\sigma e = 265$ MPa and a tensile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
|    | yield strength of 350 MPa. The member is subjected to a varying axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | load from Wmin = $-300 \times 103$ N to Wmax = $700 \times 103$ N and has a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |             |
| 7  | stress concentration factor = $1.8$ . Use factor of safety as $2.0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I In damat1 | CO 1 | AME012.04   |
| /  | a. Explain which three theories of failure are applicable to ductile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Understand  | COT  | AME012.04   |
|    | materials.<br>b Prove that for maximum shear stress theory $S_{12} = 0.5$ Sy for more shear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |      |             |
|    | b. From that for maximum shear subsymptotic system $0.5$ Sy for pure shear $100$ sites $1$ |             |      |             |
|    | and Sys – 0.577 Sy for pure shear with energy of distortion theory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |             |
| 8  | a. The non-rotating shaft shown in Fig. is subjected to a load P varying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Understand  | CO 1 | AME012.04   |
| Ũ  | from 4000 N to 12000 N. The material 30C8 steel has $Su = 600$ MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Charlena    | 001  |             |
|    | and Se= 300 MPa. Ka = 0.8, Kb = 0.85 and Kc = 0.9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |             |
|    | b. Find the dimension D for a factor of safety of 3.5, and $q = 0.9$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |      |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
|    | r = 8  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |      |             |
|    | 1 80 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
|    | $\longleftarrow 600 \longrightarrow \longleftarrow 400 \longrightarrow \longleftarrow 600 \longrightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |             |
|    | Libratic source of the trace of the cost of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
| 9  | The endurance strength for a part is 280 MPa while $S_{\rm H} = 630$ MPa. It is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand  | CO 1 | AME012.05   |
|    | subjected to a loading as follows $\sigma m 1 = 315$ MPa and $\sigma v 1 = 96$ MPa for 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Onderstand  | 001  | AMIL012.03  |
|    | of time $\sigma m^2 = 245$ MPa and $\sigma v^2 = 145$ MPa for 20% of time Find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |             |
|    | expected life in number of cycles of reversals. Assume $Kt = 1.5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |             |
| 10 | A shaft is subjected to a torque varying between 5000 N.m to 10000 N.m. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand  | CO 1 | AME012.05   |
|    | stress concentration factor due to the keyway is $2.5$ . Su = 500 MPa, Se = $0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      |             |
|    | Su, Sy = $300$ MPa, endurance correction factor = $0.6$ , size correction factor =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |             |
|    | 0.8 and surface correction factor = $0.82$ . Find the diameter of the shaft using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      |             |
|    | F. S = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      |             |
| 11 | A bolts is subjected to an axial force of 12,000N, with a transverse Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand  | CO 1 | AME012.05   |
|    | torce of 6,000N. find the diameter at the bolt required according to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | 1) Maximum Principal stress theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |             |
|    | 11) Maximum Principal strain theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |             |
|    | iii) Maximum distortion energy theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | Assume nermissible tensile stress at elastic limit is $100 \text{ N/mm}^2$ and $1 / \text{m} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
|    | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |      |             |
| 12 | A bolt is subjected to an axial force of 10KN with a transverse shear force of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand  | CO 1 | AME012.05   |
|    | 5 KN.The permissible tensile stress at elastic limit is 100 MPa and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 1    |             |
|    | poison's ratio is 0.3 for the bolt material. Determine the diameter of the bolt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
|    | required according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |      |             |
|    | i. Max. principal stress theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |             |
|    | ii. Max. shear stress theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |      |             |
|    | iii. Max. principal strain theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      |             |
|    | iv. Max. strain energy theory, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |             |
|    | v. Max. Distortion energy theory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 00.1 | 43 00012 04 |
|    | E-mlain the basis massed and for Montester 1 East ' D' D' D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |      |             |
| 13 | Explain the basic procedure for Mechanical Engineering Design. Discuss the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand  | 01   | AME012.04   |

| 14 | <ul><li>a) Discuss the various types of stresses and strain.</li><li>b) Draw the stress strain curve for ductile and brittle materials and differentiate the ductile and brittle failures</li></ul>                                                                                                                                       | Understand | CO 1 | AME012.04 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
| 15 | Discuss the Stress concentration in manufacturing design. What are the different methods to reduce the stress concentration factor?                                                                                                                                                                                                       | Understand | CO 1 | AME012.05 |
| 16 | A stepped shaft subjected to a twisting moment of 20 N-m. The yield strength of the shaft material is 400 Mpa Taking factor of safety of 2.5, r= 5mm,d=25mm,D=50mm determine the diameter of the shaft.                                                                                                                                   | Understand | CO 1 | AME012.05 |
|    |                                                                                                                                                                                                                                                                                                                                           |            |      |           |
| 17 | a) A rectangular plate 50 mm x 10mm with a hole 12 mm dia mm diameter and subjected to a tensile load of 12kN,calculate the maximum stress.                                                                                                                                                                                               | Understand | CO 1 | AME012.05 |
|    | $- \phi = \frac{1}{4}$                                                                                                                                                                                                                                                                                                                    |            |      |           |
|    | b) State the significance of stress concentration factor while designing a machine element.                                                                                                                                                                                                                                               |            |      |           |
| 18 | a) What is the difference between the stress concentration factor and stress intensity factor?                                                                                                                                                                                                                                            | Understand | CO 1 | AME012.05 |
| 19 | Determine the largest axial load P that can be safely supported by a flat steel<br>bar consisting of two portions, both 10mm thick , and respectively 40 and 60<br>mm wide, connected by fillets of radius $r = 8$ mm . Assume an allowable<br>normal stress of 165 Mpa                                                                   | Understand | CO 1 | AME012.05 |
| 20 | Determine the size of a piston rod subjected to a total load of having cyclic fluctuations from 150 KN in compression to 25 KN in tension. The endurance limit is 360 MPa and yield strength is 400 MPa. Take impact factor = $1.25$ , factor of safety = $1.5$ , surface finish factor = $0.88$ and stress concentration factor = $2.25$ | Understand | CO 1 | AME012.05 |
|    | PART - C (ANALYTICAL QUESTIONS)                                                                                                                                                                                                                                                                                                           |            |      | 1         |
| 1  | A torque varying from 25kN. M to 75 kN. M is applied at the end of the shaft. Fillet radius $r= D/2$ ; Factor of safety = 1.6, material is 40 MN 2512 with S =350 MPa. Se = 250 MPa, Ka = 0.85, Kb = 0.82, Kc = 0.6, SCF due tokeyway = 1.6 q = 0.9.                                                                                      | Understand | CO 1 | AME012.03 |
| 2  | a. Define endurance test and endurance limit.                                                                                                                                                                                                                                                                                             | Understand | CO 1 | AME012.03 |
|    | <ul> <li>A Snart of diameter d is subjected to a torque varying between 100 N.m to 500 N.m. Kr due to keyway is 1.5. F.S = 2, Sy = 300 MPa, Se = MPa 200 Correctionfactorfortorsion=0.6.Surfacefinishfactor=0.85and size factor = 0.82. Find the value of d.</li> </ul>                                                                   |            |      |           |
| 3  | <ul><li>a. What is stress concentration? How does it affect the fatiguestrength?</li><li>b. What are the different methods to reduce stressconcentration?</li></ul>                                                                                                                                                                       | Understand | CO 1 | AME012.04 |
| 4  | <ul> <li>a. Draw and explain the S-Ndiagram.</li> <li>b. A uniform bar having a machined surface is subjected to an axial load varying from 400kN to 150 kN. The material of the bar has Su= 630 MPa. Kc = 0.7 and Kt = 1.42. Find the diameter d of the rod using F.S = 1.5.</li> </ul>                                                  | Understand | CO 1 | AME012.03 |
| 5  | <ul> <li>a. Differentiate between boiler and structuraljoints.</li> <li>b. Two plates of 16mm thick are joint by double riveted lap joint pitch of each of row of rivets is 90mm. rivets are 25mm in diameterpermissiblestresses are 140 MPa in tension. 80 MPa in shear &amp; 160 MPa in crushing. Find efficiency of joint.</li> </ul>  | Understand | CO 1 | AME012.05 |

| 6                                                                                                                                                                                                                                                                        | Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r p m. The shear stress in the shaft is not to exceed 70 MPa and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand                                                                                                                                                                                                                                                                                                                                                                                                             | CO 1                                                                                        | AME012.05                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                          | maximum torque exceeds the mean by 40%. Also find the angle of twist in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | a length of 2 metres. Take $C = 90$ GPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
| 7                                                                                                                                                                                                                                                                        | Find the maximum stress induced in the following cases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Understand                                                                                                                                                                                                                                                                                                                                                                                                             | CO 1                                                                                        | AME012.05                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                          | Taking stress concentration intoaccount: A rectangular plate 60 mm ×10 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | with a hole 12 diameter asshown in Fig. and subjected to a tensile load of 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | kN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | 60 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | 12  kN $(+)$ $12  mm$ $12  kN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | 10 mm →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
| 0                                                                                                                                                                                                                                                                        | A has of simular more cretics is subjected to alternative topsile former                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I la denoten d                                                                                                                                                                                                                                                                                                                                                                                                         | CO 1                                                                                        | AME012.02                                                                                                                                                                                                                                                                         |
| 8                                                                                                                                                                                                                                                                        | A bar of circular cross-section is subjected to alternating tensile forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand                                                                                                                                                                                                                                                                                                                                                                                                             | 01                                                                                          | AME012.03                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                          | warying from a minimum of 200 kN to a maximum of 500 kN. It is to be<br>manufactured of a material with an ultimate tensile strength of 000 MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | and an endurance limit of 700 MPa. Determine the diameter of bar using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | safety factors of 3.5 related to ultimate tensile strength and 4 related to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | endurance limit and a stress concentration factor of 1.65 for fatigue load.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | Use Goodman straight line as basis for design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
| 9                                                                                                                                                                                                                                                                        | 50 mm diameter shaft is made from carbon steel having ultimate tensile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand                                                                                                                                                                                                                                                                                                                                                                                                             | CO 1                                                                                        | AME012.03                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                          | strength of 630 MPa. It is subjected to a torque which fluctuates between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | 2000 N-m to - 800 N-m.Using Soderberg methods, calculate the factor of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | safety. Assume suitable values for any other data needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
| 10                                                                                                                                                                                                                                                                       | A simply supported shaft between bearings carries a steady load of 10 kN at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand                                                                                                                                                                                                                                                                                                                                                                                                             | CO 1                                                                                        | AME012.05                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                          | the center. The length of shaft between bearings is 450 mm. Neglecting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | effect of stress concentration; find the minimum diameter of shaft. Given that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | Endurance limit = $600$ MPa; surface finish factor = $0.87$ ; size factor = $0.85$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | and factor of safety = 1.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | UNII-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | ICN OF FASTENERS AND WELDED IOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NTS                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | ION OF FASTENERS AND WELDED JOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          | PART – A (SHORT ANSWER QUESTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DNS)                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                   |
| S No                                                                                                                                                                                                                                                                     | PART – A (SHORT ANSWER QUESTIC<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNS)<br>Blooms                                                                                                                                                                                                                                                                                                                                                                                                         | Course                                                                                      | Course                                                                                                                                                                                                                                                                            |
| S No                                                                                                                                                                                                                                                                     | PART – A (SHORT ANSWER QUESTIC<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS)<br>Blooms<br>Taxonomy                                                                                                                                                                                                                                                                                                                                                                                              | Course<br>Outcomes                                                                          | Course<br>Learning                                                                                                                                                                                                                                                                |
| S No                                                                                                                                                                                                                                                                     | PART – A (SHORT ANSWER QUESTIC<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNS)<br>Blooms<br>Taxonomy<br>level                                                                                                                                                                                                                                                                                                                                                                                    | Course<br>Outcomes<br>(COs)                                                                 | Course<br>Learning<br>Outcomes                                                                                                                                                                                                                                                    |
| S No                                                                                                                                                                                                                                                                     | PART – A (SHORT ANSWER QUESTIC<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNS)<br>Blooms<br>Taxonomy<br>level                                                                                                                                                                                                                                                                                                                                                                                    | Course<br>Outcomes<br>(COs)                                                                 | Course<br>Learning<br>Outcomes<br>(CLOs                                                                                                                                                                                                                                           |
| <b>S No</b>                                                                                                                                                                                                                                                              | PART – A (SHORT ANSWER QUESTIC<br>Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember                                                                                                                                                                                                                                                                                                                                                                         | Course<br>Outcomes<br>(COs)<br>CO 2                                                         | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06                                                                                                                                                                                                                              |
| <b>S No</b>                                                                                                                                                                                                                                                              | PART – A (SHORT ANSWER QUESTIC<br>Question<br>Explain the term riveted joint<br>Explain is caulking and why is it necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                                                             | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2                                                 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06                                                                                                                                                                                                                 |
| <b>S No</b>                                                                                                                                                                                                                                                              | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Understand                                                                                                                                                                                                                                                                                                                                               | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2                                         | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06                                                                                                                                                                                                                 |
| <b>S No</b>                                                                                                                                                                                                                                                              | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Understand<br>Remember                                                                                                                                                                                                                                                                                                                                   | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2                                 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.06                                                                                                                                                                                                    |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>(                                                                                                                                                                                                                                | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain pitch in riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Understand<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                                       | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2                         | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07                                                                                                                                                                                       |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                           | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain back pitch in riveted joint         Explain back pitch in riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Understand<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                           | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2         | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07                                                                                                                                                                          |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                      | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term mediate joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                           | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07                                                                                                                                                             |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>0                                                                                                                                                                                                                 | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                                 | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07                                                                                                                                                |
| <b>S No</b> 1           2           3           4           5           6           7           8           9           10                                                                                                                                               | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint and riveted joint         Explain the advantages of welded joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07                                                                                                                                   |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                     | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantages of welded joint         Explain the advantages of riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                                                       | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08                                                                                                         |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                                                                               | PART – A (SHORT ANSWER QUESTIC<br>Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantage of riveted joint         Explain the advantage of riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                               | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08                                                                                            |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                                                                         | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantage of welded joint         Explain the disadvantage of welded joint         Explain the disadvantage of riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08                                                                                            |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                   | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                                         | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.09<br>AME012.09<br>AME012.10                                                                  |
| <b>S No</b> 1           2           3           4           5           6           7           8           9           10           11           12           13           14                                                                                           | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantage of welded joint         Explain the disadvantage of riveted joint         Explain about gasket                                                                                                                     | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                                                 | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.09<br>AME012.10                                                                               |
| <b>S No</b><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                                       | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint         Explain about gasket         Classify the types of riveted joints                                                                                                                                                                                                                                                                          | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                                                         | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.09<br>AME012.10<br>AME012.10                                                     |
| <b>S No</b> 1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17                                                                                    | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint         Explain the types of riveted joint         Classify the types of riveted joints         Classify the types of riveted joints                                                                                                                                                                                                                                                                                                                                                                                                                            | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10                                        |
| <b>S No</b> 1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18                                                                         | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantage of welded joint         Explain the disadvantage of riveted joint         Explain bout gasket         Classify the types of rivets         Explain about fullering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                                             | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10<br>AME012.10                           |
| <b>S No</b> 1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         19                                                              | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint         Explain about gasket         Classify the types of rivets         Explain about Fullering         Define fillet welds                                                                                                                                                                                                                                                                                                                                                                   | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                                                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOS<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10              |
| <b>S No</b> 1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20             | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint         Classify the types of riveted joints         Classify the types of rivets         Explain about Fullering         Define fillet welds         Why connected rod bolts are tightened with initial tension greater that                                                                                                                                                                                                                    | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10 |
| S No           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20          | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint         Classify the types of riveted joints         Classify the types of riveted joints         Classify the types of riveted joints         Explain about Fullering         Define fillet welds         Why connected rod bolts are tightened with initial tension greater that external load                                                                                                                                                                                                                                                     | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Understand<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                       | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10 |
| <b>S No</b> 1           2         3           4         5           6         7           8         9           10         11           12         13           14         15           16         17           18         19           20         20                    | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantages of welded joint         Explain the disadvantage of riveted joint         Classify the types of riveted joints         Classify the types of riveted joints         Classify the types of rivets         Explain about gasket         Classify the types of riveted         Define fillet welds         Why connected rod bolts are tightened with initial tension greater that external load                                                                                                                                 | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10 |
| S No<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                         | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain back pitch in riveted joint         Explain uniform strength of riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the advantage of welded joint         Explain the disadvantage of riveted joint         Classify the types of riveted joints         Define fillet welds         Why connected rod bolts are tightened with initial tension greater that external load         Part - B (Long Answer Questions)         Double riveted lap joint is made between 15 mm thick plates. The rivet                                                               | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOs<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10 |
| <b>S No</b> 1           2           3           4           5           6           7           8           9           10           11           12           13           14           15           16           17           18           19           20           1 | PART – A (SHORT ANSWER QUESTIC         Question         Explain the term riveted joint         Explain is caulking and why is it necessary         Explain diagonal pitch in riveted joint         Explain diagonal pitch in riveted joint         Explain margin in riveted joint         Explain pitch in riveted joint         Explain back pitch in riveted joint         Define term welding joint         Difference between welding joint and riveted joint         Explain the disadvantage of welded joint         Explain the disadvantage of riveted joint         Classify the types of riveted joints         Define fillet welds         Why connected rod bolts are tightened with initial tension greater that external load         Part - B (Long Answer Questions)         Double riveted lap joint is made between 15 mm thick plates. The rivet diameterand pitch are 25 mm and 75 mm respectively. If the ultimate stresses | NS)<br>Blooms<br>Taxonomy<br>level<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember<br>Remember                                     | Course<br>Outcomes<br>(COs)<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2<br>CO 2 | Course<br>Learning<br>Outcomes<br>(CLOS<br>AME012.06<br>AME012.06<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.07<br>AME012.08<br>AME012.08<br>AME012.08<br>AME012.00<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10<br>AME012.10 |

|   | minimum force per pitch which will rupture point. If the above joint is subjected to a load such that the factor of safety is 4, find out the                                                                                                                                                          |            |              |                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------------|
|   | actualstresses developed in the plates and the rivets.                                                                                                                                                                                                                                                 |            |              |                        |
| 2 | <ul> <li>a. Sketch any three basic types of welded joints.</li> <li>b. Figure shows an eccentrically loaded welded joint. Determine the fillet weld size. Allowable shear stress in the weld is 80 MPa.</li> </ul>                                                                                     | Understand | CO 2<br>CO 2 | AME012.06<br>AME012.06 |
|   | asshown in Fig. The bracket plate is 25 mm thick. All rivets are to be of the same size. Load on the bracket, P = 50 kN ; rivet spacing, C = 100 mm; load arm, e = 400 mm.Permissible shear stress is 65 MPa and crushing stress is 120 MPa. Determine the size of therivets to be used for the joint. |            |              |                        |
| 4 | a. What are V threads used for fasteners?<br>b. What are the different series of threads and their applications?                                                                                                                                                                                       | Understand | CO 2         | AME012.07              |
| 5 | <ul> <li>a. Compare the welded joint with rivetedjoint?</li> <li>b. Find the size of the weld in Fig. if the permissible shear stress is 80 MPa and the load acting on the connection P=60kN.</li> </ul>                                                                                               | Understand | CO 2         | AME012.07              |
| 6 | A cast iron cylinder head is fastened to a cylinder of bore 500mm with 8 stud bolts. The maximum pressure inside the cylinder is 2 MPa. The stiffness of park kp=3kb. What should be the initial lightening load so that the joint is leak proof at maximum pressure?                                  | Understand | CO 2         | AME012.07              |
| 7 | <ul> <li>a. Derive the expression for the maximum stress induced in weld subjected to torsional loading.</li> <li>b. A cylindrical beam is attached to support by weld as shown in Fig. and is subjected to a bending moment M. Find the maximum stress induced in the weld.</li> </ul>                | Understand | CO 2         | AME012.07              |
| 8 | Fig. shows a plate bracket welded to a steel column loaded eccentrically. assuming that the size of weld $6 \ge 6$ mm, determine the maximum stress induced in the weld.                                                                                                                               | Understand | CO 2         | AME012.07              |

|    | 65 65 150 F=15kN<br>F1 KN<br>F1 KN<br>F2 G<br>F2 G<br>F2 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |      |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
| 9  | <ul> <li>a. Differentiate between a stud, a bolt and a nut.</li> <li>b. The cylinder head of a steam engine with 250mm bore is fastened by eight stud bolts made of 30C8 Steel. Maximum pressure inside the cylinder is 1 MPa. Determine the size of bolts and the approximate tightening stress and torque. Take 20% overload. Assume Sy=300 MPa for bolt material.</li> </ul>                                                                                                                                                                                                                 | Understand | CO 2 | AME012.07 |
| 10 | <ul> <li>a. What are the different types of the stresses induced in bolts? Explain the procedure of designing a bolt subjected to direct tensile load.</li> <li>b. A bracket is fitted to the channel with 4 bolts. The dimension a=b=150mm distance of load from the C.G of the bolt arrangement is 300mm. Find the diameter of the bolts.</li> </ul>                                                                                                                                                                                                                                          | Understand | CO 2 | AME012.08 |
| 11 | <ul> <li>a) What is the difference between caulking and fullering? Explain with the help of neat Sketches.</li> <li>b) Explain the following terms in connection with riveted joints <ol> <li>i. Pitch</li> <li>ii. Back pitch</li> <li>iii. Diagonal pitch</li> <li>iv. Margin</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                          | Understand | CO 2 | AME012.08 |
| 12 | A double riveted lap joint is made between 15mm thick plates. The rivet diameter and pitch are 25mm and 75mm respectively. If the ultimate stresses are 400 MPa in tension and 320 MPa in shear and 640 MPa in crushing, find the minimum force per inch, which will rupture the joint. If the above joint is subjected to a load such that the factor of safety is 4, find out the actual stresses developed in the plates and the rivets.                                                                                                                                                     | Understand | CO 2 | AME012.08 |
| 13 | Two plates 16 mm thick are joined by a double riveted lap joint. The pitch of each row of rivets is 90 mm. The rivets are 25 mm in diameter. The permissible stresses are 140MPa in tension, 80MPa in shear and 160MPa in crushing. Find the efficiency of the joint.                                                                                                                                                                                                                                                                                                                           | Understand | CO 2 | AME012.09 |
| 14 | A double riveted butt joint in which the pitch of the rivets in the outer rows is<br>twice that in the inner rows, connects two 8 mm thick plates with two cover<br>plates each 6 mm thick. The diameter of rivets is 12 mm. Determine the<br>pitches of the rivets in the two rows if the working stresses do not exceed the<br>following limits. Tensile stress in plates = $120 \text{ N/mm2}$ , Shear stress in rivets<br>= $80 \text{ N/mm2}$ , Bearing stress in rivets and plates = $130 \text{ N/mm2}$ , Make a fully<br>dimensioned sketch of the joint by showing at least two views. | Understand | CO 2 | AME012.10 |
| 15 | A triple riveted lap joint with zig-zag riveting is to be designed to connect<br>two plates of 6 mm thickness. Determine the diameter of rivets, pitch of rivets<br>and distance between the rows of rivet. Indicate how the joint will fail.<br>Assume: $\sigma t = 120$ MPa; shear stress = 100 MPa and $\sigma c = 150$ MPa.                                                                                                                                                                                                                                                                 | Understand | CO 2 | AME012.10 |
| 16 | Two plates 18 mm thick are joined by a double riveted lap joint. The pitch of each row of rivets is 80 mm. The rivets are 24 mm in diameter. The permissible stresses are 160 MPa in tension, 75 MPa in shear and 150 MPa in crushing. Find the efficiency of the joint.                                                                                                                                                                                                                                                                                                                        | Understand | CO 2 | AME012.10 |
| 17 | A bracket carrying a load of 15 KN is to be welded as shown in Figure. Find the size of weld required if the allowable shear stress is not to exceed 80 MPa.                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand | CO 2 | AME012.10 |
| 18 | <ul><li>a. What are the advantages and disadvantages of welded joints over riveted joints.</li><li>b. Name the types of riveted and welded joints.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand | CO 2 | AME012.10 |

| 19   | Two plates 16 mm thick are joined by a double riveted lap joint. The pitch                                                     | Understand     | CO 2     | AME012.10   |
|------|--------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------|
|      | of each row of rivets is 90 mm. The rivets are 25 mm in diameter. The                                                          |                |          |             |
|      | permissible stresses are 140 MPa in tension, 80 MPa in shear and 160 MPa                                                       |                |          |             |
|      | in crushing. Find the efficiency of the joint.                                                                                 |                |          |             |
| 20   | Discuss on bolts of uniform strength giving examples of practical                                                              | Understand     | CO 2     | AME012.10   |
|      | applications of such bolts.                                                                                                    |                |          |             |
|      | PART - C (ANALYTICAL QUESTION                                                                                                  | NS)            |          |             |
| 1    | A bracket is fitted to a vertical channel with 5 bolts, three at the top arid two                                              | Understand     | CO 2     | AME012.0    |
|      | at the bottom with all the bolts equally spaced. The value of P=20 kN,                                                         |                |          | 6           |
|      | e=200mm, 11=50mm and 12=250mm. Find the diameter of the bolt.                                                                  |                |          |             |
| 2    | a. What is meant by a bolt of uniform strength?                                                                                | Understand     | CO 2     | AME012.0    |
|      | b. A steam engine cylinder of 300mm effective diameter is subjected to a                                                       |                |          | 6           |
|      | steam pressure of 1.5 N/mm2. The cylinder head is connected by means of 8                                                      |                |          |             |
|      | bolts having yield strength of 320 MPa, and endurance limit of 240 MPa.                                                        |                |          |             |
|      | The bolts are tightened with an initial preload of 1.5 times that of steam                                                     |                |          |             |
|      | load. A soft copper gasket is used to make the joint leak proof. Assuming a                                                    |                |          |             |
|      | fatigue stress concentration factor of 1.4, and factor of safety of 2; determine                                               |                |          |             |
|      | the size of the bolts required.                                                                                                |                |          |             |
| 3    | A double riveted butt joint, in which the pitch of the rivets in the outer rows                                                | Understand     | CO 2     | AME012.06   |
|      | is twice that in the inner rows, connects two 16 mm thick plates with two                                                      |                |          |             |
|      | cover plates each 12 mm thick. The diameter of the rivets is 22 mm.                                                            |                |          |             |
|      | Determine the pitches of the rivets in the two rows if the working stresses                                                    |                |          |             |
|      | are not to exceed the following limits:                                                                                        |                |          |             |
|      | Tensile stress in plates = $100 \text{ MPa}$ , Shear stress in rivets = $75 \text{ MPa}$ and                                   |                |          |             |
|      | bearing Stresses in rivets and plates = $150$ MPa.                                                                             |                |          |             |
|      | Make a fully dimensioned sketch of the joint showing atleast two views.                                                        |                |          |             |
| 4    | A 200 X 150 X 10 mm angle is joined to a frame by two parallel fillet welds                                                    | Understand     | CO 2     | AME012.07   |
|      | along the edge of 200 mm length. If the angle is subjected to a static load of                                                 |                |          |             |
|      | 200 KN, find the length of weld at the top and bottom. The allowable shear                                                     |                |          |             |
|      | stress for static loading may be taken as 75 MPa.                                                                              | TT 1 / 1       | 00.0     | ANTE 012 07 |
| 5    | Discuss the significance of the initial tightening load and the applied load so                                                | Understand     | 002      | AME012.07   |
| 6    | Tar as bolts are concerned.                                                                                                    | I la denoten d | CO 2     | AME012.07   |
| 0    | Two plates of 10 mm unckness each are to be joined by means of a single                                                        | Understand     | 02       | AME012.07   |
|      | stron thickness and efficiency of their Take the working stronger in                                                           |                |          |             |
|      | strap unckness and enciency of the joint. Take the working stresses in tension and shearing as 80 MPa and 60 MPa respectively. |                |          |             |
| 7    | Double riveted len joint is made between 15mm thick plates. Pivet diameter                                                     | Understand     | CO 2     | AME012.07   |
| /    | and pitch are 25mm and 75mm respectively. If LITS are 400 MPa in tention                                                       | Understand     | 02       | AME012.07   |
|      | 320 MPa in shear & 630 MPa in crushing find minimum force for nitch                                                            |                |          |             |
|      | which will replace the joint. If above joint is subjected to load such that                                                    |                |          |             |
|      | factor of safety is 4 find out actual stresses developed in the plate and rivets                                               |                |          |             |
| 8    | Differentiate between (i) lap joint and butt joint and (ii) chain riveting and                                                 | Understand     | CO 2     | AME012.07   |
| 0    | zio-zao rivetino                                                                                                               | Chiderstand    | 002      | 1012.07     |
| 9    | Explain the procedure for designing a longitudinal and circumferential joint                                                   | Understand     | CO 2     | AME012.07   |
|      | for a boiler                                                                                                                   | Chiderstand    | 002      | 1012.07     |
| 10   | What is an eccentric riveted joint? Explain the method adopted for                                                             | Understand     | CO 2     | AME012.0    |
| 10   | designing such a joint?                                                                                                        | Chaorband      |          | 7           |
|      |                                                                                                                                | <u> </u>       | I        | ,           |
|      | DESIGN OF KEYS. COTTERS AND KNUCKLE I                                                                                          | DINTS          |          |             |
|      | PART – A (SHORT ANSWER OUESTION)                                                                                               |                |          |             |
| S No | Ouestion                                                                                                                       | Blooms         | Course   | Course      |
| ~    | × ·····                                                                                                                        | Taxonomy       | Outcomes | Learning    |
|      |                                                                                                                                | level          | (COs)    | Outcomes    |
|      |                                                                                                                                |                |          | (CLOs)      |
| 1    | Define what is a key where it is used                                                                                          | Remember       | CO 3     | AME012.11   |
| 2    | Explain saddle key                                                                                                             | Understand     | CO 3     | AME012.11   |
| 3    | Explain sunk key                                                                                                               | Understand     | CO 3     | AME012.11   |
| 4    | Explain flat key                                                                                                               | Understand     | CO 3     | AME012.12   |
| 5    | Explain feather key                                                                                                            | Understand     | CO 3     | AME012.12   |
| 6    | Explain Kennedy key                                                                                                            | Understand     | CO 3     | AME012.12   |
| 7    | Explain the effect of key way on strength of shaft                                                                             | Remember       | CO 3     | AME012.12   |
| 8    | Explain types of stresses are introduced in a key                                                                              | Remember       | CO 3     | AME012.12   |
| 9    | Write the advantages of key                                                                                                    | Understand     | CO 3     | AME012.13   |
|      |                                                                                                                                |                | -        |             |
| 10   | Explain round key                                                                                                              | Remember       | CO 3     | AME012.13   |

| 11 | Write the applications of key                                                                                                                                                     | Understand      | CO 3     | AME012.13   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------------|
|    |                                                                                                                                                                                   |                 |          |             |
| 12 | What are the stresses induced in the knuckle joint.                                                                                                                               | Understand      | CO 3     | AME012.13   |
| 13 | What is knuckle joint? And explain its applications.                                                                                                                              | Remember        | CO 3     | AME012.13   |
| 14 | Explain about woodruff key                                                                                                                                                        | Understand      | CO 3     | AME012.14   |
| 15 | What is cotter? Give its applications.                                                                                                                                            | Remember        | CO 3     | AME012.14   |
| 16 | Which material is generally used for cotter                                                                                                                                       | Remember        | CO 3     | AME012.14   |
| 17 | Why taper is given to the cotter                                                                                                                                                  | Remember        | CO 3     | AME012.14   |
| 18 | Explain the purpose of Gib in cotter joint                                                                                                                                        | Remember        | CO 3     | AME012.15   |
| 19 | Write the applications of cotter joints                                                                                                                                           | Remember        | CO 3     | AME012.15   |
| 20 | Explain how slipping of cotter is avoided                                                                                                                                         | Remember        | CO 3     | AME012.15   |
|    | Part - B (Long Answer Questions)                                                                                                                                                  |                 |          |             |
| 1  | a. Classify the keys and state their applications.                                                                                                                                | Understand      | CO 3     | AME012.11   |
|    | b.A 45 mm diameter shaft is made of steel with yield strength of 400 MPa.A                                                                                                        |                 |          |             |
|    | parallel key of size 14 mm wide and 9 mm thick made of steel with yield                                                                                                           |                 |          |             |
|    | strength of 340 MPa is to be used. Find the required length of key, if the shaft                                                                                                  |                 |          |             |
|    | is loaded to transmit the maximum permissible torque. Use maximum shear                                                                                                           |                 |          |             |
|    | stress theory and assume a factor of safety of 2.                                                                                                                                 |                 |          |             |
| 2  | a. Where and why the woodruff key is used?                                                                                                                                        | Understand      | CO 3     | AME012.11   |
|    | b.A 30 kW power is transmitted at 240 r.p.m, from 40 mm diameter shaft, by                                                                                                        |                 |          |             |
|    | of the law. For the law, take permissible sheet stress of 60 MDs and                                                                                                              |                 |          |             |
|    | Of the keys. For the keys, take permissible shear stress as of MPa, and Cruching stress as 00 MPa.                                                                                |                 |          |             |
| 2  | Crushing succes as $70$ wir a.                                                                                                                                                    | Understand      | CO 3     | AME012.12   |
| 5  | The pitch circle diameter of the gear is 0.15m. The gear transmits 10kW power                                                                                                     | Understand      | 05       | AMEU12.12   |
|    | at 240 r p m assuming suitable stresses for the materials determine shaft                                                                                                         |                 |          |             |
|    | diameter Key dimensions and Minimum width of the gear                                                                                                                             |                 |          |             |
| 4  | a) How are the keys classified? Draw neat sketches of different keys and their                                                                                                    | Understand      | CO 3     | AME012.13   |
|    | applications.                                                                                                                                                                     | enderstand      | 000      | 11012012.10 |
|    | b) A 15 KW, 960 r.p.m. motor has a mild steel shaft of 40mm diameter and the                                                                                                      |                 |          |             |
|    | extension being 75 mm. The permissible shear and crushing stresses for the                                                                                                        |                 |          |             |
|    | mild steel key are 56 MPa and 112 MPa. Design the keyway in the motor shaft                                                                                                       |                 |          |             |
|    | extension. check the shear strength of the key against the normal strength of the                                                                                                 |                 |          |             |
|    | shaft.                                                                                                                                                                            |                 |          |             |
| 5  | a. Sketch the keys i) Wood ruff key ii) Kennedy key iii) Gib head key                                                                                                             | Understand      | CO 3     | AME012.13   |
|    | b. Determine the required length of a square key if the key and shaft are to be                                                                                                   |                 |          |             |
|    | made of same material and of equal strength.                                                                                                                                      |                 |          |             |
| 6  | Prove that a square key is equally strong in shear and compression                                                                                                                | Understand      | CO 3     | AME012.13   |
| 7  | Sketch any two sunk key diagrams and explain the design procedure.                                                                                                                | Understand      | CO 3     | AME012.14   |
| 8  | a. Name the modes of failure of a cotter in a cotter joint.                                                                                                                       | Remember        | CO 3     | AME012.14   |
|    | b) Specify the different types of shafts giving their applications.                                                                                                               |                 |          |             |
| 9  | a. Describe the design procedure of a gib and cotter joint.                                                                                                                       | Understand      | CO 3     | AME012.14   |
|    | b. What are the applications of a cotter joint?                                                                                                                                   |                 |          |             |
| 10 | Design a knuckle joint to transmit 140 kN, with permissible stresses in tension;                                                                                                  | Understand      | CO 3     | AME012.14   |
|    | shear and compression are 75 Mpa ; 60 Mpa and 150 Mpa respectively.                                                                                                               |                 |          |             |
| 11 |                                                                                                                                                                                   | TT. J (         | <u> </u> |             |
| 11 | Design a cotter joint to connect a piston rod to the crosshead. The maximum                                                                                                       | Understand      | CO 3     | AME012.14   |
|    | steam pressure on the piston rod is 35 KN. Assuming that all the parts are                                                                                                        |                 |          |             |
|    | made of the same material having the following permissible stresses: $=50$                                                                                                        |                 |          |             |
| 10 | MPa; $t = 60$ MPa and $\sigma = 90$ MPa                                                                                                                                           | TT. J. material | 00.1     | ANE 012 14  |
| 12 | Design a knuckle joint to connect two mild steel bars under a tensile load of 25                                                                                                  | Understand      | CO 3     | AME012.14   |
|    | kiv. The anowable stresses are of wira in tension, so wira in shear and so wira                                                                                                   |                 |          |             |
| 12 | In clushing.                                                                                                                                                                      | Understand      | CO 2     | AME012 14   |
| 15 | A knuckle joint is required to withstand a tensile foad of 25 km. Design the joint is the strength of $50 \text{ MD}_{\odot} = 40 \text{ MD}_{\odot} = 1 = 70 \text{ MD}_{\odot}$ | Understand      | 003      | AMEU12.14   |
|    | 11 the permissible stresses are: $=36$ MPa; $t = 40$ MPa and $6 = 70$ MPa                                                                                                         |                 |          |             |
| 14 | Design and draw a sleeve and cotter joint to connect two rods to transmit                                                                                                         | Understand      | CO 3     | AME012.15   |
|    | maximum tensile load of 75 kN. Assume sleeve cotter and rods are made of                                                                                                          |                 | -        |             |
|    | same material and design stresses in the material are 65 Mpa in tension; 130                                                                                                      |                 |          |             |
|    | MPa in crushing and 50 Mpa in shear.                                                                                                                                              |                 |          |             |
| 15 | Design a knuckle joint to transmit 140 kN, with permissible stresses in tension;                                                                                                  | Understand      | CO 3     | AME012.15   |
|    | shear and compression are 75 Mpa ; 60 Mpa and 150 Mpa respectively.                                                                                                               |                 |          |             |
| 16 | Design a cotter joint to connect two mild steel rods for a pull of 30 kN. The                                                                                                     | Understand      | CO 3     | AME012.15   |
|    | maximum permissible stresses are 55 MPa in tension; 40 MPa in shear and 70                                                                                                        |                 |          |             |

|       | MPa in crushing. Draw a neat sketch of the joint designed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |            |             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------|
| 17    | Design a cotter joint to withstand an axial load varying from 50kN in tension to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand          | CO 3       | AME012.15   |
|       | 50kN in compression. The allowable for the steel used in the joint are 60Mpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |             |
|       | in tension; 75Mpa in crushing; 48Mpa in shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |            |             |
| 18    | Design a cotter joint to withstand an axial load varying from 60 kN in tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand          | CO 3       | AME012.15   |
|       | to 60kN in compression. The allowable for the steel used in the joint are 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |             |
|       | Mpa in tension; 75 Mpa in crushing; 48 Mpa in shear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |            |             |
| 19    | Design a knuckle joint to transmit 150 kN, with permissible stresses in tension;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Understand          | CO 3       | AME012.15   |
| • •   | shear and compression are 75 Mpa; 60 Mpa and 150 Mpa respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | ~ ~ ~      |             |
| 20    | Design a spigot and socket joint to connect two rods of 30 C8 steel to carry an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand          | CO 3       | AME012.15   |
|       | axial tensile and compressive load of 10 kN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       | statut on the function of semicons of the semi |                     |            |             |
|       | ← <i>□ □ □ □ □ □ □ □ □ □</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       | h h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       | PART - C (ANALYTICAL QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>TT 1</b> . 1     | <b>a a</b> | 43 (5010.10 |
| 1     | A shall 50 mm diameter transmits power at maximum shear stress of 63 MPa.<br>Find the length of a 20mm wide key required to mount a pulley on the sheft co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand          | CO 3       | AME012.13   |
|       | that the stress in the key does not exceed 42MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |             |
| 2     | A steel shaft has a diameter of 25 mm. The shaft rotates at a speed of 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Understand          | CO 3       | AME012 13   |
| 2     | r.p.m. and transmits 30 kw through a gear. The tensile and vield strength of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onderstand          | 003        | 71012012.15 |
|       | material of shaft are 650 MPa and 353 MParespectively. Taking a factor of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |            |             |
|       | safety 3, select a suitable key for the gear. Assume that the key and shaft are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
|       | made of the same material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |            |             |
| 3     | Design a cotter joint to connect a piston rod to the crosshead. The maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand          | CO 3       | AME012.14   |
|       | steam pressure on the<br>piston rod is 35 kN. Assuming that all the parts are made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |            |             |
|       | of the same material having the following<br>permissible stresses: $\sigma 1 = 50$ MPa ; $\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |
| 4     | $= 60 \text{ MPa}$ and $\sigma c = 90 \text{ MPa}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>TT 1</b> . 1     | <u> </u>   |             |
| 4     | Two rod ends of a pump are joined by means of a cotter and spigot and socket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand          | CO 3       | AME012.14   |
|       | at the ends. Design the joint for all axial load of 100 kN which alternately changes from tangila to compressive. The allowable stresses for the material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |            |             |
|       | used are 50 MPa in tension 40 MPa in shear and 100 MPa in crushing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |            |             |
| 5     | Design and draw a cotter foundation bolt to take a load of 90 kN. Assume the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand          | CO 3       | AME012 15   |
| 5     | permissible stresses as follows : $\sigma t = 50$ MPa, $\tau = 60$ MPa and $\sigma c = 100$ MPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chiefbuild          | 005        | 11012012.10 |
| 6     | The pull in the tie rod of a roof truss is 44 kN. Design a suitable adjustable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand          | CO 3       | AME012.15   |
|       | Screw joint. The permissible tensile and shear stresses are 75 MPa and 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |            |             |
|       | MPa respectively. Draw full size two suitable views of the joint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |            |             |
| 7     | Sketch two views of a knuckle joint and write the equations showing the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand          | CO 3       | AME012.15   |
|       | strength of joint for the most probable modes of failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |            |             |
| 8     | Why gibs are used in a cotter joint? Explain with the help of a neat sketch the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand          | CO 3       | AME012.15   |
|       | use of single and double gib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I Indonator 1       | <u> </u>   | AME012 15   |
| 9     | maximum permissible stresses are 55 MPa in tension : 40 MPa in shear and 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Understand          | 0.03       | AMEU12.15   |
|       | MPa in crushing. Draw a neat sketch of the joint designed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |            |             |
| 10    | The big end of a connecting rod is subjected to a load of 40 kN. The diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand          | CO 3       | AME012.15   |
|       | of the circular partadjacent to the strap is 50 mm. Design the joint assuming the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |            |             |
|       | permissible tensile stress in the strap as 30 MPa and permissible shearstress in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |             |
|       | the cotter and gib as 20 MPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |            |             |
|       | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |            |             |
|       | DESIGN OF SHAFTS AND SHAFTS COUPLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS                  |            |             |
| C NT- | PAKT – A (SHOKT ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Discourse           | Com        | Comme       |
| 2 INO | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI00MS<br>Taxonomy  | Outcomes   | Learning    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l axononiy<br>Jevel | (COe)      | Outcomes    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,001              | (003)      | (CLOs)      |
| 1     | Define shaft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remember            | CO 4       | AME012.16   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |             |

| 3  | Explain the materials used for making shafts                                                                                                                                                                                        | Remember   | CO 4 | AME012.16 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
| 4  | Define hollow shafts                                                                                                                                                                                                                | Remember   | CO 4 | AME012.16 |
| 5  | Define equivalent bending moment                                                                                                                                                                                                    | Remember   | CO 4 | AME012.16 |
| 6  | Define equivalent twisting moment                                                                                                                                                                                                   | Remember   | CO 4 | AME012.17 |
| 7  | Define coupling                                                                                                                                                                                                                     | Remember   | CO 4 | AME012.17 |
| 8  | Explain classification coupling                                                                                                                                                                                                     | Remember   | CO 4 | AME012.17 |
| 9  | Explain functions of coupling                                                                                                                                                                                                       | Remember   | CO 4 | AME012.17 |
| 10 | Write the applications of coupling                                                                                                                                                                                                  | Remember   | CO 4 | AME012.18 |
| 11 | Explain about universal coupling                                                                                                                                                                                                    | Remember   | CO 4 | AME012.18 |
| 12 | Explain about bushed pin flexible coupling                                                                                                                                                                                          | Remember   | CO 4 | AME012.18 |
| 13 | Write merits and demerits bushed pin flexible coupling                                                                                                                                                                              | Remember   | CO 4 | AME012.18 |
| 14 | Define clutch                                                                                                                                                                                                                       | Remember   | CO 4 | AME012.18 |
| 15 | Define rigid coupling                                                                                                                                                                                                               | Remember   | CO 4 | AME012.19 |
| 16 | Write the difference between shaft and axle                                                                                                                                                                                         | Remember   | CO 4 | AME012.19 |
| 17 | Define torsional rigidity                                                                                                                                                                                                           | Remember   | CO 4 | AME012.19 |
| 18 | Define lateral rigidity                                                                                                                                                                                                             | Remember   | CO 4 | AME012.20 |
| 19 | Explain causes for failure of shaft                                                                                                                                                                                                 | Remember   | CO 4 | AME012.20 |
| 20 | Define transmission types of shaft                                                                                                                                                                                                  | Remember   | CO 4 | AME012.20 |
|    | Part - B (Long Answer Questions)                                                                                                                                                                                                    |            |      | •         |
| 1  | A steel spindle transmits 4 kW at 800 r.p.m. The angular deflection should not exceed $0.25^{\circ}$ per metre of the spindle. If the modulus of rigidity for the material of the spindle 84GPa . find the diameter of the spindle. | Understand | CO 4 | AME012.16 |
| 2  | A 600 mm diameter pulley driven by a horizontal belt transmits power to a 200 mm diameter pinion. The pulley has a mass of 90 kg, $Km = 2$ , $Kt = 1.5$ and                                                                         | Understand | CO 4 | AME012.16 |
|    | allowable shear stress of the material is 40 MPa. Find the diameter of the shaft.                                                                                                                                                   |            | ~~ : |           |
| 3  | A shaft is supported by two bearings placed 1 m apart. A 600 mm diameter                                                                                                                                                            | Understand | CO 4 | AME012.16 |
|    | pulley is mounted at a distance of 300 mm to the right of left hand bearing and                                                                                                                                                     |            |      |           |
|    | this drives a pulley directly below it with the help of belt having maximum                                                                                                                                                         |            |      |           |
|    | left of right hand bearing and is driven with the halp of electric motor and halt                                                                                                                                                   |            |      |           |
|    | which is placed horizontally to the right. The angle of contact for both the                                                                                                                                                        |            |      |           |
|    | which is placed horizontary to the right. The angle of contact for both the nullew is $180^{\circ}$ and $\mu = 0.24$ . Determine the suitable diameter for a solid shaft.                                                           |            |      |           |
|    | allowing working stress of 63 MPa in tension and 42 MPa in shear for the                                                                                                                                                            |            |      |           |
|    | material of shaft. Assume that the torque on one pulley is equal to that on the                                                                                                                                                     |            |      |           |
|    | other pulley.                                                                                                                                                                                                                       |            |      |           |
| 4  | A shaft made of mild steel is required to transmit 100 kW at 300 r.p.m.                                                                                                                                                             | Understand | CO 4 | AME012.17 |
|    | Thesupported length of the shaft is 3 metres. It carries two pulleys each                                                                                                                                                           |            | 00.  |           |
|    | weighing 1500 N supported at adistance of 1 metre from the ends respectively.                                                                                                                                                       |            |      |           |
|    | Assuming the safe value of stress, determine the diameter of the shaft.                                                                                                                                                             |            |      |           |
| 5  | A shaft is subjected to loads as shown in Fig. Gear C is connected to the other                                                                                                                                                     | Understand | CO 4 | AME012.18 |
|    | gear such that 50 kW is transmitted at 100 r.p.m. The pressure angle of the                                                                                                                                                         |            |      |           |
|    | involute gear teeth is $20^{\circ}$ . The ratio of belt tensions for pulley A is 2:1, the                                                                                                                                           |            |      |           |
|    | diameter of pulley being 750 mm. the sprocket B is 500 mm diameter with                                                                                                                                                             |            |      |           |
|    | negligible tension in the chain on the slack side. The diameter of gear $C$ is                                                                                                                                                      |            |      |           |
|    | 300mm. The power transmitted by chain drive is 20 kW, the remaining being                                                                                                                                                           |            |      |           |
|    | transmitted by the belt drive. Find diameter of the shaft if F.S=3, $K_m = 1.5$ , $K_t =$                                                                                                                                           |            |      |           |
|    | 1.2 and $S_y = 350$ MPa for shaft material.                                                                                                                                                                                         |            |      |           |
|    |                                                                                                                                                                                                                                     |            |      |           |
|    | electry $\rightarrow$                                                                                 |            |      |           |
|    |                                                                                                                                                                                                                                     |            |      |           |
|    |                                                                                                                                                                                                                                     |            |      |           |
|    |                                                                                                                                                                                                                                     |            |      |           |
|    |                                                                                                                                                                                                                                     |            |      |           |
| 6  | Calculate the diameter of the solid circular shaft shown in Fig. to transmit 45                                                                                                                                                     | Understand | CO 4 | AME012.18 |
|    | KWat1000rpmthepressureangleoftheinvolutebevelandspurgears is $20^{\circ}$ .                                                                                                                                                         |            |      |           |
|    | Diameter of bevel gear $C=500$ mm and the diameter of spur pinion                                                                                                                                                                   |            |      |           |
|    | D=300mm. Assume complete power being transmitted and safe shear stress for                                                                                                                                                          |            |      |           |
|    | shaft equal to 60 MPa.                                                                                                                                                                                                              |            |      |           |
| 7  | Compute the diameter of a solid shaft which has to transmit 16kW power at                                                                                                                                                           | Understand | CO 4 | AME012.18 |
|    | 300rpm.Ultimate shear stress per shaft material is 35oN/mm2 and factor of                                                                                                                                                           |            |      |           |
|    | safety for design is 6. If a hollow shaft replaces the solid shaft, find the inside                                                                                                                                                 |            |      |           |
|    | and outside diameters if the ratio is 0.5.                                                                                                                                                                                          |            |      |           |
| 8  | An electric motor drives a machine through a pair of spur gears. The pinion is                                                                                                                                                      | Understand | CO 4 | AME012.18 |
|    | mounted on motor shaft and overhangs by 200 mm from the                                                                                                                                                                             |            |      |           |

| r  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1          |      |           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
|    | nearestBearing. Thepinionhas20teethof10mmmoduleand20 <sup>o</sup> involuteprofile Design the motor shaft to transmit 15 kW at 1200 rpm. Use safe shear stress value of 400 MPa, $K_m = 1.2$ and $K_r = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |      |           |
| 9  | Design a hollow shaft required to transmit 12 MW at a speed of 300 rpm. The maximum shear stress allowed in the shaft is 80 MPa and the ratio of inner diameter to outer diameter 0.75.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand | CO 4 | AME012.18 |
| 10 | How is the shaft designed when it is subjected to twisting moment only?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand | CO 4 | AME012.18 |
| 11 | Design a shaft to transmit power from an electric motor to a lathe headstock through a pulley by means of a belt drive. The pulley weighs 200N and is located at 100mm from the centre of the bearing. Diameter of the pulley 200mm. Maximum power transmitted is 1.5HP at 120 rpm. Angle of lap of belt 1800. Coefficient of friction between belt and pulley 0.3. Shock factor in bending 1.5 shock factors in twisting 2.0. Allowable shear stress in the shaft 35N/mm2.                                                                                                                                                                                         | Understand | CO 4 | AME012.18 |
| 12 | In an axial flow rotary compressor, the shaft is subjected to maximum twisting moment of 1500 N-m and a maximum bending of 3000 N-m. Neglecting the axial load on the shaft determine the diameter of the shaft, if the allowable shear stress is 45 N/mm <sup>2</sup> . Assume Kb=1.5 and Kt =1.2 If the shaft is to be a hollow one with di / do= 0.6, what will be the material saving in the hollow shaft. It is subjected to the same loading and of the same material as the solid shaft.                                                                                                                                                                     | Understand | CO 4 | AME012.19 |
| 13 | Compare the weight, strength, and stiffness of a hallow shaft of the same external diameter as that of solid shaft. The inside diameter of the hallow shaft being 0.6 times the external diameter. Both the shafts have same material and length.                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand | CO 4 | AME012.19 |
| 14 | Compute the diameter of a solid shaft which has to transmit 16k Wpower at 300 rpm. Ulti mate shear stress per shaft material is 350 N/mm <sup>2</sup> and factor of safety for design is 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand | CO 4 | AME012.19 |
| 15 | A shaft is supported on bearings A and B, 800 mm between centres. A 20°straight tooth spur gear having 600 mm pitch diameter, is located 200 mm to the right of the left hand bearing A, and a 700 mm diameter pulley is mounted 250 mm towards the left of bearing B. The gear is driven by a pinion with a downward tangential force while the pulley drives a horizontal belt having 180° angle of wrap. The pulley also serves as a flywheel and weighs 2000 N. The maximum belt tension is 3000 N and the tension ratio is 3:1. Determine the maximum bending moment and the necessary shaft diameter if the allowable shear stress of the material is 40 MPa. | Understand | CO 4 | AME012.20 |
| 16 | A mild steel shaft transmits 20 kW at 200 r.p.m. It carries a central load of 900N and is simply supported between the bearings 2.5 metres apart. Determine the size of the shaft, if the allowable shear stress is 42 MPa and the maximum tensile or compressive stress is not to exceed56 MPa. What size of the shaft will be required, if it is subjected to gradually applied loads?                                                                                                                                                                                                                                                                            | Understand | CO 4 | AME012.20 |
| 17 | A hollow shaft of 0.5 m outside diameter and 0.3 m inside diameter is used to drive a propeller of a marine vessel. The shaft is mounted on bearings 6 metre apart and it transmits5600 kW at 150 r.p.m. The maximum axial propeller thrust is 500 kN and the shaft weighs 70 kN. Determine : 1. The maximum shear stress developed in the shaft, and 2. The angular twist between the bearings.                                                                                                                                                                                                                                                                    | Understand | CO 4 | AME012.20 |
| 18 | Design a rigid muff coupling. Use C.I for the muff. The power transmitted is 25kW at 300 r.p.m. Sut = 200 MPa, F.S = 6, use 30C8 steel for the shaft consider Sy = 330 MPa and F.S = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Understand | CO 4 | AME012.20 |
| 19 | Design a bushed pin type of flexible coupling to connect the motor shaft and pump shaft of 50 mm and 40 mm diameter respectively when 15kW power is to be transmitted at 1200 r.p.m. the permissible bearing pressure for pinion 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                | Understand | CO 4 | AME012.20 |

|    | MPa.                                                                                                                                                                             |            |      |             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------------|
| 20 | Design and make a neat dimensioned sketch of a muff coupling which is used                                                                                                       | Understand | CO 4 | AME012.20   |
|    | to connect two steel shafts transmitting 40 kW at 350 r.p.m. The material for                                                                                                    |            |      |             |
|    | the shafts and key is plain carbon steel for which allowable shear and crushing                                                                                                  |            |      |             |
|    | stresses may be taken as 40 MPa and 80 MPa respectively. The material for the                                                                                                    |            |      |             |
|    | muff is cast iron for which the allowable shear stress may be assumed as 15                                                                                                      |            |      |             |
|    | MPa.                                                                                                                                                                             |            |      |             |
|    | PART - C (ANALYTICAL QUESTIONS)                                                                                                                                                  |            |      |             |
| 1  | A steel spindle transmits 4 kW at 800 r.p.m. The angular deflection should not                                                                                                   | Understand | CO 4 | AME012.15   |
|    | exceed 0.25° per metre of the spindle. If the modulus of rigidity for the                                                                                                        |            |      |             |
|    | material of the spindle is 84 GPa, find the diameter of the spindle and the shear                                                                                                |            |      |             |
|    | stress induced in the spindle.                                                                                                                                                   |            | ~~ ( |             |
| 2  | Compare the weight, strength and stiffness of a hollow shaft of the same                                                                                                         | Understand | CO 4 | AME012.15   |
|    | external diameter as that of solid shaft. The inside diameter of the hollow shaft                                                                                                |            |      |             |
|    | being half the external diameter. Both the shafts have the same material and                                                                                                     |            |      |             |
| 2  | ICHYMI.<br>A line shaft is to transmit 30 kW at 160 r.n.m. It is driven by a motor placed                                                                                        | Understand | CO 4 | AME012.16   |
| 5  | A fine shart is to transmit 50 kw at 100 1.p.m. it is driven by a motor placed                                                                                                   | Understand | CO 4 | AME012.10   |
|    | the end of the shaft. The tension in the tight side of the belt is 2.5 times that in                                                                                             |            |      |             |
|    | the slack side and the centre of the nulley over-hangs 150 mm beyond the                                                                                                         |            |      |             |
|    | centre line of the end bearing. Determine the diameter of the shaft if the                                                                                                       |            |      |             |
|    | allowable shear stress is 56 MPa and the nulley weighs 1600 N                                                                                                                    |            |      |             |
| 4  | The internal diameter of a hollow shaft is $2/3$ rd of its external diameter                                                                                                     | Understand | CO 4 | AME012.17   |
|    | Compare the strength and stiffness of the shaft with that of a solid shaft of the                                                                                                | enderstand | 004  | 11012012.17 |
|    | same material.                                                                                                                                                                   |            |      |             |
| 5  | Under what circumstances are hollow shafts preferred over solid shafts? Give                                                                                                     | Understand | CO 4 | AME012.18   |
|    | any two examples where hollow shafts are used. How they are generally                                                                                                            |            |      |             |
|    | manufactured?                                                                                                                                                                    |            |      |             |
| 6  | A shaft is required to transmit 1 MW power at 240 r.p.m. The shaft must                                                                                                          | Understand | CO 4 | AME012.18   |
|    | not twist more than 1 degree on a length of 15 diameters. If the modulus of                                                                                                      |            |      |             |
|    | rigidity for material of the shaft is 80 GPa, find the diameter of the shaft and                                                                                                 |            |      |             |
|    | shear stress induced.                                                                                                                                                            |            | ~~ ( |             |
| 1  | A marine type flange coupling is used to transmit 3.75 MW at 150 r.p.m. The                                                                                                      | Understand | CO 4 | AME012.19   |
|    | allowable shear stress in the shaft and bolts may be taken as 50 MPa.                                                                                                            |            |      |             |
| 0  | An universal coupling is used to connect two mild steel shefts transmitting a                                                                                                    | Understand | CO 4 | AME012 10   |
| 0  | An universal coupling is used to connect two initial steel sharts transmitting a torque of $6000 \text{ N}_{\text{-m}}$ . Assuming that the shafts are subjected to torsion only | Understand | CO 4 | AME012.19   |
|    | find the diameter of the shaft and the pin. The allowable shear stresses for the                                                                                                 |            |      |             |
|    | shaft and pin may be taken as 55 MPa and 30 MPa respectively.                                                                                                                    |            |      |             |
| 9  | Design a compression coupling for a shaft to transmit 1300 N-m. The                                                                                                              | Understand | CO 4 | AME012.19   |
|    | allowable shear stress for theshaft and key is 40 MPa and the number of bolts                                                                                                    |            |      |             |
|    | connecting the two halves are 4. The permissible tensile stress for the bolts                                                                                                    |            |      |             |
|    | material is 70 MPa. The coefficient of friction between the muff and the shaft                                                                                                   |            |      |             |
|    | surface may be taken as 0.3.                                                                                                                                                     |            |      |             |
| 10 | Write short note on the splined shaft covering the points of application, different                                                                                              | Understand | CO 4 | AME012.20   |
|    | types and method of manufacture.                                                                                                                                                 |            |      |             |

|      | UNIT-V                                                                                                                                                                 |                |        |                      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------------------|
|      | DESIGN OF SPRINGS                                                                                                                                                      |                |        |                      |
|      | PART – A (SHORT ANSWER QUESTIONS)                                                                                                                                      |                |        |                      |
| S No | Question                                                                                                                                                               | Blooms         | Course | Course               |
|      |                                                                                                                                                                        | level          | (COs)  | Learning<br>Outcomes |
|      |                                                                                                                                                                        |                | (003)  | (CLOs)               |
| 1    | Define spring                                                                                                                                                          | Remember       | CO 5   | AME012.21            |
| 2    | Explain functions of spring                                                                                                                                            | Remember       | CO 5   | AME012.21            |
| 3    | Explain why the circular cross section used mostly for spring                                                                                                          | Remember       | CO 5   | AME012.22            |
| 4    | Define flat springs                                                                                                                                                    | Remember       | CO 5   | AME012.22            |
| 5    | Define spiral springs                                                                                                                                                  | Remember       | CO 5   | AME012.22            |
| 6    | Define helical springs                                                                                                                                                 | Understand     | CO 5   | AME012.22            |
| 7    | Define spring index                                                                                                                                                    | Remember       | CO 5   | AME012.23            |
| 8    | Define free length                                                                                                                                                     | Remember       | CO 5   | AME012.23            |
| 9    | Define solid length                                                                                                                                                    | Understand     | CO 5   | AME012.23            |
| 10   | Define active number coils                                                                                                                                             | Remember       | CO 5   | AME012.23            |
| 11   | Define the phenomenon of surging in springs                                                                                                                            | Remember       | CO 5   | AME012.23            |
| 12   | Explain about ground ends                                                                                                                                              | Understand     | CO 5   | AME012.23            |
| 13   | Explain about square ends                                                                                                                                              | Remember       | CO 5   | AME012.24            |
| 14   | Define methods to avoid surge in springs                                                                                                                               | Understand     | CO 5   | AME012.24            |
| 15   | Define leaf springs                                                                                                                                                    | Remember       | CO 5   | AME012.24            |
| 16   | Explain why leaf springs are made in layers instead of single plate                                                                                                    | Remember       | CO 5   | AME012.24            |
| 17   | Define helical torsion spring                                                                                                                                          | Remember       | CO 5   | AME012.25            |
| 18   | Explain spiral torsion spring                                                                                                                                          | Remember       | CO 5   | AME012.25            |
| 19   | Define Wahls factor                                                                                                                                                    | Remember       | CO 5   | AME012.25            |
| 20   | Define spring rate                                                                                                                                                     | Remember       | CO 5   | AME012.25            |
|      | Part - B (Long Answer Questions)                                                                                                                                       |                |        |                      |
| 1    | A railway wagon of mass 20000 kg moving with a velocity of 2 m/s is brought                                                                                            | Understand     | CO 5   | AME012.22            |
|      | to rest by two buffers of a spring of diameter 300 mm. The maximum deflection of the spring is 200 mm, permissible shear stress is 600 MPa. Find                       |                |        |                      |
|      | the dimensions of each spring.                                                                                                                                         |                |        |                      |
| 2    | Design a close coiled helical spring subjected to a tensile load of magnitude                                                                                          | Understand     | CO 5   | AME012.22            |
|      | varying from 2500 N to 3000 N. The axial deflection of spring for this range of                                                                                        |                |        |                      |
|      | load is 6.5 mm. Design the spring, talking the spring index as 6 and the safe                                                                                          |                |        |                      |
| 2    | shear stress for material of the spring equal to 465 MPa.                                                                                                              | I In danatan d | CO 5   | AME012.22            |
| 3    | A load of 5 kin is dropped from a neight of 50 mm axially on the spring of a wire of diameter 12 mm spring index equal to 6 and the number of active coils             | Understand     | 05     | AMEU12.22            |
|      | as 8. Find the stress induced in the spring                                                                                                                            |                |        |                      |
|      | I B                                                                                                                                                                    |                |        |                      |
| 4    | A helical spring is subjected to a continuously varying load. A number 7 oil                                                                                           | Understand     | CO 5   | AME012.22            |
|      | tempered wire is used with the mean diameter of the coil as 26 mm. The                                                                                                 |                |        |                      |
|      | maximum and minimum force acting on the spring is 400 N and 260 N                                                                                                      |                |        |                      |
|      | respectively and deflection during units variation is offlin. Find the factor of safety and number of active turns. For No. 7 wire oil tempered $S_{-} = 1400MPa$      |                |        |                      |
|      | safety and number of active turns. For No. 7 whe on tempered $S_u = 1400$ km a,<br>$S_{vs} = 0.4 \text{ S}_n$ , $S_{es} = 0.23 \text{ S}_n$ and $d = 4.5 \text{ mm}$ . |                |        |                      |
| 5    | A helical compression spring carries a fluctuating load varying from 428 N to                                                                                          | Understand     | CO 5   | AME012.23            |
|      | 642 N.                                                                                                                                                                 |                |        |                      |
|      | The spring index is 6 and factor of safety is 1.5.                                                                                                                     |                |        |                      |
|      | $S_{ys}$ = 648 MPa, $S_{es}$ = 3/5 MPa.                                                                                                                                |                |        |                      |
|      | the number of effective turns if deflection due to variation in load is 4mm                                                                                            |                |        |                      |
| 6    | Design the cantilever leaf spring to absorb 600 N.m energy without exceeding                                                                                           | Understand     | CO 5   | AME012.23            |
|      | a deflection of 150 mm and permissible stress of 800 MPa. The effective length                                                                                         |                |        |                      |
|      | of the spring is 500 mm. E=0.2 x 10 <sup>6</sup> MPa                                                                                                                   |                |        |                      |
| 7    | A Close coiled helical compression spring is used in the spring loaded safety                                                                                          | Understand     | CO 5   | AME012.23            |
|      | valve of 80mm diameter. The blow off pressure is 1.4 MPa and maximum lift is                                                                                           |                |        |                      |
|      | 500 MPa Spring index is 6. The normal pressure inside the boiler is 1.00 MPa                                                                                           |                |        |                      |

|     | and G= $0.84 \times 10^5$ MPa.                                                                                                                              |              |      |              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|--------------|
| 0   | Design the spring                                                                                                                                           | Un donatan d | CO 5 | AME012.22    |
| 0   | weighed is 1000N Length of the scale is 100mm and the spring index is 5 The                                                                                 | Understand   | 05   | AMEU12.25    |
|     | material has the maximum permissible shear stress of 600 MPa and $G=0.8 \text{ x}$                                                                          |              |      |              |
|     | $10^5$ MPa.                                                                                                                                                 |              |      |              |
| 9   | The blow off pressure for a safety valve is 1.2 MPa with the maximum lift of                                                                                | Understand   | CO 5 | AME012.23    |
|     | the valve as 10 mm. The valve of diameter 69 mm is loaded with a spring of                                                                                  |              |      |              |
|     | spring index 5.5andaninitial compression of 40mm. Maximum                                                                                                   |              |      |              |
|     | Design the spring                                                                                                                                           |              |      |              |
| 10  | A helical compression spring is subjected to a load varying between 800 and                                                                                 | Understand   | CO 5 | AME012.23    |
| 10  | 1500 N. The material used is oil tempered cold drawn wire having                                                                                            |              | 005  | 111112012120 |
|     | Sys = 700 MPa and $Ses = 356$ MPa. Find the diameter of the wire and the                                                                                    |              |      |              |
|     | number of coils if C=5 and N=2.5                                                                                                                            |              |      |              |
| 11  | A close coiled helical compression spring has a mean coil diameter of 60 mm                                                                                 | Understand   | CO 5 | AME012.23    |
|     | and the diameter of the wire is 10mm. Number of active and inactive coil turns                                                                              |              |      |              |
|     | is 11 and 2 respectively. Free length of the spring is 210mm. Decide the                                                                                    |              |      |              |
|     | the maximum load                                                                                                                                            |              |      |              |
|     | Use F.S=1.5,Sys=700MPaandSes= 1360 MPa.                                                                                                                     |              |      |              |
| 12  | a) A helical spring is subjected to loads ranging from 2kN to 2.5kN. The axial                                                                              | Understand   | CO 5 | AME012.24    |
|     | compression of the spring over the above load range is approximately 5 mm.                                                                                  |              |      |              |
|     | Assume Spring-index of 6, design the spring.                                                                                                                |              |      |              |
| 12  | b) What is nipping in a leaf spring? Discuss its role.                                                                                                      | Understand   | CO 5 | AME012.24    |
| 15  | N at its centre. The spring has 3 extra full length leaves and 13 graduated                                                                                 | Understand   | 05   | AMEU12.24    |
|     | leaves with a central band of 120mm wide. All the leaves are to be stressed                                                                                 |              |      |              |
|     | equally without exceeding 450MPa, when fully loaded. The total depth of                                                                                     |              |      |              |
|     | spring is twice the width. If the young's modulus is 210Gpa. Determine                                                                                      |              |      |              |
|     | i. The thickness and width of leaves.                                                                                                                       |              |      |              |
|     | ii. The nip to be provided for pre-stressing.                                                                                                               |              |      |              |
| 1.4 | 111. The load exerted on the clipping bolts after the spring is assembled.                                                                                  | Understand   | CO 5 | AME012.25    |
| 14  | 50mm diameter. The spring undergoes a deflection of 40 mm under the load                                                                                    | Understand   | 05   | AME012.23    |
|     | Determine the diameter of the wire and the number of turns required, Use C-60                                                                               |              |      |              |
|     | steel with a factor of safety 2.                                                                                                                            |              |      |              |
| 15  | A compression coil spring made of an alloy steel is having the following                                                                                    | Understand   | CO 5 | AME012.25    |
|     | Specifications:                                                                                                                                             |              |      |              |
|     | Mean diameter of $coil = 50$ mm;<br>Wire diameter = 5 mm;                                                                                                   |              |      |              |
|     | Number of active coils = $20$                                                                                                                               |              |      |              |
|     | If this spring is subjected to an axial load of 500 N; calculate the maximum                                                                                |              |      |              |
|     | shear stress(neglect the curvature effect) to which the spring material is                                                                                  |              |      |              |
| L . | subjected.                                                                                                                                                  |              |      |              |
| 16  | Design a spring for a balance to measure 0 to 1000 N over a scale of length80                                                                               | Understand   | CO 5 | AME012.25    |
|     | min. The spring is to be enclosed in a casing of 25 mm diameter. The approximate number of turn is 30. The modulus of rigidity is $85 \text{ kN/mm}^2$ Alas |              |      |              |
|     | calculate the maximum shear stress induced.                                                                                                                 |              |      |              |
| 17  | Design a helical compression spring for a maximum load of 1000 N for a                                                                                      | Understand   | CO 5 | AME012.25    |
|     | deflection of 25 mm using the value of spring index as 5. The maximum                                                                                       |              | -    |              |
|     | permissible shear stress for spring wire is 420 MPa and modulus of rigidity                                                                                 |              |      |              |
|     | is 84 kN/mm2. Take Wahl's factor, $K = 4C -1/4 C - 4 + 0.615/C$ , where $C = 15$ spring in day.                                                             |              |      |              |
| 10  | Spring index.                                                                                                                                               | Understand   | CO 5 | AME012.25    |
| 18  | mm. The spring is to be enclosed in a casing of 25 mm diameter. The                                                                                         | Understand   | 005  | AIVIEU12.25  |
|     | approximate number of turns is 30. The modulus of rigidity is $85 \text{ kN/mm}^2$ Also                                                                     |              |      |              |
|     | calculate the maximum shear stress induced.                                                                                                                 |              |      |              |
| 19  | Find the maximum shear stress and deflection induced in a helical spring of the                                                                             | Understand   | CO 5 | AME012.25    |
|     | following specifications, if it has to absorb 1000 N-m of energy.                                                                                           |              |      |              |
|     | Mean diameter of spring = $100 \text{ mm}$ ;                                                                                                                |              |      |              |
|     | Diameter of steel wire, used for making the spring $=20$ mm;<br>Number of coils $= 30$ :                                                                    |              |      |              |
|     | Modulus of rigidity of steel = $85 \text{ kN/mm2}$ .                                                                                                        |              |      |              |
| 20  | At the bottom of a mine shaft, a group of 10 identical close coiled helical                                                                                 | Understand   | CO 5 | AME012.25    |

|    | springs are set in parallel to absorb the shock caused by the falling of the cage in case of a failure. The loaded cage weighs 75 kN, while the counter weight |            |      |             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------------|
|    | has a weight of 15 kN. If the loaded cage falls through a height of 50 metres                                                                                  |            |      |             |
|    | from rest.                                                                                                                                                     |            |      |             |
|    | Find the maximum stress induced in each spring if it is made of 50 mm                                                                                          |            |      |             |
|    | diameter steel rod. The spring index is 6 and the number of active turns in each any index is 20. Modulus of rigidity, $C = 80 \text{ kN/mm}^2$                |            |      |             |
|    | spring is 20. Modulus of rightly, $G = 80$ kN/mm2.                                                                                                             |            |      |             |
| 1  | A close coiled helical compression spring of 12 active coils has a spring                                                                                      | Understand | CO 5 | AME012 25   |
| 1  | stiffness of k. It is cut into two springs having 5 and 7 turns. Determine the                                                                                 | Onderstand | 005  | AML012.25   |
|    | spring stiffness of resulting springs.                                                                                                                         |            |      |             |
| 2  | A helical torsion spring of mean diameter 60 mm is made of a round wire of 6                                                                                   | Understand | CO 5 | AME012.25   |
|    | mm diameter. If a torque of 6 N-m is applied on the spring, find the bending                                                                                   |            | 000  |             |
|    | stress induced and the angular deflection of the spring in degrees. The spring                                                                                 |            |      |             |
|    | index is 10 and modulus of elasticity for the spring material is 200 kN/mm2.                                                                                   |            |      |             |
|    | The number of effective turns may be taken as 5.5.                                                                                                             |            |      |             |
| 3  | A spiral spring is made of a flat strip 6 mm wide and 0.25 mm thick. The length                                                                                | Understand | CO 5 | AME012.25   |
|    | of the strip is 2.5 metres. Assuming the maximum stress of 800 MPa to occur at                                                                                 |            |      |             |
|    | the point of greatest bending moment, calculate the bending moment, the                                                                                        |            |      |             |
|    | number of turns to which up the spring and the strain energy stored in the spring.<br>Take $E = 200 \text{ kN/mm}^2$                                           |            |      |             |
| 4  | A railway wagon weighing 50 kN and moving with a speed of 8 km per hour                                                                                        | Understand | CO 5 | AME012.25   |
| -  | has to be stopped by four buffer springs in which the maximum compression                                                                                      | Onderstand | 005  | AML012.25   |
|    | allowed is 220 mm. Find the number of turns in each spring of mean diameter                                                                                    |            |      |             |
|    | 150 mm. The diameter of spring wire is 25 mm. Take $G = 84$ kN/mm2.                                                                                            |            |      |             |
| 5  | A load of 2 kN is dropped axially on a close coiled helical spring, from a height                                                                              | Understand | CO 5 | AME012.25   |
|    | of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter                                                                                 |            |      |             |
|    | wire. The spring index is 8. Find the maximum shear stress induced in the                                                                                      |            |      |             |
|    | spring and the amount of compression produced. The modulus of rigidity for                                                                                     |            |      |             |
|    | the material of the spring wire is 84 kN/mm2.                                                                                                                  | TT 1 . 1   |      | 41 (5012.25 |
| 6  | Design a concentric spring for an air craft engine valve to exert a maximum force of 5000 N under a deflection of 40 mm. Both the arringe have some free       | Understand | CO 5 | AME012.25   |
|    | length solid length and are subjected to equal maximum shear stress of 850                                                                                     |            |      |             |
|    | MPa The spring index for both the springs is 6                                                                                                                 |            |      |             |
| 7  | The free end of a torsional spring deflects through 90° when subjected to a                                                                                    | Understand | CO 5 | AME012.25   |
|    | torque of 4 N-m. The spring index is 6. Determine the coil wire diameter and                                                                                   |            | 005  |             |
|    | number of turns with the following data :                                                                                                                      |            |      |             |
|    | Modulus of rigidity = 80 GPa ; Modulus of elasticity = 200 GPa; Allowable                                                                                      |            |      |             |
|    | stress = 500 MPa.                                                                                                                                              |            |      |             |
| 8  | Prove that in a spring, using two concentric coil springs made of same material,                                                                               | Understand | CO 5 | AME012.25   |
|    | having same length and compressed equally by an axial load, the loads shared                                                                                   |            |      |             |
|    | by the two springs are directly proportional to the square of the diameters of the                                                                             |            |      |             |
| 0  | A composite spring has two closed coil balical springs. The outer spring is 15                                                                                 | Understand | CO 5 | AME012.25   |
| 7  | mm larger than the inner spring. The outer spring has 10 coils of mean diameter                                                                                | Understand | 05   | AWIE012.23  |
|    | 40 mm and wire diameter 5mm. The inner spring has 8 coils of mean diameter                                                                                     |            |      |             |
|    | 30 mm and wire diameter 4 mm. When the spring is subjected to an axial load                                                                                    |            |      |             |
|    | of 400 N, find 1. Compression of each spring, 2. Load shared by each spring,                                                                                   |            |      |             |
|    | and 3. Shear stress induced in each spring. The modulus of rigidity may be                                                                                     |            |      |             |
|    | taken as 84 kN/mm <sup>2</sup> .                                                                                                                               |            |      |             |
| 10 | A rail wagon of mass 20 tonnes is moving with a velocity of 2 m/s. It is brought                                                                               | Understand | CO 5 | AME012.25   |
|    | to rest by two buffers with springs of 300 mm diameter. The maximum                                                                                            |            |      |             |
|    | deflection of springs is 250 mm. The allowable shear stress in the spring                                                                                      |            |      |             |
| 1  | material 18000 MPa. Design the spring for the buffers.                                                                                                         |            |      |             |