
LECTURE NOTES  

ON 

DIGITAL SIGNAL PROCESSING 

 

IV B.Tech I semester (JNTUH-R15) 
 

Mr. A Naresh Kumar 

Assistant professor 
 

 

 

 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

DUNDIGAL, HYDERABAD - 500043 



Digital Signal Processing  
 

I. Introduction 

Introduction to Digital Signal Processing: Discrete time signals & sequences, Linear shift 

invariant systems, Stability, and Causality, Linear constant coefficient difference equations, 

Frequency domain representation of discrete time signals and systems. 

 

Contents: 

 

Sampling theory 

Discrete-time signals 

Transformation of the independent variable 

Discrete-time systems 

Linear constant coefficient difference equations 

Fourier analysis of discrete-time signals and systems 

Frequency response of discrete-time system 

Properties of the discrete-time Fourier transform (DTFT) 
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Sampling theory 
 

Illustrative example A continuous-time random signal is shown. Based on this several 

important concepts are shown below. The signal is a continuous-time signal with continuous 

amplitude. Such a signal is also called an analog signal. 
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 x(t)‡           

4 8           

3 7           

2 6           

1 5           

0 4          ‹Time 

–1 3           

–2 2           

–3 1           

–4 0           

nT‹ 0 1T 2T 3T 4T 5T 6T 7T 8T ‹Time 

n‹ 0 1 2 3 4 5 6 7 8  

x(n)‹ 5.5 2.8 3.8 5.3 1.5 4.6 8.4 6.9 7.3 ›Sampled signal. Discrete-time 
signal – time is discrete, 
amplitude is continuous. 

  5 2 3 5 1 4 7 6 7 ›Quantized. Quantization noise 

(error). Digital signal –  both 
time and amplitude are discrete. 

  101 010 011 101 001 100 111 110 111 Encoded to 3 bits/sample. 

        ‡Note this particular point exhibits saturation (out of 
range). Rounded down to 7, not 8. 

 

If we were to represent every sample value with infinite precision (for example, x(1) = 2.8--, 

instead of being approximated as 2 or 3) then we would need registers and memory words of 

arbitrarily large size. However, owing to a finite word length we round off the sample values (in 

this case x(1) = 2.8-- will be rounded to 2). This introduces quantization noise or error. 
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x(t) 
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DAC 

Algorithm 

(Diff. Eq. or 

equivalent) 

 
ADC 

The procedure of generating a discrete-time signal from an analog signal is shown in the 

following block diagram. In the digital signal processing course we are mostly dealing with 

discrete–time rather than digital signals and systems, the latter being a subset of the former. 
 
 

   
Continuous-time, 
continuous amplitude 

(Analog signal) 

Discrete-time, 
continuous 

amplitude 

Discrete-time, 
discrete amplitude 

(Digital signal) 

Encoded 
digital 

signal 

 

The three boxes shown above can be represented by an analog to digital converter 

(ADC). A complete digital signal processing (DSP) system consists of an ADC, a DSP algorithm 

(e.g., a difference equation) and a digital to analog converter (DAC) shown below. 

 

 
x(t) x(n) y(n) y(t) 

    

 

 

 
As the name implies discrete-time signals are defined only at discrete instants of time. 

Discrete-time signals can arise by sampling analog signals such as a voice signal or a 

temperature signal in telemetry. Discrete-time signals may also arise naturally, e.g., the number 

of cars sold on a specific day in a year, or the closing DJIA figure for a specific day of the year. 

 

AT&T’s T1 Stream The voice signal is band limited to 3.3 kHz, sampled at 8000 Hz (8000 

samples per second), quantized and encoded into 8 bits per sample. Twenty four such voice 

channels are combined to form the T1 stream or signal. 
1 

Sampling interval = 
8000 Hz 

Bit rate for each channel = 8000 
samples 

x 8 

sec 

bits 
= 64000 bits/sec. 

sample 

Bit rate for T1 = 64000 bits/sec per channel x 24 channels = 1 544 000 bits/sec. 

 

Commercial examples CD, Super Audio CD (SACD), DVD Audio (DVD-A), Digital audio 

broadcasting - 32 kHz, and Digital audio tape (DAT) - 48 kHz. 

 

Commercial Audio Examples 
 CD Super Audio CD 

(SACD) 
DVD-Audio 

(DVD-A) 

Sampling 

Rate 

44.1 kHz 2.8224 MHz 44.1, 88.2 or 

48, 96, 192 
kHz 

Coding 16-bit PCM per sample 

With 2 channels the bit rate is 1.4112 

Mbits/sec, but additional error control 

bits etc., raise it to 4.3218 Mbits/sec. 

1-bit DSD 

(Direct Stream 

Digital – like Delta 

modulation) 

12-, 20-, 24- 

bit 

 
3 of 77 

 
Encoder 

 
Quantizer 

Sample 

(& Hold) 

= 0.125 msec. 





 

C 

Pulse-train sampling For pulse-train sampling of the signal x(t) by the rectangular pulse-train 

p(t) resulting in the sampled signal xs(t), we have 
 

xs(t) = x(t) p(t) 


The Fourier series of p(t) is given by p(t) = C ne 
j n 2 Fs t , 

n  

where Fs = 1/T and the Fourier coefficients, are 
T / 2 

 

 
Thus 

Cn = 
1 

p(t)e 
T T / 2 

 


 j n 2 Fs tdt

xs(t) =   Cn x(t)e j n 2 Fs t 

n  

The Fourier spectrum of xs(t) is given by 
   j 2 F t 

Xs(F) = xs (t)e dt 


= Cn x(t)e j n 2 Fs te j 2 F t dt 
 

Interchanging the order of integration and summation yields the aliasing formula 

 
n 
 x(t) e 

 
 j 2 ( F  nF ) t

dt  =      Cn X (F  nFs ) 

Xs(F) =    
s

 

n    n  

= …+ C2 X (F  2Fs ) + C1 X (F 1Fs ) + C0 X (F)+ C1 X (F 1Fs ) 

+ C2 X (F  2Fs ) +… 
 

 

 

 
 

 

 

 

t 

0 T 2T 3T 
 

 

 

 

 

 

 

t 
0 T 2T 3T    

 

 
 

The sampled signal spectrum Xs(F) is sketched below. For convenience of illustration we 
have assumed the base band spectrum, X(F), to be real valued; the maximum value of |X(F)| is 
taken to be 1. Xs(F) consists of replicas of X(F), scaled by the Fourier coefficients Cn and 
repeated at intervals of Fs. Specifically, the replica at the origin is simply X(F) scaled by C0. 
Note that the magnitudes, |Cn|, have even symmetry. In this case, since FM ≤ Fs–FM, there is no 
overlap among the replicas in the graph of Xs(F). As a result the original signal x(t) can be 
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x(t) 

p(t) η 

1 

p(t) 

x(t) 
X 

xs(t) 



s 
2




s    

recovered by passing xs(t) through a low pass filter with a bandwidth B that satisfies the 
condition FM ≤ B ≤ Fs–FM, and a gain of 1/C0. 

 

 

 

 

 

 

 

 
 

–FM 
F 

0 FM 
 

Xs(F) 

Gain = 1/C0 Bandwidth = B 

C–1 C0 C1 

 

 

–Fs –FM 0 FM 

F 

Fs–FM Fs Fs+FM 
 

 

Impulse-train sampling If p(t) is an impulse-train then the Fourier coefficients are given by 
T / 2 

1 C  =   j n 2 F t dt 
1 = . 1 = F for all n 

n 

T 
T / 2 

(t)e T 
s 

so that the aliasing formula becomes 


Xs(F) = Fs  X (F  nFs ) 
n  



Alternative derivation It can be shown that 

  
X (jΩ) = 

s X ( j(  n
n  

)) = Fs
 X ( j(  ns )) 

n  

Note that some use the notation X(Ω) instead of X(jΩ), so that the above equation is written as 

Xs(Ω)= s 
2



 X (  ns 
) = Fs X (  ns ) 

n   n  


About terminology The highest frequency in the signal is called the Nyquist frequency. The 

minimum sampling rate that, in theory, allows perfect signal recovery is called the Nyquist rate. 

Thus Nyquist rate is twice the Nyquist frequency. 

A signal, however, is generally sampled at more than twice the Nyquist frequency. One 

half the sampling rate is called the folding frequency. As an example, if a voice signal is band 

limited to 3.3 kHz and sampled at 8 kHz then the Nyquist frequency = 3.3 kHz, the Nyquist rate 

= 6.6 kHz, and the folding frequency = 4 kHz. 

To add to the ambiguity, some references use the phrase Nyquist frequency to refer to 

one half the sampling rate. 
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Aliasing Illustration using a signal spectrum band-limited to 4 kHz and a sampling rate of 8 kHz. 

The signal is perfectly band-limited to 4 kHz so that there is no overlapping in the spectrum of 

the sampled signal. 
 

 

 

 

 

 

 

 
 

 
–8k –4k 0 4k 8k 12k 

F, Hz 

 

 

 

 

 

 

 

 
 

–8k –4k 0 4k 8k 12k 
F, Hz 

 
7k signal 

 

 
The signal has a genuine, desirable, 1 kHz component. Since it is not perfectly band-limited to 4 

kHz it has another genuine but undesirable 7 kHz component. Due to the first pair of replicas 

(centered at 8 kHz and –8 kHz) this 7kHz component appears as if it were a 1kHz component – 

in other words the 7 kHz component is an alias of 1kHz. Thus the first (lowest) alias of the 1 kHz 

frequency is given by 8 kHz – 1 kHz = 7 kHz. 

Due to the second pair of replicas at 16 kHz and –16 kHz the 15k component in the 

original signal also appears as if it were a 1k component – it is another alias of the 1k. This 

second alias of the 1 kHz frequency is given by 16 kHz – 1 kHz = 15 kHz. The next alias is (3 x 

8 – 1) kHz = 23 kHz. 

In general, for any frequency F1 within the base band (in this case any frequency from 0 
to 4000 Hz) its aliases are given by 

 

Alias = kFs – F1, k is an integer > 0 
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X(F) 

–8k –4k 0 4k 8k 12k 
F, Hz 

1k signal 

Xs(F) 

X(F), Base-band signal 



Aliasing example As an example, let a certain base band signal be band-limited to 8 Hz and let 
the sampling frequency be Fs = 16 Hz. We do not expect frequencies higher than 8 Hz. Then for 
the base band frequency of, say, F1 = 4 Hz, the aliases, F2, are given by 

 

F2 = kFs – F1, k = 1, 2, … 
 

Setting k = 1 gives the lowest alias of F1, that is, F2 = 1 x 16 – 4 = 12 Hz. The next alias is 2 x 16 
– 4 = 28 Hz. Consider two waveforms with frequencies of 4 Hz and 12 Hz given by 

 

x1(t) = 1 cos 2π4t and x2(t) = 1 cos 2π12t 
 

The sampled versions are 

 
x1(n) = cos 2π4nT = cos 2π4n(1/16) = cos (nπ/2) and 

x2(n) = cos 2π12nT = cos 2π12n(1/16) = cos (n3π/2) 
 

whose first few samples are tabulated below: 

 

n 0 1 2 3 4 5 6 7 
x1(n) 1 0 –1 0 1 0 –1 0 
x2(n) 1 0 –1 0 1 0 –1 0 

 

These two sequences are seen to have the same digital frequency and cannot be distinguished 

from each other as far as the frequency is concerned. When passed through a smoothing filter, 

they will both appear as 4 Hz signals. This is true even if the amplitudes of the underlying analog 

waveforms are different. 
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In MATLAB 

 
%Plot x1(t) = cos 2π4t as t goes from 0 to 0.5 sec (2 cycles) in steps of T = 1/160 sec. 

t = 0: 1/160: 0.5; x1 = cos (2*pi*4*t); plot(t, x1) 
 

%Repeat with step size of 1/16 sec. 

t = 0: 1/16: 0.5; x1 = cos (2*pi*4*t); plot(t, x1) 

 
%Produce samples of x1(t) as t goes from 0 to 0.5 in steps of 1/16 sec. 
t = 0: 1/16: 0.5; x1 = cos (2*pi*4*t) 

 

%Produce samples of x1(n) = cos nπ/2 as n goes from 0 to 8 (2 cycles) in steps of 1 
%(T = 1/16 sec.) 
n = 0: 1: 8; x1 = cos (n*pi/2) 

 
%Plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1 (T = 1/160 sec.) 
n = 0: 1: 80; x1 = cos (n*pi/20); plot(n, x1, 'bo'); grid %Blue circles and grid 

 
%Stem plot x1(n) = cos nπ/2 as n goes from 0 to 8 (2 cycles) in steps of 1 (T = 1/16 sec.) 
n = 0: 1: 8; x1 = cos (n*pi/2); stem(n, x1) 

 
%Stem plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1 
%(T = 1/160 sec.) 
n = 0: 1: 80; x1 = cos (n*pi/20); stem(n, x1) 

 
%Titles, labels and grid. Stem plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) 
%MATLAB won‟t accept the kind of single quote in title „Sampled Cosine‟ 
n = 0: 1: 80; x1 = cos (n*pi/20); 

stem(n, x1); title(„Sampled Cosine‟); xlabel(„n‟), ylabel(„x1‟); grid 

 

 

 
%Plot x1(t) = cos 2π4t as t goes from 0 to 0.5 sec (2 cycles) in steps of T = 1/160 sec. 
t = 0: 1/160: 0.5; x1 = cos (2*pi*4*t); plot(t, x1) 

 

x1 = cos (2*pi*4*t) – 4Hz Cosine plotted at T = 1/160 sec. 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

 
-0.2 

 
-0.4 

 
-0.6 

 
-0.8 

 
-1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
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%Plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1 (T = 1/160 sec.) 
n = 0: 1: 80; x1 = cos (n*pi/20); plot(n, x1, 'bo'); grid %Blue circles and grid 

 

x1 = cos (n*pi/20) – 4 Hz Cosine sampled at 160 samples per second 
 

1 

 
0.8 

0.6 

    

0.4 

0.2 

 
0 

-0.2 

    

-0.4 

 
-0.6 

-0.8 

 
-1 

0 10 20 30 40 50 60 70 80 

 
 
 
 
 

%Stem plot x1(n) = cos nπ/20 as n goes from 0 to 80 (2 cycles) in steps of 1 
%(T = 1/160 sec.) 

n = 0: 1: 80; x1 = cos (n*pi/20); stem(n, x1) 
 

Stem plot of x1 = cos (n*pi/20) – 4 Hz Cosine sampled at 160 samples per second 
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-0.6 
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Aliasing and digital frequency With Fs = 16 Hz the base band signal must be band-limited to 8 
Hz. And we do not expect frequencies higher than 8 Hz. Consider the 3 signals x1(t), x2(t), and 
x3(t) of frequencies 4Hz, 12Hz and 28Hz, respectively, where x2 and x3‟s frequencies are the 
aliases of x1‟s. The continuous and discrete-time signals are given in table below with a 
sampling rate of 16 samples/sec. 

 
Aliasing and Digital Frequency 

Analog frequency 

Cycles/sec 

Analog signal Discrete-time signal Digital frequency 

Cycles/sample 

4 x1(t) = cos 2π4t x1(n) = cos 2π(1/4)n 0.25 

12 x2(t) = cos 2π12t x2(n) = cos 2π(3/4)n 0.75 

28 x3(t) = cos 2π28t x3(n) = cos 2π(7/4)n 1.75 

8 x4(t) = cos 2π8t x4(n) = cos 2π(1/2)n 0.5 

16/3 x5(t) = cos 2π(16/3)t x5(n) = cos 2π(1/3)n 1/3 

 

If the Nyquist criterion is to be satisfied (for perfect signal reconstruction) we never 
expect any digital frequencies higher than 0.5 cycle/sample (or π rad./sample) in the base band 
signal. This corresponds to taking 2 samples for every cycle (or a digital frequency of half a 

cycle per sample) – the Nyquist criterion. Digital frequencies higher than 0.5 cycle/sample (x2(n) 
and x3(n) in this example) are actually disallowed. 

When plotted x1(n), x2(n), and x3(n) cannot be distinguished from one another as far as 
the digital frequency is concerned. They all have a period = 4 (samples) and a frequency of 0.25 
cycle per sample, though we know that x2(n) has a frequency of 0.75 cycle/sample and x3(n) has 
a frequency of 1.75 cycle/sample. 

In general any digital frequency above 0.5 cycle/sample (π rad./sample) is an alias (or 

shows up as an alias of some base band frequency). It actually has more cycles per sample than 

is apparent in a plot of the sampled data. 
We demonstrate below the phenomenon of aliasing using the three waveforms x1(t), x2(t), 

and x3(t) and the corresponding sequences x1(n), x2(n), and x3(n). 
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In MATLAB: 
%Aliasing demo 

 

%First--------------------------------------------- 

%Plot the continuous-time waveforms x1(t), x2(t), and x3(t) over a 1-second interval 
t = 0: 1/500: 1; 

x1 = cos (2*pi*4*t); %4 Hz 

subplot(3, 1, 1), plot(t, x1, 'b'); %subplot(3, 1, 1) – 3 rows, 1 column, #1 
xlabel ('Time, t, seconds'), ylabel('x1(t)'); 

title ('4 Hz') 

grid; 

 
x2 = cos (2*pi*12*t); %12 Hz 
subplot(3, 1, 2), plot(t, x2, 'k'); %subplot(3, 1, 2) – 3 rows, 1 column, #2 
xlabel ('Time, t, seconds'), ylabel('x2(t)'); 
title ('12 Hz') 

 

x3 = cos (2*pi*28*t); %28 Hz 
subplot(3, 1, 3), plot(t, x3, 'r'); %subplot(3, 1, 3) – 3 rows, 1 column, #3 
xlabel ('Time, t, seconds'), ylabel('x3(t)'); 
title ('28 Hz') 

 

%Second--------------------------------------------- 

%Plot the sequences x1(n), x2(n), and x3(n) 
n = 0: 1: 16; 

%4 Hz sampled at 16 Hz 

x1 = cos (n*pi/2); 

subplot(3, 1, 1), stem(n, x1, 'bo'); %subplot(3, 1, 1) – 3 rows, 1 column, #1 

xlabel ('Sample number, n'), ylabel('x1(n)'); 

title ('4 Hz at 16 samples/sec') 

grid; 

%12 Hz sampled at 16 Hz 

x2 = cos (3*n*pi/2); 

subplot(3, 1, 2), stem(n, x2, 'ko'); %subplot(3, 1, 2) – 3 rows, 1 column, #2 

xlabel ('Sample number, n'), ylabel('x2(n)'); 

title ('12 Hz at 16 samples/sec') 

%28 Hz sampled at 16 Hz 

x3 = cos (7*n*pi/2); 

subplot(3, 1, 3), stem(n, x3, 'ro'); %subplot(3, 1, 3) – 3 rows, 1 column, #3 

xlabel ('Sample number, n'), ylabel('x3(n)'); 

title ('28 Hz at 16 samples/sec') 

%--------------------------------------------- 
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4 Hz 
1 

 
0 

 
-1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time, t, seconds 
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1 

 
0 

 
-1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time, t, seconds 

28 Hz 

1 
 

0 

 

-1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time, t, seconds 

 
 
 

4 Hz at 16 samples/sec 
1 

 
0 

 
-1 

0 2 4 6 8 10 12 14 16 

Sample number, n 

12 Hz at 16 samples/sec 

1 

 
0 

 
-1 

0 2 4 6 8 10 12 14 16 

Sample number, n 

28 Hz at 16 samples/sec 
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0 

 

-1 
0 2 4 6 8 10 12 14 16 

Sample number, n 
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Discrete-time signals 
 

Definition A discrete-time signal is a sequence, that is, a function defined on the positive and 

negative integers. 

 
The sequence x(n) = xR(n) + j xI(n) is a complex (valued) sequence if xI(n) is not zero for 

all n. Otherwise, it is a real (valued) sequence. 

Examples of discrete-time signals represented in functional form are given below. 

(Exercise: Plot these signals for several values of n.) 

 
x1(n) = 2 cos 3n 
x2(n) = 3 sin (0.2πn) 

 

Alternatively, if a signal is non-zero over a finite (small enough) interval, we can list the 

values of the signal as the elements of a sequence. For example 

 

 
x3(n) = {5, 2, – 1, 1, – 1/2, 4} 


The arrow indicates the value at n = 0. We omit the arrow when the first entry represents the 

value for n = 0. The above sequence is a finite length sequence. It is assumed that all values of 

the signal not listed are zero. In the above example x(0) = 1, x(1) = –1/2, x(–4) = x(3) = 0, etc. 

 

Definition A discrete-time signal whose values are from a finite set is called a digital signal. 

Classification of discrete-time signals (Along lines similar to continuous-time signals) 

(Omit) Discrete-time Energy and Power signals The energy E of a discrete-time signal x(n) is 

given by 
N 

E =  lim x(n) x
* 
(n) 

N 
n   N 

where x
*
 is the complex conjugate of x. If x(n) is a real sequence then x(n) x

*
(n) = x

2
(n). The 

above definition can also be written as 
N 

E =  lim x(n) 
2
 

N 
(there are 2N+1 terms here) 

n   N 

The average power P of the signal is 
1  

N 
2

 

P = lim  x(n) 
N  2N 1 n   N 

If E is finite but non zero (i.e., 0 < E < ∞) the signal is an energy signal. It is a power 

signal if E is infinite but P is finite and nonzero (i.e., 0 < P < ∞). Clearly, when E is finite, P = 0. 

If E is infinite P may or may not be finite. 

If neither E nor P is finite, then the signal is neither an energy nor a power signal. 

The terms ―power‖ and ―energy‖ are used independently of whether the 
N t2 

quantity  x(n) 
2 
(or,  x(t) 

2 
dt , in the continuous time case) actually is related to physical 

n   N t1 

energy. Even if such a relationship exists, these quantities,  (.) and  (.), may have the wrong 

dimensions and scaling. Still it is convenient to use these terms in a general fashion. It is helpful 

to imagine that x(t) or x(n) is the voltage across, or, current through, a 1-ohm resistor. 
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Example 1.2.1 For the signal x(n) = 1 for all n, 
N 

E = lim x(n) 
2 

= 1
2 
=  which is infinite energy 

N 
n  1N n   

2 1  
 

 

2N 1 

P = lim N     x(n) = lim 
N 

1
2 
= lim =1 which is finite 

N    2N 1 n   N 
N    2N 1  n   N 

N  2N 1 

Thus x(n) is a power signal. 

 

Example 1.2.2 For the signal x(n) = n both E and P are infinite. This is neither an energy nor a 

power signal. 

(End of Omit) 
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x(n) 

Positive n 

z(n) 

Non-periodic digital 

Examples of discrete-time signals In these examples w(n) and z(n) take on only a finite number 

of different values – hence digital. But x(n) and y(n) take on a countable infinite number of 

values – they are not digital. (Figure) 
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w(n) 

Periodic 

y(n) 

Discrete-time 



Important discrete-time signals If a continuous-time signal x(t) is sampled at T-second 

intervals, the result is the sequence {x(nT)}. For convenience we shall drop the T and the braces 

and use just x(n) to represent the sequence. 

 

1) The unit sample sequence (discrete-time impulse, aka Kronecker delta) 
 

δ(n) = 1, n = 0 

0, n  0 

Whereas δ(n) is somewhat similar to the continuous-time impulse function δ(t) – the 

Dirac delta – we note that the magnitude of the discrete impulse is finite. Thus there are no 

analytical difficulties in defining δ(n). It is convenient to interpret the delta function as follows: 

 

δ(argument) = 1 when argument = 0 

0 when argument ≠ 0 
 

 

 

 

 

 

 

 

 

n 

–1 0 1 

n 

–1 0 1 k 
 

 

2) The unit step sequence 

 

u(n) = 1, n  0 

0, n < 0 

 

u(argument) = 1, if argument  0 

0, if argument < 0 
 

 

a) The discrete delta function can be expressed as the first difference of the unit step function: 

 

δ(n) = u(n) – u(n–1) 

 

b) The sum from – to n of the δ function gives the unit-step: 
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u(n) 

1 

n 
–1 0 1 

u(n–k) 

1 

n 
–1 0   k 

δ(n) 

1 

δ(n–k) 

1 



u(n) 

δ(n) δ(n–1) δ(n–2) δ(n–3) 

n 

n  (k ) =  
0  if   

n  0


k  



1  if 

 = u(n) 

n  0 









k 
n 0 

 

 

 
 

k 

0 n 
 

Results (a) and (b) are like the continuous-time derivative and integral respectively. 

 

c) By inspection of the graph of u(n), shown below, we can write: 


u(n) = δ(n) + δ(n–1) + δ(n–2) +… =  (n  ) 
  0 

 

 
 
 
 
 
 
 
 

0 1 2 3 

 

 

d) For any arbitrary sequence x(n), we have 

 

x(n) δ(n–k) = x(k) δ(n–k) 

 

that is, the multiplication will pick out just the one value x(k). 
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Sum up to here is 1 

Sum up to here is zero 



If we find the infinite sum of the above we get the sifting property: 


 x(n)  (n  k) = x(k) 
n  





















n 
0 k 

 

 

 

 

 

 

 

 

n 
0 k 

 
x(k) δ(n–k) 

 

x(k) δ(n–k) 
 

 

 
 

n 
0 k 

 

 

e) We can write x(n) as follows: 

 

x(n) = …+ x(–1) δ(n+1) + x(0) δ(n) + x(1) δ(n–1) + x(2) δ(n–2) + … 

 

This can be verified to be true for all n by setting in turn 

 
…, n = –2, n = –1, n = 0, n = 1, n = 2, etc. ... 

 

The above can be written compactly as 


x(n) =  x(k)  (n  k) 
k   

This is a weighted-sum of delayed unit sample functions. 
 

3) The real exponential sequence Consider the familiar continuous time signal 
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x(n) 

x(k) 

δ(n–k) 

1 



x(t) = e
 t 

= e
t / 

, t  0 

The sampled version is given by setting t = nT 

x(nT) =  e
 n T 

=  e T  n 

, nT  0 

Dropping the T from x(nT) and setting e
 T 

= a we can write 

x(n) = a
n 

, n  0 

The sequence can also be defined for both positive and negative n, by simply writing x(n) = a
n
 

for all n. 
 

 

 
 

1 
 

 

 

 

 
 

t 

0 1 2 3 4 5 6 
 

 

 

 

1 
 

 

 

 

 
 

n 

0 1 2 3 4 5 6 

 

 
4) The sinusoidal sequence Consider the continuous-time sinusoid x(t) 

x(t) = A sin 2πF0t = A sin Ω0t 

F0 and Ω0 are the analog frequency in Hertz (or cycles per second) and radians per second, 
respectively. The sampled version is given by 

 

x(nT) = A sin 2πF0nT = A sin Ω0nT 
 

We may drop the T from x(nT) and write 

 

x(n) = A sin 2πF0nT = A sin Ω0nT, for all n 
 

We may write Ω0T = ω0 which is the digital frequency in radians (per sample), so that 
 

x(n) = A sin ω0n = A sin 2πf0n, for all n 
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x(t) = e
 t 

, t  0 

x(n) = a
n
 u(n) 

 T 

a a = e 

a2 

a3 

a4 



Setting ω0 = 2πf0 gives f0 = ω0/2π which is the digital frequency in cycles per sample. In the 
analog domain the horizontal axis is calibrated in seconds; ―second‖ is one unit of the 
independent variable, so Ω0 and F0 are in ―per second‖. In the digital domain the horizontal axis 
is calibrated in samples; ―sample‖ is one unit of the independent variable, so ω0 and f0 are in ―per 
sample‖. 

 

Classification of discrete-time signals (cont’d) 

 

Periodic signal The discrete-time signal x(n) is periodic if, for some integer N > 0 

 

x(n+N) = x(n) for all n 

 

The smallest value of N that satisfies this relation is the (fundamental) period of the signal. If 

there is no such integer N, then x(n) is an aperiodic signal. 

Given that the continuous-time signal xa(t) is periodic, that is, xa(t) = xa(t+T0) for all t, 
and that x(n) is obtained by sampling xa(t) at T second intervals, x(n) will be periodic if T0/T is a 
rational number but not otherwise. If T0/T = N/L for integers N ≥ 1 and L ≥ 1 then x(n) has 
exactly N samples in L periods of xa(t) and x(n) is periodic with period N. 

 

Periodicity of sinusoidal sequences The sinusoidal sequence sin (2πf0n) has several major 

differences from the continuous-time sinusoid as follows: 

 
a) The sinusoid x(n) = sin (2πf0n) or sin (ω0n) is periodic if f0, that is, ω0/2π, is rational. If f0 is 
not rational the sequence is not periodic. Replacing n with (n+N) we get 

 

x(n+N) = sin (2πf0 (n+N)) = sin 2πf0n. cos 2πf0N + cos 2πf0n. sin 2πf0N 
 

Clearly x(n+N) will be equal to x(n) if f0N = m, an integer or f0 = m/N. The fundamental period is 
obtained by choosing m as the smallest integer that yields an integer value for N. For example, if 
f0 = 15/25, which in reduced fraction form is 3/5, then we can choose m = 3 and get N = 5 as the 
period. If f0 is rational then f0 = p/q where p and q are integers. If p/q is in reduced fraction form 
then q is the period as in the above example. 

On the other hand if f0 is irrational, say f0 = 
x(n) is aperiodic. 

, then N will not be an integer, and thus 

 

Note: In expressions like sin  n , sin 2fn , e 
j n 

and e 
j 2 f n 

we shall refer to ω or f as the 

frequency even when the signal concerned is not periodic by the definition above. 

 

b) The sinusoidal sequences sin ω0n and sin ((ω0+2  k)n) for 0  ω0  2π are identical. This can 
be shown using the identity 

 

sin ((ω0+2πk)n) = sin (ω0n+2πkn) 
= sin ω0n cos 2πkn + cos ω0n sin 2πkn QED 

 
Similarly, cos ω0n and cos ((ω0+2πk)n) are the same. Therefore in considering sinusoidal 

sequences for analysis purposes, ω0 can be restricted to the range 0  ω0  π without any loss of 
generality. 

 

c) For π < ω0 < 2π, based on the same trigonometric identities, 
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x(n) (Odd) 

2 

–2 0 1 

sin ω0n is the negative of sin ((2π–ω0)n), and 

cos ω0n is the same as cos ((2π–ω0)n) 
 

The sum of two discrete-time periodic sequences is also periodic. Let x(n) be the sum of two 
periodic sequences, x1(n) and x2(n), with periods N1 and N2 respectively. Let p and q be two 
integers such that 

 

pN1 = qN2 = N (p and q can always be found) 

Then x(n) is periodic with period N since, for all n, 

x(n+N) = x1(n+N) + x2(n+N) 
= x1(n+pN1) + x2(n+qN2) 
= x1(n) + x2(n) 
= x(n) for all n 

 

Odd and even sequences The signal x(n) is an even sequence if x(n) = x(–n) for all n, and is an 

odd sequence if x(n) = –x(–n) for all n. 

 

 

 

 

 

 

 

 
n n 

 

 

 

 

 

 

The even part of x(n) is determined as xe(n) = 

x(n)  x(n) 

 

x(n)  x(n) 

2 

 

and the odd part of x(n) is given by 

xo(n) = . The signal x(n) then is given by x(n) = xe(n)+xo(n). 
2 
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x(n) (Even) 

–2 2 

0 1 



Example 1.2.3 Plot the sequences x1(n) = 2 cos n and x2(n) = 2 cos (0.2πn). What are their 
―frequencies‖? →hich of them is truly periodic and what is its periodicity? 

Solution The MATLAB program segment follows: 
 

N = 21; n = 0: N-1; 

% 

%Nonperiodic 

x1= 2*cos(1*n); 

subplot(2, 1, 1), stem(n, x1); 

xlabel('n'), ylabel('x1'); title('x1 = 2 cos 1n'); 

% 

%Periodic 

x2 = 2*cos(0.2*pi*n); 

subplot(2, 1, 2), stem(n, x2); 

xlabel('n'), ylabel('x2'); title('x2 = 2 cos 0.2\pi n'); 
 

 
 

x1 = 2 cos 1n 

2 

 
1 

 
0 

 
-1 

 
-2 

0 2 4 6 8 10 12 14 16 18 20 

n 

x2 = 2 cos 0.2 n 

2 

 
1 

 
0 

 
-1 

 
-2 

0 2 4 6 8 10 12 14 16 18 20 

n 
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Example 1.2.4 Plot the sequence x3(n) = 2(0.9)
n 
cos 0.2 n . 

Solution The MATLAB program segment follows: 

 

n = [0: 30]; 

% 

%―.^‖ stands for element-by-element exponentiation 

%―.*‖ stands for element-by-element multiplication 

x3 = 2* ((0.9) .^n) .*cos(0.2*pi*n); 

stem(n, x3); 

xlabel('n'), ylabel('x3'); title('Sequence x3(n)'); 
 

 

 
Sequence x3(n) 

2 

 

 
1.5 

 

 
1 

 

 
0.5 

 

 
0 

 

 
-0.5 

 

 
-1 

 
 

-1.5 
0 5 10 15 20 25 30 

n 

 
 

 

Transformation of the independent variable 
 

Shifting and folding (reflecting about the vertical axis) Given the sequence x(n), where n is 

the independent variable, we have the following two transformation operations: 

 

 Shifting in time by k units, where k is an integer, is denoted by x(n–k). The 

sequence x(n–k) represents the sequence x(n) shifted by k samples, to the right if k 

is positive, or to the left if k is negative. Parenthesize n and replace it by (n–k) for 

k units of delay, or by (n+k) for k units of time advancement. 

 Folding (a.k.a. time reversal or reflecting about the vertical axis) is denoted by 

x(–n). The signal x(–n) corresponds to reflecting x(n) about the time origin n = 0. 

Reverse the sign of n (replace n with –n). 
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[Delayed] 

1 

δ(n) 
 

1 

[Reflected] 

1 

As in the case of continuous-time signals the operations of shifting and folding are not 

commutative. In other words, the result of first shifting and then folding is not the same as that of 

first folding and then shifting. 

A third operation is scaling, of which more will be said in a later unit. 

 

Example 1.3.1 [Delta function] Given the delta function δ(n), first reflect then shift (delay) by 2 

units. The other possibility is first to shift (delay) by 2 units and then reflect. 

The result of ―reflect then shift‖ is shown below left. Reflect means to change the sign of 

n; then shifting is done by replacing (n) by (n–2). The result is: (1) δ(n) ‹ δ(–n) and (2) δ(–n) = 

δ(–(n))‹ δ(–(n–2)) = δ(–n+2). 

 

 

 

 

 

 

 
n n 

0 0 

 
δ(–n) δ(n–2) 

 

 

 

n n 
0 0 2 

 

 

δ(–(n–2)) = δ(–n+2) 

[Reflected & delayed] 

1 

δ(–n–2) 

[Delayed & reflected] 

1 
 

 

n n 
0 2 –2 0 

 
 

To continue the example, the second possibility, the result of ―shift then reflect‖ is shown above 

right. Shift means replacing (n) by (n–2); then reflect by changing the sign of n. The result is δ(– 

n–2). The result is: (1) δ(n) = δ((n))‹ δ((n–2)) and (2) δ((n–2)) = δ(n–2) ‹ δ(–n–2). 

Note that the two end results are not the same. This serves to illustrate that the two 

operations of shifting and reflecting are not commutative: 

 

Fold(Shift(δ(n))) ≠ Shift(Fold(δ(n))) 
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δ(n) 
 

1 



 
T[.] 

Discrete-time systems 
 

Definition A discrete-time system is a mapping from the set of acceptable discrete-time signals, 

called the input set, to a set of discrete-time signals called the output set. 

 

Definition A discrete-time system is deterministic if its output to a given input does not depend 

upon some random phenomenon. If it does, the system is called a random (stochastic) system. 

 

Definition A digital system is a mapping which assigns a digital output signal to every 

acceptable digital input signal. 

 

A discrete-time system can be thought of as a transformation or operator, T, that maps an 

input sequence x(n) to an output sequence y(n) shown thus: 

 

x(n) y(n) = T[x(n)] 
  

 

 
In what follows we focus on the presence or absence of the following properties in 

discrete-time systems: linearity, shift invariance, causality and stability. 

 

Filter Some refer to a linear time-invariant (LTI) system simply as a filter, that is, a filter is a 

system T with a single input and a single output signal that is both linear and time-invariant. 

 

 

Linearity 
 

Definition A discrete-time system T[.] is linear if the response to a weighted sum of inputs x1(n) 
and x2(n) is a weighted sum (with the same weights) of the responses of the inputs separately for 
all weights and all acceptable inputs. Thus the system y(n) = T[x(n)] is linear if for all a1, a2, 
x1(n) and x2(n) we have 

 

T[a1x1(n)+a2x2(n)] = a1T[x1(n)] + a2T[x2(n)] 
 

Another way of saying this is that if the inputs x1(n) and x2(n) produce the outputs y1(n) 
and y2(n), respectively, then the input a1x1(n) + a2x2(n) produces the output a1 y1(n) + a2 y2(n). 
This is called the superposition principle. The a1, a2, x1(n) and x2(n) may be complex-valued. 
The above definition combines two properties, viz., 

 

1. Additivity, that is, T[x1(n)+x2(n)] = T[x1(n)] + T[x2(n)], and 
2. Scaling (or homogeneity), that is, T[c x(n)] = c T[x(n)] 

The procedure of checking for linearity is: 

1. Find outputs y1(n) and y2(n) corresponding to inputs x1(n) and x2(n) 
2. Form the sum a1 y1(n) + a2 y2(n) 
3. Find output y3(n) corresponding to input a1x1(n) + a2x2(n) 
4. Compare the results of steps 2 and 3 

Examples of linear systems: 
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T[.] 

 
T[.] 

1. y(n) = x(n) + x(n–1) + x(n–2) 

2. y(n) = y(n–1) + x(n) 

3. y(n) = 0 

4.   y(n) = n x(n) (But time-varying) 

Examples of nonlinear systems: 

1. y(n) = x
2
(n) 

2. y(n) = 2 x(n)+3. This is a linear equation though! This system is made up of a 

linear part, 2 x(n), and a zero-input response, 3. This is called an incrementally 

linear system, for it responds linearly to changes in the input. 

 

Example 1.4.1 Determine if the system y(n) = T[x(n)] = x(–n) is linear or nonlinear. 

 
x(n) y(n) = T[x(n)] = x(–n) 

  

 

Answer Determine the outputs y1(.) and y2(.) corresponding to the two input sequences x1(n) and 
x2(n) and form the weighted sum of outputs: 

 

y1(n) = T[x1(n)] = x1(–n) 
y2(n) = T[x2(n)] = x2(–n) 

 

The weighted sum of outputs = a1 x1(–n) + a2 x2(–n) ‹ (A). 
Next determine the output y3 due to a weighted sum of inputs: 

 

y3(n) = T[a1 x1(n) + a2 x2(n)] = a1 x1(–n) + a2 x2(–n) ‹ (B) 
 

Check if (A) and (B) are equal. In this case (A) and (B) are equal; hence the system is 

linear. 
 

Example 1.4.2 Examine y(n) = T[x(n)] = x(n) + n x(n+1) for linearity. 

 

x(n) y(n) = T[x(n)] = x(n) + n x(n+1) 
  

 

 
Answer The outputs due to x1(n) and x2(n) are: 

 

y1(n) = T[x1(n)] = x1(n) + n x1(n+1) 
y2(n) = T[x2(n)] = x2(n) + n x2(n+1) 

 

The weighted sum of outputs = a1 x1(n) + a1 n x1(n+1) + a2 x2(n) + a2 n x2(n+1) ‹ (A) 
The output due to a weighted sum of inputs is 

 
y3(n) = T[a1 x1(n) + a2 x2(n)] 

= a1 x1(n) + a2 x2(n) + n (a1 x1(n+1) + a2 x2(n+1)) 
= a1 x1(n) + a2 x2(n) + n a1 x1(n+1) + n a2 x2(n+1) ‹ (B) 

 

Since (A) and (B) are equal the system is linear. 
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T[.] 

T[.] 

 
T[.] 

2 

1 2 

Example 1.4.3 Check the system y(n) = T[x(n)] = ne 
x(n) 

for linearity. 

 
x(n) y(n) = T[x(n)] = n e 

x(n)
 

 

Answer The outputs due x1(n) and x2(n) are: 

y1(n) = T[x1(n)]= n e 
x1 (n)

 

y2(n) = T[x2(n)] = n e 
x2 (n)

 

The weighted sum of the outputs = a1 ne 
x1 (n) 

+ a ne x2 (n) 
‹ (A) 

The output due to a weighted sum of inputs is 

y3(n) =T[a1 x1(n) + a2 x2(n)] = n e 
a1 x1 (n)  a2 x2 (n) 

‹ (B) 

We can specify a1, a2, x1(n), x2(n) such that (A) and (B) are not equal. Hence nonlinear. 
 

Example 1.4.4 Check the system y(n) = T[x(n)] = a
n
 cos(2πn/N) for linearity. 

x(n) y(n) = a
n
 cos (2πn/N) 

 
Answer Note that the input is x(n). Clearly y(n) is independent of x(n). The outputs due to x1(n) 
and x2(n) are: 

 

y1(n) = T[x1(n)] = a
n
 cos (2πn/N) 

y2(n) = T[x2(n)] = a
n
 cos (2πn/N) 

 

The weighted sum of the outputs = b1 a
n
 cos (2πn/N) + b2 a

n
 cos (2πn/N) ‹ (A) 

The output due to a weighted sum of inputs is 
y3(n) = T[b1 x1(n) + b2 x2(n)] = a

n
 cos (2πn/N) ‹ (B) 

(A) and (B) are not equal, so the system is not linear. (But (A) = (b1+b2) a
n
 cos (2πn/N) and this is 

equal to (B) within a constant scaling factor.) 
 

Example 1.4.5 Check the system y(n) = T[x(n)] = n x(n) for linearity. 

x(n) y(n) = n x(n) 

 

Answer For the two arbitrary inputs x1(n) and x2(n) the outputs are 
y1(n) = T[x1(n)] = n x1(n) 
y2(n) = T[x2(n)] = n x2(n) 

For the weighted sum of inputs a1 x1(n) + a2 x2(n) the output is 
y3(n) = T[a1 x1(n) + a2 x2(n)]= n (a1 x1(n) + a2 x2(n)) 

= a1 n x1(n) + a2 n x2(n) 
= a1 y1(n) + a2 y2(n). Hence the system is linear. 

 

Example 1.4.6 Check y(n) = T[x(n)] = x
2
(n) for linearity. 

Answer For x1(n), the output is y1(n) = x
2 
(n) and for x2(n), y2(n )= x

2 
(n) . 

The weighted sum of outputs = a1 x
2 
(n) + a2 x

2 
(n) ‹ (A) 

1 2 

The output due to a weighted sum of inputs is 

27 of 77 



 
T[.] 

y3(n) = T[a1 x1(n) + a2 x2(n)] = a
2 
x

2 
(n) + a

2 
a

2
2 x

2 
(n) + 2 a1 a2 x1(n) x2(n) ‹(B) 

1 1 2 2 

It is possible to specify a1, a2, x1(n), and x2(n) so that (A) and (B) are not equal. Hence the system 
is nonlinear. 

 

Example 1.4.7 Determine if y(n) = T[x(n)] = 2 x(n) + 3 is linear. 

Answer For x1(n), the output is y1(n) = 2 x1(n) + 3 and for x2(n), it is y2(n) = 2 x2(n) + 3. 
Weighted sum of outputs = a1 (2 x1(n) + 3) + a2 (2 x2(n) + 3) 

= 2 a1 x1(n) + 3 a1 + 2 a2 x2(n) + 3 a2‹ (A) 
The output due to a weighted sum of inputs is 

y3(n) = T[a1 x1(n) + a2 x2(n)] = 2 (a1 x1(n) + a2 x2(n)) + 3 
= 2 a1 x1(n) + 2 a2 x2(n) + 3 ‹ (B) 

It is possible to specify a1, a2, x1(n), and x2(n) such that (A) and (B) are unequal. Hence the 
system is nonlinear. 

(Since the output y(n) = 3 if x(n) = 0 we see that the system violates the “zero-in / zero- 

out” property of linear systems. Hence nonlinear.) 
 

Example 1.4.8 Determine if y(n) = T[x(n)] = Re{x(n)} is linear. 

Answer Note that the input signals as well as the scaling constants a1 and a2 are allowed to be 
complex. Let x1(n) = r(n) + j s(n). Then y1(n) = Re{x1(n)} = r(n). 

The scaling / homogeneity property says that, if the response to x1(n) is y1(n), then the 
response to x2(n) = a.x1(n) is a.y1(n) where a is any constant. Let a = j, and choose x2(n) = a.x1(n) 
= j.x1(n) = j.(r(n) + j s(n)) = –s(n) + j r(n). The corresponding output is y2(n) = Re{x2(n)} = –s(n). 

Thus if y1(n) = T[.] = T[x1(n)] = r(n), then 
y2(n) = T[.] = T[x2(n)] = T[j x1(n)] = –s(n). 

This is not equal to j r(n) as would be expected from the homogeneity property. Hence the 

system is nonlinear. 

 

 

Shift-invariance (time-invariance) 
 

Definition A discrete time system y(n) = T[x(n)] is shift-invariant if, for all x(n) and all n0, we 
have: T[x(n–n0)] = y(n–n0). 

 

This means that applying a time delay (or advance) to the input of a system is equivalent 

to applying it to the output. 

 
 

x(n) y(n) = T[x(n)] 
  

The procedure for determining shift- 

invariance is: 
 

Step 1. Determine output y(n) corresponding to input x(n). 

Step 2. Delay the output y(n) by n0 units, resulting in y(n–n0). 
Step 3. Determine output y(n, n0) corresponding to input x(n–n0). 
Step 4. Determine if y(n, n0) = y(n–n0). If equal, then the system is shift-invariant; 
otherwise it is time-varying. 

 

When we suspect that the system is time-varying a very useful alternative approach is to 

find a counter-example to disprove time-invariance, i.e., use intuition to find an input signal for 
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T[.] 

which the condition of shift-invariance is violated and that suffices to show that a system is not 

shift-invariant. 

 

Example 1.4.9 Test if y(n) = T[x(n)] = x(–n) is shift-invariant. 
 

x(n) y(n) = x(–n) 
  

 
 
 

Answer Find output for x(n), delay it by n0, and compare with the output for x(n-n0). The output 
for x(n) is 

 

y(n) = T[x(n)] = x(–n) 

 

Delaying y(n) by n0 gives 
 

y(n–n0) = x(–(n–n0)) = x(–n+n0) ‹ (A) 
 

As an aside this amounts to reflecting first and then shifting. 

The output for x(n–n0) is denoted y(n, n0) and is given by 

y(n, n0) = T[x(n–n0)] = x(–n–n0) ‹ (B) 

As an aside this amounts to shifting first and then reflecting. 

(A) and (B) are not equal. That is, y(n, n0)  y(n–n0), so the system is time-varying. 

Example 1.4.10 Examine y(n) = T[x(n)] = x(n) + n x(n+1) for time invariance. 

Answer Notice that the difference equation has a time-varying coefficient, n. The output y(n) 

corresponding to x(n) is already given above. Delaying y(n) by n0 gives 
 

y(n–n0) = x(n–n0) + (n–n0) x(n–n0+1) ‹ (A) 
 

Compare with y(n, n0) = T[x(n–n0)] = x(n–n0) + n x(n–n0+1) ‹ (B) 

(A)  (B), so the system is time varying. 
 

Example 1.4.11 Check for time invariance of the system y(n) = T[x(n)] = n x(n). 

Answer We shall do this by counterexample(s) as well as by the formal procedure. The formal 

procedure is: 

 

y(n) = T[x(n)] = n x(n) 

 

Delay this by n0 to get y(n–n0) = (n–n0) x(n–n0) ‹ (A) 

Compare with y(n, n0) = T[x(n–n0)] = n x(n–n0) ‹ (B) 

Since (A)  (B), the system is time-varying. 
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Alternative We expect that it is time varying since the equation has a time varying coefficient. 

Find a counter example to show that the system is time varying. For input x(n) =  (n), the output 
is 

y(n) = n δ(n) = 0 for all n 

 

For input x(n–1) = δ(n–1), the output is 

 
y(n, 1) = n δ(n–1) = 1 δ(n–1) 

 

Thus while x(n–1) is a shifted version of x(n), y(n, 1) is not a shifted version of y(n). So the 

system is time-varying. 

 

Another counter-example If x(n) = u(n), then 

 

y(n) = n u(n) 

 

But if the input is x(n–2) = u(n–2), then 

 

y(n, 2) = n u(n–2) = (n–2+2) u(n–2) = (n–2) u(n–2) + 2 u(n–2) 

 
Delayed version Extra term 

The extra term shows that y(n, 2)  y(n–2). So the system is time-varying. 

Example 1.4.12 Check for time invariance the system y(n) = T[x(n)] = cos (x(n)). 

Answer The output y(n) corresponding to input x(n) is 

y(n) = T[x(n)] = cos (x(n)) 

Delay this output by n0 to get y(n–n0) = cos (x(n–n0)) ‹ (A) 
 

For the input x(n–n0) the output is 

y(n, n0) = T[x(n–n0)] = cos (x(n–n0)) ‹ (B) 
 

Since (A) and (B) are equal we have y(n, n0) = y(n–n0). Therefore the system is time-invariant. 
 

Example 1.4.13 The system y(n) = T[x(n)] = g(n) x(n) needs to be tested for time-invariance. 

Answer Note that the coefficient g(n) is time-varying. Hence, the system is time-varying. The 

output y(n) due to input x(n) is 

 

y(n) = T[x(n)] = g(n) x(n) 

 
Delay this by n0 to get y(n–n0) = g(n–n0) x(n–n0) ‹ (A) 

The output y(n, n0) corresponding to x(n-n0) is given by 

y(n, n0) = T[x(n–n0)] = g(n) x(n–n0) ‹ (B) 

(A)  (B), i.e., y(n, n0)  y(n–n0). Hence, the system is time-varying. 

Example 1.4.14 Check for time–invariance the system y(n) = a
n
 cos (2πn/N). 

Answer The output consists simply of a time-varying coefficient and is independent of the input 

x(n). The output y(n) due to input x(n) is 
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T[.] 

y(n) = T[x(n)] = a
n 
cos (2πn/N) 

 
Delay this by n0 to get y(n–n0) = a

nn0  cos (2π(n–n0)/N) ‹ (A) 

The output y(n, n0) due to input x(n–n0) is given by 

y(n, n0) = T[x(n–n0)] = a
n 
cos (2πn/N) ‹ (B) 

(A)  (B), that is, y(n, n0)  y(n–n0). Hence, the system is time-varying. 
 

Example 1.4.15 Check the system y(n) = n e 
x(n) 

for time-invariance. 

Answer Note time-varying coefficient, n. The output y(n) due to input x(n) is 

y(n) = T[x(n)] = n e 
x(n)

 

Delay this by n0 to get y(n–n0) = (n–n0) e 
x(nn0 )  ‹ (A) 

The output y(n, n0) due to input x(n–n0) is given by 

y(n, n0) = T[x(n–n0)] = ne 
x(nn0 ) ‹ (B) 

(A) and (B) are not equal. Hence, the system is time-varying. 

 

Example 1.4.16 Test the system y(n) = x(2n) for time-invariance. 

 

 
x(n) y(n) = T[x(n)] = x(2n) 

 

 
Answer This system represents time scaling. That is, y(n) is a time-compressed version of x(n), 

compressed by a factor of 2. For example, the value of x that occurred at 2n is occurring at n in 

the case of y. Intuitively, then, any time shift in the input will also be compressed by a factor of 

2, and it is for this reason that the system is not time–invariant. 

This is demonstrated by counter-example (Oppenheim & Willsky, p. 52). It can also be 

shown by following the formal procedure, which we shall do first below. For the input x(n) the 

output is 

y(n) = T[x(n)] = x(2n) 

 

Delay this output by n0 to get 
 

y(n–n0) = x(2(n–n0)) = x(2n–2n0) ‹ (A) 
 

Next, for the input x(n) = x(n–n0) the output is 
 

y(n, n0) = x(2n) = x(2n–n0) ‹ (B) 
 

(A) and (B) are not equal. So the system is not time-variant. 

 

By counter example To show that the system y(n) = x(2n) is not time–invariant by way of a 

counter example consider the x(n) below: 

 

x(n) = 1, –2 ≤ n ≤ 2 
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LSI System 

T[.] 

LSI System 

T[.] 

0, otherwise 

We shall show that y(n, 2) ≠ y(n–2). We express x(n) in terms of unit step functions as 

 

x(n) = u(n+2) – u(n–3) 

 

We determine y(n–2) by first obtaining y(n) and then delaying it by 2 units: 

y(n) ‹ y(n) = x(2n) = u(2n+2) – u(2n–3) 

Delay ‹ y(n–2) = x(2(n–2)) = u(2(n–2)+2) – u(2(n–2)–3) = u(2n–2) – u(2n–7) 

 

Next we determine y(n, 2) by first obtaining x(n–2) and then the corresponding output y(n, 2): 

x(n–2) ‹ x(n–2) = u((n–2)+2) – u((n–2)–3) = u(n) – u(n–5) = x2(n), say 
y(n, 2) ‹ y(n, 2) = x2(2n) = u(2n) – u(2n–5) 

 

We can easily sketch y(n, 2) and y(n–2) and see that y(n, 2) ≠ y(n–2), and therefore the system 

y(n) = x(2n) is not time–invariant. 

Alternatively, this can be done entirely graphically. 

 

 

Application of linearity – Convolution 

An arbitrary sequence, x(n), can be written as the weighted sum of delayed unit sample 

functions: 

x(n) = …+ x(–2) δ(n+2) + x(–1) δ(n+1) + x(0) δ(n) + x(1) δ(n–1) +… 


=  x(k)  (n  k) 
k   

So the response of a linear system to input x(n) can be written down using the linearity 

principle, i.e., linear superposition. For a linear shift-invariant system whose impulse response is 

T[δ(n)] = h(n) the reasoning goes like this 

 

 For an input δ(n) the output is h(n). For an input x(0) δ(n) the output is x(0) h(n) 

by virtue of scaling. 

 For an input δ(n–1) the output is h(n–1) by virtue of shift-invariance. For an input 

x(1) δ(n–1) the output is x(1) h(n–1) by virtue of scaling. 

 Therefore for an input of x(0) δ(n) + x(1) δ(n–1) the output is x(0) h(n) + x(1) h(n– 

1) by virtue of additivity. 
 

This reasoning can be extended to cover all the terms that make up x(n). In general the 

response to x(k) δ(n–k) is given by x(k) h(n–k). 
 

δ(n) T[δ(n)] = h(n) 

 

x(n) T[x(n)] = y(n) 

 

 
Given that 
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we have 



h(n) = T[δ(n)], and x(n) =  x(k)  (n  k) 
k   



   

y(n) = T[x(n)] = T   x(k)  (n  k)
k   

Since T[.] is linear we can apply linearity a countable infinite number of times to write 
 

y(n) = T x(k) (n  k) =  x(k)T[ (n  k)] 
k   k   

In above equation since the system is shift-invariant we write T[δ(n–k)] = h(n–k). Else write 
hk(n) or h(n, k) in place of h(n–k). Thus for a linear shift-invariant system 



y(n) =  x(k)h(n  k) 
k  

Note that if the system is not specified to be shift-invariant we would leave the above 

result in the form 


y(n) =  x(k)h(n, k) 
k 



or y(n) =  x(k)hk (n) 
k  

Then if shift-invariance is invoked we replace h(n, k) with h(n–k). 

As in the case of continuous-time systems, the impulse response, h(n), is determined 

assuming that the system has no initial energy; otherwise the linearity property does not hold, so 

that y(n), as determined using the above equation, corresponds to only the forced response of the 

system. 


The sum  x(k)h(n, k) is called the convolution sum, and is denoted x(n) * h(n). 
k 

A discrete-time linear shift-invariant system is completely characterized by its unit 

sample response h(n). 
 

Theorem If a discrete-time system linear shift-invariant, T[.], has the unit sample response 

T[δ(n)] = h(n) then the output y(n) corresponding to any input x(n) is given by 
 

y(n) =  x(k) h(n  k)=  x(n  k) h(k) 
k   k  

= x(n) * h(n) = h(n) * x(n) 

 
The second summation is obtained by setting m = n–k; then for k = –  we have m = +  , and for 

k =  we have m = – . Thus 
  

 x(k) h(n  k)=  x(n  m) h(m) =  x(n  k) h(k) 
k    m   k   
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m is a dummy variable. The order of summation 
(forward or backward) makes no difference. 

Hence change m to k and switch limits 



Example 1.4.17 [Linear Convolution] Given the input {x(n)} ={1, 2, 3, 1} and the unit sample 

response {h(n)} = {4, 3, 2, 1} find the response y(n) = x(n) * h(n). 

Answer Since x(k) = 0 for k < 0 and h(n – k) = 0 for k > n, the convolution sum becomes 
 n 

y(n) =  x(k) h(n  k)=  x(k) h(n  k) 
k   k   0 

Now y(n) can be evaluated for various values of n; for example, setting n = 0 gives y(0). See 

table below. The product terms shown in bold italics need not be calculated; they are zero 

because the signal values involved are zero. 

 

Linear Convolution of {x(n)} ={1, 2, 3, 1} and {h(n)} = {4, 3, 2, 1} 
n 

y(n) =  x(k) h(n  k) 
k   0 

n = 0 0 

y(0) =  x(k) h(0  k) 
k  0 

= x(0) h(0) 

= 1 . 4 = 4 

n = 1 1 

y(1) =  x(k) h(1  k) 
k  0 

= x(0) h(1) + x(1) h(0) 

= 1 . 3 + 2 . 4 = 11 

n = 2 
2 

y(2) =  x(k) h(2  k) 
k  0 

= x(0) h(2) + x(1) h(1) + x(2) h(0) 

= 1 . 2 + 2 . 3 + 3 . 4 = 20 

n = 3 3 

y(3) =  x(k) h(3  k) 
k  0 

= x(0) h(3) + x(1) h(2) + x(2) h(1) + x(3) h(0) 

= 1 . 1 + 2 . 2 + 3 . 3 + 1 . 4 = 18 

n = 4 
4 

y(4) =  x(k) h(4  k) 
k  0 

= x(0) h(4) + x(1) h(3) + x(2) h(2) + x(3) h(1) + x(4) h(0) 

= 1 . 0 + 2 . 1 + 3 . 2 + 1 . 3 + 0 . 4 = 11 

n = 5 
5 

y(5) =  x(k) h(5  k) 
k  0 

= x(0) h(5) + x(1) h(4) + x(2) h(3) + x(3) h(2) + x(4) h(1) 

+ x(5) h(0) 
= 3 . 1 + 1 . 2 = 5 

n = 6 
6 

y(6) =  x(k) h(6  k) 
k  0 

= x(0) h(6) + x(1) h(5) + x(2) h(4) + x(3) h(3) + x(4) h(2) 

+ x(5) h(1) + x(6) h(0) 
= 1 . 1 = 1 

n = 7 
7 

y(7) =  x(k) h(7  k) 
k  0 

= x(0) h(7) + x(1) h(6) + x(2) h(5) + x(3) h(4) + x(4) h(3) 

+ x(5) h(2) + x(6) h(1) + x(7) h(0) 
= 0 

y(n) = 0 for n < 0 and n > 6 ‡Product terms in bold italics are zero. 
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Sketches of the two sequences x(n) and h(n) are shown below. 
 

 

 

 

 

 

 

 

 

n 
0 1 2 3 

 

 

 

 

 

 

 

 

n 
0 1 2 3 

 

 

To do the convolution we need the sequences x(k) and h(n–k), k being the independent 
variable. Of these x(k) is simply x(n) with k replacing n, shown below. 

 

 

 

 

 

 

 
 

 

k 

0 1 2 3 

h(n–k) = h(–(k–n)) 
 

 

 
 

 

 

 

 

k 

 
 

The sequence h(–k) is the reflected version of h(k). If h(–k) is delayed by n samples we get h(– 

(k–n)) that is h(n–k), shown above. 

For each value of n the sequences x(k) and h(n–k) are multiplied point by point and the 

products are added, yielding the value of y (.) for the corresponding n. 
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x(n) 

x(n) = 0, n < 0 & > 3 

3 

2 

1 
1 

h(n) 

4 
h(n) = 0, n < 0 & > 3 

3 

2 

1 

4 h(n–k) = 0, k > n 

3 

---- 

n–1 n 

x(k) 
x(k) = 0, k < 0 

3 

2 

1 1 



Tabular method The following tabular method uses the second of the two forms, viz., y(n) = 

h(k) x(n  k) , for the convolution sum. 

 
Tabular method of linear convolution 

 
 

n$ 

0 

1 

k‹ –3 –2 –1 0 1 2 3 4 5 6 7  

h(k) ‹    4 3 2 1     

x(k) ‹    1 2 3 1      n y(n) 

x(0–k) 1 3 2 1        0 4 

x(1–k)  1 3 2 1       1 11 

2 x(2–k)   1 3 2 1       2 20 

3 x(3–k)    1 3 2 1      3 18 
4 x(4–k)     1 3 2 1     4 11 

5 x(5–k)      1 3 2 1    5 5 

6 x(6–k)       1 3 2 1   6 1 

7 

. 

x(7–k)        1 3 2 1  7 0 

.            . . 

 

The sequence y(n) is shown plotted below. Note that Ly, the length of y(n), equals the sum of the 
lengths of x(n) and h(n) minus 1: Ly = Lx + Lh – 1. 

 

 

22 
 

 

 

 

 
 

 

 

 

 

 

 

n 
–1 0 1 2 3 4 5 6 7 8 
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y(n) 18 

y(n) = h(k) x(n  k) 

11 11 

4 



MATLAB (Linear Convolution) 
 

xn = [1, 2, 3, 1]; hn = [4, 3, 2, 1]; 

yn = conv(xn, hn) 

M = length(xn) + length(hn) - 1; 

m = 0: M-1; 

stem(m, yn) 

 

The result is: yn = 4 11 20 18 11 5 1 

 

 

 
20 

 
18 

 
16 

 
14 

 
12 

 
10 

 
8 

 
6 

 
4 

 
2 

 

0 
0 1 2 3 4 5 6 
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 y(2) 3 2 1 0
  

 

Matrix-vector multiplication [Proakis, Study Guide, p. 12] When the sequences x(n) and h(n) 

are of finite duration (as in this case) their linear convolution can also be implemented by using 

matrix-vector multiplication. We show below the formulation using the form 

y(n) =  h(k) x(n  k) 

as in the tabular method above. We arrange h(.) and y(.) as vectors (the latter with a length Ly = 
Lx + Lh – 1) and the (Toeplitz) matrix X (of size Ly rows and Lh columns) formed from the 
various shifted versions, x(n–k): 

 

 

 

 

h(.) = 

 

 

 

, y(.) = 




 y(2) 3 

    y(4) 0 2









Note that the Toeplitz matrix may be seen (except for the zeros) in the center part of the table 

given under ―Tabular method‖. →e then evaluate y as the product X . h: 
 

 


 

y(0)

 1 0 0 0

 

y(1) 2 1 0 0



  

4
3

 
y(3)  = 1 3 2 1 .2



0 2  1 









MATLAB has a function called toeplitz that generates the Toeplitz matrix. We could, of course, 

use the alternative form  x(k) h(n  k) in which case we evaluate y = H . x. 
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y(0)

 1 


0 0 0

4


3


y(1) 
 
y(3) and 

2 


X(.,.) = 1 

1 
2 
3 

0 
1 
2 

0
0
1 

2    

1    
1 3 



 
y(5)





0 0 1 3




 y(6) 0 0 0 1

 

 
y(4) 

1 3 


 
y(5)





0 0 1 3




 y(6) 0 0 0 1

 



Example 1.4.18 [Linear Convolution] Given the finite length sequences below find y(n) = 

x1(n)*x2(n). 
 

x1(n) = 1, 0 ≤ n ≤ 3, 

 0, otherwise 

x2(n) = 1, 0 ≤ n ≤ 3 

 0, otherwise 

Solution The MATLAB segment follows: 

 

%Define sequences 

n = 0:3; x1 = ones(size(n)), x2 = ones(size(n)), 

%Length of output 

M = length(x1) + length(x2) - 1; m = 0: M-1; 

yn = conv(x1,x2); stem(m,yn) 

xlabel('n'), ylabel('y(n)'), title('Convolution y(n) = x1(n) * x2(n)'); 
 

 

 

 
4 

 
 

3.5 

 
 

3 

 
 

2.5 

 
 

2 

 
 

1.5 

 
 

1 

 
 

0.5 

 

0 

 
Convolution y(n) = x1(n) * x2(n) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0 1 2 3 4 5 6 

n 
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Example 1.4.19 Given x1(n) = n {u(n+10) – u(n – 20)} and x2(n) = cos (0.1n) {u(n) – u(n – 
30)}, find y(n) = x1(n) * x2(n). 
Solution The intervals over which the sequences are non-zero are defined below: 

 

x1(n) = n, 

0, 

N0 ≤ n ≤ N1, 
otherwise 

N0 = –10, N1 =20 

x2(n) = cos (0.1 n) , N2 ≤ n ≤ N3, N2 = 0, N3 = 30 

 0, otherwise   

y(n) = Non-zero, 

0, 
N4 ≤ n ≤ N5, 
otherwise 

N4 = N0 + N2, N5 = N1 + N3 

 

For (the summation limits) N4 and N5 see DSP-HW. The MATLAB segment and plot are given 
below: 

 

%First sequence over the range N0 to N1 

N0 = -10; N1 = 20; n1 = N0:N1; x1 = n1; 

%Second sequence over the range N2 to N3 

N2 = 0; N3 = 30; n2 = N2:N3; x2 = cos(0.1 * pi * n2); 

%Convolution limits 

N4 = N0+N2; N5 = N1+N3; n = N4:N5; 

yn = conv(x1,x2); stem(n, yn); 

xlabel('n'), ylabel('y(n)'), title('Convolution y(n) = x1(n) * x2(n)'); 
 

 

 
convolution y(n) = x1(n) * x2(n) 

80 

 
 

60 

 
 

40 

 
 

20 

 
 

0 

 
 

-20 

 
 

-40 

 
 

-60 

 

-80 
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n 
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Causality 
 

The constraints of linearity and time-invariance define a class of systems that is represented by 

the convolution sum. The additional constraints of stability and causality define a more restricted 

class of linear time-invariant systems of practical importance. 

 

Definition A discrete-time system is causal if the output at n = n0 depends only on the input for 
n ≤ n0. 

 

The word ―causal‖ has to do with cause and effect; in other words, for the system to act 
up there must be an actual cause. A causal system does not anticipate future values of the input 
but only responds to actual, present, input. As a result, if two inputs to a causal system are 

identical up to some point in time n0 the corresponding outputs must also be equal up to this 
same time. The synonyms of ―causal‖ are ―(physically) realizable‖ and ―non-anticipatory‖. 

We digress below to introduce memory-less versus dynamic systems and then resume 

with causality. 

 

(Aside) Systems with and without memory A system is said to be memory-less or static if its 

output for each value of n is dependent only on the input at that same time but not on past or 

future inputs. 

Examples of static systems 
 

1.  y(n) = x(n) ‹ the identity system 

2. y(n) = a x(n) – x
2
(n) 

3.   A resistor R: y(t) = R x(t) (y(t) is voltage and x(t) is current) 

 

In many physical systems, memory is directly associated with storage of energy. A 

resistor has no storage of energy. But a circuit with capacitors and/or inductors has storage of 

energy and is a dynamic system, i.e., has memory. However, while storage of energy has to do 

with past inputs only, a static system is independent not only of past but also of future inputs. 

Examples of systems with memory, i.e., dynamic systems: 
n 

1. y(n) =  x(k ) . This is an accumulator or summer. The output y(n) depends on 
k  

values of x(.) prior to n such as x(n–1) etc. 
2. y(n) = x(n–1). This is a delay element. 

t 

 1 
3. A capacitor C: y(t) =  x( ) d , (y(.) is voltage and x(.) is current). 

 
(End of Aside) 

C 




Getting back to causality, all memory-less systems are causal since the output responds 

only to the current value of the input. In addition, some dynamic systems (such as the three listed 

above) are also causal. 

An example of a noncausal system is y(n) = x(n) + x(n+1) since the output depends on a 

future value, x(n+1). 

Although causal systems are of great importance, they are not the only systems that are of 

practical importance. For example, causality is not often an essential constraint in applications in 

which the independent variable is not time, such as in image processing. Moreover, in processing 

data that have been recorded previously (non real-time), as often happens with speech, 

geophysical, or meteorological signals, to name a few, we are by no means constrained to causal 
 

41 of 77 



2M 1 

processing. As another example, in many applications, including historical stock market analysis 

and demographic studies, we may be interested in determining a slowly varying trend in data that 

also contain higher frequency fluctuations about that trend. In this case, a commonly used 

approach is to average data over an interval in order to smooth out the fluctuations and keep only 

the trend. An example of such a noncausal averaging system is 
M 

y(n) =
  1 

 
k  M 

x(k ) 

 

Definition A discrete-time sequence x(n) is called causal if it has zero values for n < 0, i.e., x(n) 

= 0 for n < 0. 

 

Theorem A linear shift-invariant system with impulse response h(n) is causal if and only if h(n) 

is zero for n < 0. 

 

Proof of the “If” part By convolution the output y(n) is given by 


y(n) =  x(k) h(n  k) 
k  

If h(n) = 0 for n < 0, then h(n–k) = 0 for n–k < 0 or k > n. So 
n 

y(n) =   x(k) h(n  k) +  x(k) h(n  k) 
k    k  n  1 

= 0 
n 

= x(k) h(n  k) 
k   

Thus y(n) at any time n is a weighted sum of the values of the input x(k) for k ≤ n, that is, only 

the present and past inputs. Therefore, the system is causal. 

 

Proof of the “Only If” part This is proved by contradiction, that is, if h(n) is non zero for n < 0 

then the system is noncausal. Let h(n) be nonzero for n < 0: 

 

h(n) is non zero for n < 0 ‹ h(n–k) is non zero for n–k < 0 or k > n 


‹ the 2
nd

 sum above,  x(k) h(n  k) , is non zero 
k   n  1 

‹ y(n) then depends on x(n+1) and other future terms 

‹ Hence, the system is noncausal 

 

Example 1.4.20 Check the causality of the system y(n) = x(–n). 

Answer If n is some positive value then y(n) depends only on past values of the input x(.). But if 

n is negative, say n = –2, then 

 

y(–2) = x(–(–2)) = x(2), a future value of input 

Hence the system is noncausal. 

Example 1.4.21 Check the system y(n) = x(n) cos (n+1) for causality. 

Answer Note that x(.) is the input, not the cos (.). In this system, the output at any time n equals 

the input at that same time multiplied by a number that varies with time. We can write the 

equation as y(n) = g(n) x(n), where g(n) = cos (n+1) is a time-varying function. Only the current 
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value of the input x(.) determines the current output y(.). Therefore the system is causal (and also 

memoryless). 

 
Example 1.4.22 Check the system y(n) = T[x(n)] = ne 

x(n) 
for causality. Answer Causal. 

Example 1.4.23 Check the system y(n) = T[x(n)] = a
n 
cos (2πn/N) for causality. Answer Causal. 

Example 1.4.24 Check the system y(n) = T[x(n)] = cos (x(n)) for causality. Answer Causal. 

Example 1.4.25 Check the system y(n) = T[x(n)] = x(–n+2) for causality. 
Answer For n ≤ 0 the argument of x, viz., –n+2 will be ≥ 2. For example, if n = 0 we have 

 

y(0) = x(2), a future value of input 
 

Hence the system is noncausal. 
n 

Example 1.4.26 Check the system y(n) = T[x(n)] =  x(k) for causality. Answer Causal. 
k  n0 

n  n0 

Example 1.4.27 Check the system y(n) = T[x(n)] =  x(k) for causality. 
k   n  n0 

n  n0  n 

Answer y(n) =  x(k) =   x(k ) + x(n+1) + x(n+2) + …+ x(n+n0) 
k   n  n0 k   n  n0 

Future terms 

 
The system is noncausal since y(n) depends on future values of the input. 

 

(Aside) A streamable system is one that is either causal or can be made causal by adding an 

overall delay. The system y(n) = x(n+1) is not causal but can be made so and is therefore 

streamable. But y(n) = x(–n) is not streamable since it can‟t be made causal. 

 

Bounded input bounded output stability 
 

Definition A sequence x(n) is bounded if there exists a finite M such that |x(n)| < M for all n. 

(Note that, as expressed here, M is a bound for negative values of x(.) as well. Another way of 

writing this is –M < x(n) < M.) 

 
As an exa


mpl


e, the seque


nce x(n) = [1+cos 5πn] u(n) is bounded with |x(n)| ≤ 2. The 

(1 
sequence x(n) = 

n) sin10n u(n) is unbounded.  
1  (0.8)

n 


 


Definition A discrete-time system is bounded input-bounded output (BIBO) stable if every 

bounded input sequence x(n) produces a bounded output sequence. That is, if |x(n)|  M < , then 

|y(n)|  L < . 

 

BIBO stability theorem A linear shift invariant system with impulse response h(n) is bounded 

input-bounded output stable if and only if S, defined below, is finite. 
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S =    h(k)  < 
k   

i.e., the unit sample response is absolutely summable. 

 

Proof of the “If” part Given a system with impulse response h(n), let x(n) be such that |x(n)| 

M. Then the output y(n) is given by the convolution sum: 


y(n) =  h(k)x(n  k) 
k   

so that 
 

 


|y(n)| =  h(k) x(n  k) 
k   

Using the triangular inequality that the sum of the magnitudes  the magnitude of the sum, we 

get 


|y(n)|   h(k)x(n  k) 
k   

Using the fact that the magnitude of a product is the product of the magnitudes, 


|y(n)|   h(k) x(n  k) 
k   



 M  h(k) 
k   

Thus, a sufficient condition for the system to be stable is that the unit sample response must be 

absolutely summable; that is, 


 h(k)  
k  

QED 

 

Proof of the “Only If” part That it is also a necessary condition can be seen by considering as 

input, the following bounded signal (this is the signum function), 

 
 1 where h(n–k) > 0 

x(k) = sgn [h(n–k)] = 0 where h(n–k) = 0 
 –1 where h(n–k) < 0 

 

Or, equivalently, 

1 where h(k) > 0 
x(n–k) = sgn [h(k)] = 0 where h(k) = 0 

–1 where h(k) < 0 

 

In the above we have implied that M = 1 (since M is some arbitrary finite number), and that |x(n)| 

 1. If, however, |x(n)|  M where M is finite but not equal to 1 we then will multiply the signum 

function by M. In either case x(n) is a bounded input. Thus 
  

y(n) = h(k) x(n  k) =  h(k) sgn[h(k)] =  h(k) 
k    k    k  

Clearly, if h(n) is not absolutely summable, y(n) will be unbounded. QED 
For a causal system the BIBO stability condition becomes 
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 h(k)  
k  0 

 

Example 1.4.28 Evaluate the stability of the linear shift-invariant system with the unit sample 

response h(n) = a
n
 u(n). 

Answer Evaluate 
   

S =   h(k) =    ak
u(k) =  ak  

=   a 
k 

k    k   k  0 k  0 

Here we have used the fact that the magnitude of a product (|a
k
|) is the product of the magnitudes 

(|a|
k
). The summation on the right converges if |a| < 1 so that S is finite, 

S = 
1
 

 

and the system is BIBO stable. 

 

Example 1.4.29 Evaluate the stability of the system y(n) = T[x(n)] = n x(n). 

Answer (Note that this is not a shift-invariant system, though it is linear as we determined 

elsewhere. The BIBO stability theorem applies to LSI systems. Note that if x(n) = δ(n) we get the 

result y(n) = h(n) = 0, for all n!) 

If a system is suspected to be unstable, a useful strategy to verify this is to look for a 

specific bounded input that leads to an unbounded output. One such bounded input is x(n) = 

u(n), the unit step sequence. The output then is y(n) = n u(n), and as n‹∞, y(n) grows without 

bound. Hence the system is BIBO unstable. 

 

Example 1.4.30 Examine y(n) = T[x(n)] = e
x(n) 

for stability. 

Answer This system is nonlinear as determined elsewhere. Its unit sample response is given by 

setting x(n) = δ(n) and is given below 

 

h(n) = e, n = 0 

1, n   0 

Here we are unable to find a bounded input that results in an unbounded output. So we 

proceed to verify that all bounded inputs result in bounded outputs. Let x(n) be an arbitrary 

signal bounded by B an arbitrary positive number, 

 

|x(n)| < B or –B < x(n) < B for all n 

 

Then y(n) = e
x(n) 

must satisfy the condition e
–B

 < y(n) < e
B
. Or, the output is guaranteed to be 

bounded by e
B
. Thus the system is BIBO stable. 

 

Example 1.4.31 Check for stability the system y(n) = a
n
 cos (2πn/N) 

Answer The output is independent of the input. The system is stable for |a|  1, otherwise it is 

unstable. 
 

Example 1.4.32 y(n) = x
2
(n) 

Answer For any |x(n)| < B, we have y(n) = x
2
(n) < B

2
. Hence the system is stable. 

 

Convolution - Properties 
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1  a 



h1(n) + h2(n) 

h1(n)*h2(n) 

Property 1 The convolution operation is commutative, that is, x(n) * h(n) = h(n) * x(n). 

 

A linear shift-invariant system with input x(n) and unit sample response h(n) will have 

the same output as a linear shift-invariant system with input h(n) and unit sample response x(n). 

 

Property 2 The convolution of h(n) with δ(n) is, by definition, equal to h(n). 

 

That is, the convolution of any function with the δ function gives back the original 

function. Stated another way: The identity sequence for the convolution operator is the unit 

sample, or 

 

x(n) * δ(n) = δ(n) * x(n) = x(n) 

 

Property 3 The convolution of a delayed unit sample sequence with x(n) 

x(n) * δ(n–k) = x(n–k) 

Property 4 Associativity 
 

x(n) * (y(n) * z(n)) = (x(n) * y(n)) * z(n) = x(n) * y(n) * z(n) 

 

Property 5 Distributivity over sequence addition. 

 

x(n) * (y(n) + z(n)) = x(n) * y(n) + x(n) * z(n) 

 

Block diagram manipulation The properties of commutativity, associativity and distributivity 

enable us to determine the impulse response of series or parallel combinations of systems in 

terms of their individual impulse responses, as below: 

 

(1) The following three LSI systems have identical unit sample response: 
 

x(n) 
 

 
(a) 

y(n) x(n) 
 

 

 

(b) y(n) 
 

 

 

 

x(n) y(n) 
  

 

(c) 
 

(2) The following two LSI systems are equivalent: 

 

 

 
x(n) y(n) 
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h1(n) 

h2(n) 

x(n) 

h2(n) 

h1(n) 

y(n) 
+ 

h1(n) h2(n) 



h1(n)*h2(n) + h1(n)*h3(n) 

k 1  a0 

(3) A combination of the above two is the series parallel combination: 
 
 

 

x(n) y(n) 

 

 

 
Convolution – Overlap-and-add See Unit II. 

 
 

Linear constant coefficient difference equations 
 

A subclass of linear shift-invariant systems is that for which the input x(n) and output y(n) satisfy 

an N
th

 order linear constant coefficient difference equation, given by 

 
a0 y(n) + a1 y(n–1) + … + aN y(n–N) 

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0  0 

This may be written in the more compact, though daunting, form 
N M 

ak  y(n  k ) = br x(n  r) , a0  0 
k  0 r  0 

If the system is causal, then we can rearrange the above equation to compute y(n) 

iteratively from the present input x(n) and the past inputs x(n–1), x(n–2), …, x(n–M) and the past 

outputs y(n–1), y(n–2), …N   ,
y(n


–N): 

y(n) = –  
ak   y(n  k) + ( 

 

If we think of the input as beginning at n = 0, then y(n) can be computed for all n  0 once y(–1), 

y(–2), …, y(–N) are specified. This is an iterative solution. 

 

(Aside) Some write the difference equation with the terms y(n–1) through y(n–N) on the right 

hand side with positive (symbolic) coefficients and the coefficient of y(n) = 1, thus 

 

y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) + a1 y(n–1) + … + aN y(n–N) 
 

If we need to use this form we shall use different symbols altogether as follows: 

 
y(n) = β0 x(n) + β1 x(n–1) + … + βM x(n–M) + α1 y(n–1) + … + αN y(n–N) 

(End of Aside) 
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y(n) 
+ 

h3(n) 

h2(n) 

x(n) 
h1(n) 



Example 1.5.1 [First order system] For the first order system y(n) – a y(n–1) = x(n) find the 

output sequence y(n) assuming y(n) = 0 for all n < 0 and x(n) = δ(n). This corresponds to 

calculating the impulse response assuming zero initial conditions. 

 

 

y(n) = a y(n–1) + x(n) = a y(n–1) + δ(n) 

n = 0:  y(0) = a y(–1) + δ(0) = a. 0 + 1 = 1 

n = 1:   y(1) = a y(0) + δ(1) = a . 1 + 0 = a 

n = 2: y(2) = a y(1) + δ(2) = a . a + 0 = a2 

n = 3 … 

 

Continuing the process we have y(n) = a
n 
, n  0. This is also the unit sample response h(n) = 

a
n 
u(n). It is not always possible to express y(n) as an analytical expression (closed form) as 

above. 

 

Note It is also possible to recast the above problem as a noncausal or negative-time system with 

y(n) = 0 for n  0. In this case, solving for y(n–1), we have 

y(n–1) = 
1 
y(n)  x(n)

a 
This can be recast (by letting (n–1) = m etc.) as 

1 
y(n  1)  x(n  1), n < 0 

a 

The solution now is y(n) = – a
n 
, for n < 0, or the impulse response is h(n) = – a

n 
u(–n–1). 

 

Note Unless stated otherwise we shall generally assume that the difference equation represents a 

causal system. 

 

Other techniques for solving difference equations Among other techniques is a method 

paralleling the procedure for solving linear constant coefficient differential equations, which 

involves finding and combining the particular and homogeneous solutions. Another method 

uses the z-transform (paralleling the Laplace transform). The state variable approach provides 

another formulation of the problem and solutions in the time as well as frequency domains. 
 

 

Example 1.5.2 (Moving average filter) The three-term average y(n) = 

as a lead-in to FIR and IIR, see below. 

x(n)  x(n 1)  x(n  2) 

3 

“FIR”, “IIR”, “Recursive” and “Nonrecursive” In the first example above the impulse 

response h(n) = a
n 
, n  0 lasts for all positive time and is of infinite duration. In the second 

example (moving average) h(n) = {1/3, 1/3, 1/3} which is of finite duration. 

 

Definition If the unit sample response of a linear shift invariant system is of infinite duration, the 

system is said to be an infinite impulse response (IIR) system. 

 

Definition If the unit sample response of a linear shift invariant system is of finite duration, the 

system is said to be a finite impulse response (FIR) system. 

 

Theorem A causal linear shift invariant system characterized by 
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y(n) = 



k 1  a0 

N M 

 ak y(n  k ) =  br x(n  r) 
k  0 r  0 

represents a finite impulse response (FIR) system if a0  0, and ak = 0 for k = 1, 2, …, N. 
[Otherwise it could represent either an IIR or FIR system.] This is equivalent to saying that for 
an FIR system N = 0. For an FIR system then we have 

M 

a0 y(n) =  br x(n  r) , or 
r  0 

M    b  

y(n) =  r x(n  r) 
r  0 a0 

The above difference equation is identical to the convolution sum, and the (br/a0) terms can be 
recognized as h(r), the value of the unit sample response at time r, i.e., we can set (br/a0) = hr = 
h(r). So the impulse response, h(n), is given by 

 

h(n) = (bn/a0), 0  n  M 

0, otherwise 

which, obviously, is of finite duration. 

Note: If the above difference equation were written so that a0 = 1, we have y(n) = 

M 

br x(n  r) . 
r  0 

In this case the impulse response consists simply of the coefficients br  of the x(n–r) terms. 

Iterative solution with initial conditions The LTI discrete-time system can be characterized by 
N M 

ak  y(n  k ) = br x(n  r) , a0  0, and n  0  (A) 
k  0 r  0 

Here N is the order of the difference equation. When written out in full the equation is 

 
a0 y(n) + a1 y(n–1) + … + aN y(n–N) 

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0  0, and n  0 

The equation can be divided through by a0 so that the coefficient of y(n) is 1 or, alternatively, we 
could impose the equivalent condition that a0 = 1. 

An alternative form of the above equation is sometimes given as 
N M 

 ak y(n  k ) = br x(n  r) , n  0  (A‟) 
k  0 r  0 

In this form, if the system is causal, we must have M  N. 

The solution to either one of the above equations can be determined (by analogy with the 

differential equation) as the sum of two components: (1) the homogeneous solution, which 

depends on the initial conditions assumed to be known, and (2) the particular solution, which 

depends on the input. 

Computing y(n) for successive values of n one after another is called an iterative solution. 

To obtain y(n) for n  0 Nfro
m E


q. (A) we rearrange it as 

y(n) = –  
ak   y(n  k) + ( ,  (B) 
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and evaluate y(n) for n = 1, 2, … in an iterative manner. →e need the initial conditions y(–1), y(– 

2), …, y(–N). The initial conditions needed to solve for y(n) using Eq. (A‟) in a similar fashion 

are y(0), y(1), …, y(N–1). 

We may assume that the system described by Eq. (A) is in a condition of initial rest, that 

is, if x(n) = 0 for n < 0, then y(n) = 0 for n < 0 as well. With initial rest the system (A) is LTI and 

causal. 

An equation of the form (A) or (B) is called a recursive equation since it specifies a 

recursive procedure to determine the output y(n) in terms of the input and previous output values. 

In the special case where N = 0, Eq. (B) reduces to 

y(n) = ( ,  (C) 

Here y(n) is an explicit function of the present and previous values of the input only. Eq. (C) is 

called a non-recursive equation, since we do not recursively use previously computed values of 

the output in order to calculate the present value of the output. 

 

Example 1.5.3 Find the solution to 

y(n) –  
3 

y(n–1) +  
1 

y(n–2) = 
1 

, n  0 

with the initial conditions y(–1) = 4 and y(–2) = 10. 

Answer Note that the input is x(n) = (  . This is the iterative solution in the time domain. We 

can write y(n) =  
3 

y(n–1) –  
1 

y(n–2) + 
1  

, and solve for y(n) starting with n = 0: 

y(n) – ( y(n–1) + ( y(n–2) = ( , n  0 

y(–1) = 4, and y(–2) = 10 
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n y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)
n
 y(n) 

0 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)
n
 

y(0) = (3/2) y(0–1) – (1/2) y(0–2) + (1/4)
0
 

2 

 = (3/2) y(–1) – (1/2) y(–2) + (1/4)
0
  

 = (3/2) (4) – (1/2) (10) + (1)  

1 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)
n
 

y(1) = (3/2) y(1–1) – (1/2) y(1–2) + (1/4)
1
 

5/4 

 = (3/2) y(0) – (1/2) y(–1) + (1/4)
1
  

 = (3/2) (2) – (1/2) (4) + (1/4)  

2 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)
n
 

y(2) = (3/2) y(2–1) – (1/2) y(2–2) + (1/4)
2
 

15/16 

 = (3/2) y(1) – (1/2) y(0) + (1/4)
2
  

 = (3/2) (5/4) – (1/2) (2) + (1/16)  

3 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)
n
 

y(3) = (3/2) y(3–1) – (1/2) y(3–2) + (1/4)
3
 

51/64 

 = (3/2) y(2) – (1/2) y(1) + (1/4)
3
  

 = (3/2) (15/16) – (1/2) (5/4) + (1/64)  

4 y(n) = (3/2) y(n–1) – (1/2) y(n–2) + (1/4)
n
 

y(4) = (3/2) y(4–1) – (1/2) y(4–2) + (1/4)
4
 

? 

 = (3/2) y(3) – (1/2) y(2) + (1/4)
4
  

 = (3/2) (51/64) – (1/2) (15/16) + (1/256)  

. Etc. . 

 



2 

The solution is 

y(n) = 
 

, 5 15 
, , 

 
51 

,...

 4 16 64 
This procedure does not, in general, yield an analytical expression for y(n), that is, a 

closed-form solution. But it is easily implemented on a digital computer. 

 

Example 1.5.4 [MATLAB] [Zero initial conditions] In the context of MATLAB, we may use 

filter(b, a, x) to generate the sequence y(n). In MATLAB the coefficients of y(.) and x(.) are 

numbered slightly differently as below: 

 

a1 y(n) + a2 y(n–1)+ a3 y(n–2) + …= b1 x(n) + b2 x(n–1)+ b3 x(n–2)+ … 
 

From the difference equation 
 

y(n) –  (3 / 2) y(n–1) +  (1/ 2)  y(n–2) =  1/ 4n 
, n  0 

we note that the input is x(n) = 1/ 4n 
and the coefficients of y(.) and x(.) give us the a and b 

vectors, respectively: a = [1, -1.5, 0.5] and b = [1]. The following segment generates the output 

with initial conditions taken as zero. 

 

%Zero initial conditions 
b = [1]; a = [1, -1.5, 0.5]; 

n = 0:25; xn = (1/4) .^n; %―.^‖ means element-by-element exponentiation 

yn = filter(b, a, xn), %Or, yn = filter(1, a, xn) 

subplot(2, 1, 1), stem(n, xn); 

xlabel('n'), ylabel('x(n)'); title('Input Sequence'); 

subplot(2, 1, 2), stem(n, yn); 

xlabel('n'), ylabel('y(n)'); title('Output Sequence'); 

 

The solution is: 

yn = [1 1.75 2.1875 2.4219 2.5430 2.6045 2.6355 … 2.6667 2.6667 2.6667] 
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1 

 
 
 

0.5 

 
 

 
0 

 
 

 
3 

 

 
2 

 

 
1 

 
 

0 

Input Sequence 

 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 

n 

Output Sequence 

 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 

n 

 
 
 

Example 1.5.5 [MATLAB] [Non-zero initial conditions] Find the solution to the difference 
equation 

y(n) –  (3 / 2) y(n–1) +  (1/ 2)  y(n–2) =  1/ 4n 
, n  0 

with the initial conditions y(–1) = 4 and y(–2) = 10. 

If the problem specifies non-zero initial conditions, they must first be converted to 

―equivalent initial conditions‖ for the filter function to work. In this problem y(–1) = 4 and y(–2) 

= 10. These are specified as a vector yic = [4, 10] and used to generate the equivalent initial 

conditions eic by the function filtic(b, a, yic). The equivalent initial conditions are then used to 

generate the filter output through filter(b, a, xn, eic). The MATLAB segment follows: 
 

%Non-zero initial conditions 

b = [1]; a = [1, -1.5, 0.5]; yic = [4, 10]; 

n = 0:25; xn = (1/4) .^n; %―.^‖ means element-by-element exponentiation 

% 

%Equivalent initial conditions 

eic = filtic(b, a, yic); 

yn = filter(b, a, xn, eic) 

subplot(2, 1, 1), stem(n, xn); 

xlabel('n'), ylabel('x(n)'); title('Input Sequence'); 

subplot(2, 1, 2), stem(n, yn); 

xlabel('n'), ylabel('y(n)'); title('Output Sequence'); 

 

The output is: 

yn = [2 1.25 0.9375 0.7969 0.7305 0.6982 0.6824…0.6667 0.6667 0.6667] 
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x
(n

) 
y
(n

) 



 
1 

 
 
 

0.5 

 
 

 
0 

 
 

 
2 

 
1.5 

 
1 

 
0.5 

 
0 

Input Sequence 

 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 

n 

Output Sequence 

 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 

n 

 
 

 
(Omit) Recursive realization of FIR system – a simple example The moving average of the 

signal x(n) is given by 

y(n) = 
x(n)  x(n 1)  x(n  2)  ... x(n  M ) 

 
 

M 1 

Since past values of y(.) are not used in computing y(n) this is a nonrecursive implementation of 

the FIR filter. The impulse response is 
 

n = 0  M  
h(n) = 

 1 
, 1 1 , …, 

1  A total of 
 

 
 

 , 

 M  1 M  1 


M  1 M  1

M+1 terms 

 

which consists of (M+1) samples or coefficients. We recognize, by replacing n by (n–1) in the 
above equation, that 

y(n–1) = 
x(n 1)  x(n  2)  ... x(n  M )  x(n  M 1) 

 
 

M 1 
‹ (1) 

By adding and subtracting 
x(n  M 1) 

 

 

M 1 
on the right hand side of the equation for y(n) we can 

arrive at a recursive implementation of the moving average: 
x(n)  x(n 1)  x(n  2)  ... x(n  M )  x(n  M 1)  x(n  M 1) 

y(n) = 

Using eq. (1) we can write y(n) as 
x(n)  x(n  M 1) 

M 1 

y(n) = y(n–1) + 
 

 

M 1 

which clearly is a recursive implementation since it involves y(n–1), a past value of y. 
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y
(n

) 
x
(n

) 



H(z) = 
i  0

 

(End of Omit) 

 

Further nomenclature If we take a0 = 1 our standard difference equation becomes 
y(n) + a1 y(n–1) + … + aN y(n–N) 

= b0 x(n) + b1 x(n–1) + … + bM x(n–M) 
This is an N

th
 order difference equation. 

A moving average (MA) filter is one with its output dependent on the present and 

previous inputs. The average here is a weighted average, the weights being the b coefficients. In 

terms of the above difference equation this corresponds to N = 0 and the difference equation 

becomes 

 

y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) 
 

There is some variation on the form of this equation. As given here it has (M+1) coefficients and 

M delay elements. Sometimes it is more convenient to use this with M coefficients rather than 

(M+1). Either way its order is N = 0. Note that we have tied the order to the oldest term in y(.) 

and not to the oldest term in x(.). See Aside below. 

An autoregressive (AR) filter is one with its output dependent on the present input (but 

not previous inputs) and previous outputs – this is a purely recursive system. In terms of the 

above difference equation this corresponds to M = 0 and is of the form 

 

y(n) = b0 x(n) – a1 y(n–1) – … – aN y(n–N) 
 

More generally, an autoregressive moving average (ARMA) filter has its output depend 

on the present input, M previous inputs, and N previous outputs. In terms of the linear constant 

coefficient difference equation this has the form 

 

y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) – a1 y(n–1) – … – aN y(n–N) 
 

(Aside) With a0 = 1 we have 
M 

biz i 

N 

1   ai z 
i

 

i 1 

This represents an IIR filter if at least one of a1 through aN is nonzero, and all the roots of the 

denominator are not canceled exactly by the roots of the numerator. For example, in the system, 

H(z) = (1 z
8 

) (1 z
1 

) , the single pole at z = 1 is canceled exactly by the zero at z = 1, making 

H(z) a finite polynomial in z 
1 

, that is, an FIR filter. 

In general, there are M finite zeros and N finite poles. There is no restriction that M 

should be less than or greater than or equal to N. In most cases, especially digital filters derived 

from analog designs, M will be less than or equal to N. Systems of this type are called N
th

 order 

systems. 

When M > N, the order of the system is no longer unambiguous. In this case, H(z) may be 

taken to be an N
th

 order system in cascade with an FIR filter of order (M – N). 

When N = 0, as in the case of an FIR filter, according to our convention the order is 0; it 

is more useful in this case to focus on M and call it an FIR filter of M stages or (M+1) 

coefficients. 

(End of Aside) 
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Fourier analysis of discrete-time signals and systems 
 

Note For the discrete-time Fourier transform some authors (Oppenheim & Schafer, for instance) 

use the symbol X(e
jω

) while others (Proakis, for instance) use the symbol X(ω). The symbol ω is 

used for digital frequency (radians per sample or just radians) and the symbol Ω for the analog 

frequency (radians/sec). Some authors, on the other hand, use just the opposite of our 

convention, that is, ω for the analog frequency (radians/sec) and Ω for the digital frequency 

(radians). 
 

Discrete-time Fourier transform (DTFT) For the continuous-time signal x(t), the Fourier 

transform is 


F{x(t)} = X(Ω) = x(t) e
 j t 

dt 


The impulse-train sampled version, xs(t), is given by 


xs(t) = x(t)  (t  nT ) 
n  

So the Fourier transform of xs(t) is given by 
     

s 
   

Xs(Ω) =   x (t)e
 j t 

dt =  x(t)  (t  nT ) e
 j t 

dt 

  


=   x(nT ) e
 j nT 

n  

n   

where the last step follows from the sifting property of the δ function. Replace ΩT by ω the 

discrete-time frequency variable, that is, the digital frequency. Note that Ω has units of 

radians/second, and ω has units of radians (/sample). This change of notation gives the discrete- 

time Fourier transform, X(ω), of the discrete-time signal x(n), obtained by sampling x(t), as 


X(ω) = F{x(n)} =  x(n) e
 j n

 

n  

Note that this defines the discrete-time Fourier transforms of any discrete-time signal x(n). The 

transform exists if x(n) satisfies a relation of the type 


 x(n) 
n  



< ∞ or  x(n) 
2 
<∞ 

n  

These conditions are sufficient to guarantee that the sequence has a discrete-time Fourier 

transform. As in the case of continuous-time signals there are signals that neither are absolutely 

summable nor have finite energy, but still have a discrete-time Fourier transform. (See also p. 22, 

O & S.) 

 

Discrete-time Fourier transform of (non-periodic) sequences The Fourier transform of a 

general discrete-time sequence tells us what the frequency content of that signal is. 

 

Definition The Fourier transform X(e
jω

) of the sequence x(n) is given by 


F{x(n)} = X(ω) =  x(n) e
 j n

 

n  

The inverse Fourier transform is given by 

‹ (A) 
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  1 



F-1{X(ω)} = x(n) =  X (e 
j 

) e 
j n

d ‹ (B) 

2 
Equations (A) and (B) are called the Fourier transform pair for a sequence x(n) with X(ω) 

thought of as the frequency content of the sequence x(n). Equation (A) is the analysis equation 

and equation (B) is the synthesis equation. Since X(ω) is a periodic function of ω, we can think 

of x(n) as the Fourier coefficients in the Fourier series representation of X(ω). That is, equation 

(A), in fact, expresses X(ω) in the form of a Fourier series. 

The sketch below sums up the relationship between the time and frequency domains. The 

periodicity is 2π. From the relation ω = ΩT we can deduce that at the point ω = 2π on the 

horizontal axis Ω = ω/T = 2π/T = 2πFs = Ωs. In other words, in terms of the analog frequency 

variable the point ω = 2π corresponds to Ω = Ωs or F = Fs. 

 

 

 

 

 

 

 
n 

 
 

X(ω) 

Periodic, complex-valued 
 

 



–2  –   2



(Omit) Relationship to the z-transform The z-transform X(z) and the Fourier transform X(ω) are 

given by 


X(z) = x(n) z 
 n 

n 



and X(ω) =  x(n)e
 j n

 

n 

Comparing the two we deduce the relationship as 


X (z) j

z e  X(ω) =  x(n) e 
 j n 

n 

The z-transform evaluation on the unit circle gives the Fourier transform of the sequence 

x(n). The z-transform of x(n) can be viewed as the Fourier transform of the sequence {x(n) r
–n

}, 

that is, x(n) multiplied by an exponential sequence r
–n

. This can be seen by setting z = r e
jω

 in the 

defining equation of X(z): 
 

X(z) =   x(n) r e 
j   n  

=    x(n) r 
n  

e
 j n

 

n 

z 
n 

x(n) multiplied by the 

exponential sequence r
–n
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x(n) Non-periodic 

0 



1 ae 

 

Z-transform of a periodic sequence Consider a sequence x(n) that is periodic with period N so 

that x(n) = x(n+kN) for any integer value of k. Such a sequence cannot be represented by its z- 

transform, since there is no value of z for which the z-transform will converge. 

(End of Omit) 

 

Example 1.6.1 [Cf. Example 4.2.3, Proakis, 4
th
 Ed.] For the exponential sequence x(n) = a

n 
u(n), 

|a| < 1, the DTFT is 
 



X (e 
j 

) = a
n  

e
 j n  

=  ae
 j  n  

= 
1 

 j
  1  
1  a(cos   j sin ) 

n  0 n  0 

We shall put this in the form X(ω)= Magnitude {X} e 
j Phase{X } 

= X() 

magnitude and phase will be extracted. The denominator (Dr.) is 

e 
jX ( ) 

from which the 

 
1  

   a sin 
   j tan    




Thus 

Dr. = 1 a cos  ja sin = (1 a cos)
2 
 a

2 
sin

2  e  1a cos 


jX ( ) 1  a sin 
1 

X(ω) = |X(ω)| e 

The magnitude and phase are: 

= 
  e 

(1  a
2 
 2a cos) 

 j tan  1a cos 
 

|X(ω)| = 
1 

and X() =  tan
1 a sin  




 

(1  a
2 
 2a cos ) 1 a cos 

Plots of |X| and X are shown. Note that X(ω) is periodic and that the magnitude is an even 

function of ω and the phase is an odd function. (See below on the notation |X| and X ). 

The value of X (e 
j 

) at ω = 0 is 

X () =  1 
=

 1 
 

 0 
(1  a

2 
 2a cos 0) 1  a 

X () =  tan1 a sin0  = 0 
 0 

 




Similarly, at ω =  we have 

1  a cos 0 
X () =  1/(1 a) 

 

and X () = 0. 
 



Phase angle of a complex number In calculating the phase angle of a complex number, z = 

Re(z) + j Im(z), a hand held calculator, typically uses the formula tan1Im( z) / Re( z), and returns an 

answer in the range –/2 < angle ≤ /2. Thus for both (1–j) and (–1+j) the phase angle so 

calculated is /4. However, (1–j) is in the 4
th
 quadrant with (1 j) = –/4 whereas (–1+j) is in 

the 2
nd

 quadrant with (1 j) = 3/4. MATLAB has a function angle which takes into account 

the real and imaginary parts separately (instead of their ratio) and calculates the ―four-quadrant 

inverse tangent‖. 

 
Example 1.6.2 [MATLAB fplot] To illustrate the magnitude and phase plots of the DTFT we 

take a = 0.8 in the exponential sequence x(n) = a
n 
u(n), |a| < 1, treated above. Thus x(n) = 

(0.8)
n 
u(n). We need only plot over the interval –π ≤ ω ≤ π or 0 ≤ ω ≤ 2π. To show, visually, the 

periodicity we have plotted over –3π ≤ ω ≤ 3π. We have  

X (e 
j 

) = a
n  

e
 j n  

=  ae
 j  n  

= 
1 

 j    = 1 
 j





n  0 n  0 

1 ae 1  0.8 e 
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In the MATLAB program segment that follows we write an algebraic expression for 

X (e j )=  
1 

as (1) / (1-0.8*exp(-j*w)). Note that we have used „w‟ for ω and the plot 1 
 0.8 e

 j


ranges from –2 to 2. Both ω and the phase, X() , are in radians. The parameter 'k' means that 

the plot/display is in black ―color‖. 

 

subplot(2,1,1);fplot('abs((1)/(1-0.8*exp(-j*w)))', [-3*pi,3*pi], 'k'); 

xlabel('\omega');ylabel('Magnitude'); 

subplot(2,1,2);fplot('angle((1)/(1-0.8*exp(-j*w)))', [-3*pi,3*pi], 'k'); 

xlabel('\omega');ylabel('Phase'); 
 

X () 

 

 
 0 

= 
1 

= 
1  a 

1 
= 5 

1 0.8 

X () = 1/(1 a) 
 

= 1/1.8 = 0.555 
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Example 1.6.3 [MATLAB freqz] We repeat the frequency response plots using the freqz 

function. Taking a = 0.8 as before, we have x(n) = (0.8)
n 
u(n) and 

 

X (e 
j 

) = a
n  

e
 j n  

=  ae
 j  n  

= 
1 

 j    = 1 
 j





n  0 n  0 

1 ae 1  0.8 e 

Instead of writing an algebraic expression for X (e 
j 

)= 
1 

as in the previous example, we 

1  0.8 e
 j



shall now specify the numerator and denominator in terms of their coefficients. We shall use the 

following convention to specify the parameters of the function 

X (e 
j 

) = b(1)  b(2)e 
 j 

 b(3)e
 j 2 

 ... 


 =
  1  

a(1)  a(2)e  
j  
 a(3)e

 j 2 
 ... 1  0.8 e

 j


Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In 
our example b(1) = 1, a(1) = 1, and a(2) = –0.8. The MATLAB segment and the corresponding 

plots follow. Note that the plot goes from – to , not –3 to 3. 

b = [1]; %Numerator coefficient 

a = [1, -0.8]; %Denominator coefficients 

w = -pi: pi/256: pi; %A total of 512 points 

[Xw] = freqz(b, a, w); 

subplot(2, 1, 1), plot(w, abs(Xw)); 

xlabel('Frequency \omega'), ylabel('Magnitude of X(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Xw)); 

xlabel('Frequency \omega'), ylabel('Phase of X(\omega)'); grid 

 

 
6 

 

 
4 

 

 
2 

 
 

0 
-4 -3 -2 -1 0 1 2 3 4 

Frequency 

1 

 
0.5 

 
0 

 
-0.5 

 
-1 

-4 -3 -2 -1 0 1 2 3 4 

Frequency 
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Example 1.6.4 Find the DTFT, X(ω), for x(n) = {1, 2, 3, 4, 3, 2, 1}. 

Solution The DTFT is 
6 

X (e j ) =  x(n) e j n = 1+ 2e j1 + 3e j 2 + 4e j3 + 3e j 4 + 2e j5 +1e j 6 

n 0 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The numerator vector is b = [1, 2, 3, 4, 3, 2, 1] and the denominator vector is a = {1}. The 

MATLAB segment plots the sequence and the frequency response. 

 

%Sketch of sequence 

n = 0:1:6; xn = [1, 2, 3, 4, 3, 2, 1]; 

subplot (3, 1, 1), stem(n, xn) 

xlabel('n'), ylabel('x(n)'); grid 

%Frequency response 

b = [1, 2, 3, 4, 3, 2, 1]; %Numerator coefficients 

a = [1]; %Denominator coefficients 

w = -pi: pi/256: pi; %A total of 512 points 

[Xw] = freqz(b, a, w); 

subplot(3, 1, 2), plot(w, abs(Xw)); 

xlabel('Frequency \omega'), ylabel('Magnitude of X(\omega)'); grid 

subplot(3, 1, 3), plot(w, angle(Xw)); 

xlabel('Frequency \omega'), ylabel('Phase of X(\omega)'); grid 

 

 
4 

2 

  

0 
0 1 2 3 4 5 6 

n 

20 

 
10 

 

0 
-4 -3 -2 -1 0 1 2 3 4 

Frequency 

5 

 
 

0 

 
 

-5 
-4 -3 -2 -1 0 1 2 3 4 

Frequency 


Example 1.6.5 Find the DTFT, X(ω), for 

(a) x(n) = {1, 2, 3, 4, 3, 2, 1, 0} 

(b) x(n) = {1, 2, 3, 4, 3, 2, 1, 0, …, 0} 

Solution !?! 
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The following examples are repeated in Unit II – DFS &DFT. 

 

Example 1.6.6 Obtain the 7-point DFT of the sequence x(n) = {1, 2, 3, 4, 3, 2, 1} by taking 7 

samples of its DTFT uniformly spaced over the interval 0 ≤ ω ≤ 2π. 

Solution The sampling interval in the frequency domain is 2π/7. From Example 4 we have 

X (e 
j 

) or X(ω) = 1+ 2e
 j1 

+ 3e
 j 2 

+ 4e
 j3 

+ 3e
 j 4 

+ 2e
 j5 

+1e
 j 6

 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The DFT, X (k) , is given by replacing ω with k(2π/7) where k is an index ranging from 0 to 6: 

DFT = X () = X (2k /7) , k = 0 to 6 
 2    k / 7 

This is denoted XkfromDTFT in the MATLAB segment below. 
 

MATLAB:  
w = 0: 2*pi/7: 2*pi-0.001 

XkfromDTFT = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w) 
 

MATLAB solution: 

 

XkfromDTFT = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i), 

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 

 

This is the 7-point DFT obtained by sampling the DTFT at 7 points uniformly spaced in (0, 2π). 

It should be the same as the DFT directly obtained, for instance, by using the fft function in 

MATLAB: 
 

MATLAB:  
xn = [1 2 3 4 3 2 1] 

Xkusingfft = fft(xn) 
 

MATLAB solution: 

 

Xkusingfft = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i), 

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 

 

It can be seen that ―↓kfromDTFT‖ = ―↓kusingfft‖. 

Example 1.6.7 Obtain the 7-point inverse DTFT x(n) by finding the 7-point inverse DFT of X(k): 

X (2k / 7) = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i), 

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 
 

MATLAB: 

 

Xk = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),(-0.1431 + 

0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 

xn = ifft(Xk) 

MATLAB solution: 

xn = [1.0000 2.0000 3.0000 4.0000 3.0000 2.0000 1.0000] 
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This is the original sequence we started with in Example 4. 

 

Example 1.6.8 What will be the resulting time sequence if the DTFT of the 7-point sequence is 

sampled at 6 (or fewer) uniformly spaced points in (0, 2π) and its inverse DFT is obtained? 

Solution The sampling interval in the frequency domain now is 2π/6. From Example 4 we have 

 

X (e 
j 

) or X(ω) = 1+ 2e
 j1 

+ 3e
 j 2 

+ 4e
 j3 

+ 3e
 j 4 

+ 2e
 j5 

+1e
 j 6

 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The DFT then is given by 
 

DFT = X () = X (2k / 6), k = 0 to 5 
  2 k / 6 

 

This is denoted Xk6point in the MATLAB segment below. 
 

MATLAB:  
w = 0: 2*pi/6: 2*pi-0.001 

Xk6point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w) 
 

MATLAB solution: 

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), 

(-3.0000 - 0.0000i)] 

 

This is the 6-point DFT obtained by sampling the DTFT at 6 points uniformly spaced in (0, 2π). 

 

Example 1.6.9 Obtain the 6-point inverse DTFT x(n) by finding the 6-point inverse DFT of 

Xk6point: 
 

X (2k / 6) = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), 

(-3.0000 - 0.0000i)] 
 

MATLAB: 
 

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), (- 

3.0000 - 0.0000i)] 

xn = ifft(Xk6point) 

MATLAB solution: 

xn = [2 2 3 4 3 2] 

 

Comparing with the original 7-point sequence, xn = [1 2 3 4 3 2 1], we see the 

consequence of under-sampling the continuous-ω function X(ω): the corresponding time domain 

sequence x(n) is said to suffer time-domain aliasing. This is similar to the situation that occurs 

when a continuous-time function x(t) is under-sampled: the corresponding frequency domain 

function Xs () contains frequency-domain aliasing. 
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Example 1.6.10 What will be the resulting time sequence if the DTFT of the 7-point sequence is 

sampled at 8 (or more) uniformly spaced points in (0, 2π) and its inverse DFT is obtained? 

Solution The sampling interval in the frequency domain now is 2π/8. From Example 4 we have 

 

X (e 
j 

) or X(ω) = 1+ 2e
 j1 

+ 3e
 j 2 

+ 4e
 j3 

+ 3e
 j 4 

+ 2e
 j5 

+1e
 j 6

 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The DFT then is given by 
 

DFT = X () = X (2k /8) , k = 0 to 7 
  2 k / 8 

 
This is denoted Xk8point in the MATLAB segment below. 

 

MATLAB:  
w = 0: 2*pi/8: 2*pi-0.001 

Xk8point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w) 
 

MATLAB solution: 

 

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0, 

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)] 

 

This is the 8-point DFT obtained by sampling the DTFT at 8 points uniformly spaced in (0, 2π). 
 

Example 1.6.11 Obtain the 8-point inverse DTFT x(n) by finding the 8-point inverse DFT of 

Xk8point: 
 

X (2k / 8) = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0, 

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)] 
 

MATLAB: 
 

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0, 

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)] 

xn = ifft(Xk8point) 

MATLAB solution: 

xn = [1 2 3 4 3 2 1 0] 

 

We see that the original 7-point sequence has been preserved with an appended zero. The 

original sequence and the zero-padded sequence (with any number of zeros) have the same 

DTFT. This is a case of over-sampling the continuous-ω function X(ω): there is no time-domain 

aliasing. This is similar to the situation that occurs when a continuous-time function x(t) is over- 

sampled: the corresponding frequency domain function Xs () is free from frequency-domain 

aliasing. 

 

%Sketch of sequences 

n = 0:1:6; xn = [1, 2, 3, 4, 3, 2, 1]; 
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subplot (3, 1, 1), stem(n, xn) 

xlabel('n'), ylabel('x(n)-7point'); grid 

% 

n = 0:1:5; xn = [2 2 3 4 3 2]; 

subplot (3, 1, 2), stem(n, xn) 

xlabel('n'), ylabel('x(n)-6point'); grid 

% 

n = 0:1:7; xn = [1, 2, 3, 4, 3, 2, 1, 0]; 

subplot (3, 1, 3), stem(n, xn) 

xlabel('n'), ylabel('x(n)-8point'); grid 
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Frequency response of discrete-time system 
 

For a linear shift-invariant system with impulse response h(n), the Fourier transform H(ω) gives 

the frequency response. Consider the input sequence x(n) = e 
j n 

for – < n < , i.e., a complex 

exponential of radian frequency ω and magnitude 1, applied to a linear shift-invariant system 

whose unit sample response is h(n). Using convolution we obtain the output y(n) as 
  

y(n) = h(n) * x(n) =  h(k) x(n  k) =   h(k) e 
j (nk )  

= e 
j n    h(k) e

  j k 

k   k   k  




= H(ω) e

j n
 

H(ω) 

 

Thus we see that H(ω) describes the change in complex amplitude of a complex exponential as a 

function of frequency. The quantity H(ω) is called the frequency response of the system. In 
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general, H(ω) is complex valued and may be expressed either in the Cartesian form or the polar 

from as 

H(ω) = HR(ω) + j HI (ω) or H(ω) =  Ĥ () e 
jH ( )

 

where HR and HI are the real part and imaginary part respectively.   Ĥ () is loosely called the 

magnitude and  H ()  is loosely called the phase. Strictly speaking, Ĥ () is called the zero- 

phase frequency response; note that Ĥ () is real valued but may be positive or negative. We 

may use the symbol |H(ω)| for the magnitude which is strictly non-negative. If Ĥ () is positive 

then 

Magnitude = H () = Ĥ () 

If  Ĥ () is negative then 

& Phase =H() 

Magnitude =  H () = Ĥ () = –  Ĥ () & Phase =H()± π 

We shall often loosely use the symbol H ()  to refer to Ĥ ()  as well with the understanding 

that when the latter is negative we shall take its absolute value (the magnitude) and accordingly 

adjust  H ( ) by ± π. 

 
Example 1.7.1 [Moving average filter] The impulse response of the LTI system 

x(n)  x(n 1)  x(n  2) 
y(n) = 

3 
is 

h(n) = 1/3, n = 0, 1, 2 

0, otherwise 
 
 

0 1 2 3 

 
The frequency response is obtained below. 



H(ω) =  h(k)e
 j k

 
k  

2 

= (1/ 3) e
 j k

 
k   0 

=  
1  e j 0   e j 1   e j 2 3 

 j j  j e j  2e 
j 
 e

 j  (1 2 cos ) 

=  e e 1 e =  
1


 =  e j

3 3  2  3 

which is already in the polar form H () = ± H () e 
jH ( ) 

, so that 

H ()  =  (1 2cos) / 3 and H () = –ω 

The zero crossings of the magnitude plot occur where H () = (1 2cos) / 3 = 0, or ω 

= cos
1 

(1/ 2) = 2π/3 = 120
0
. A frequency of ω = 2π/3 rad./sample (f = 1/3 cycle/sample) is 

totally stopped (filtered out) by the filter. The corresponding digital signal is x5(n) = cos 

2π(1/3)n. The underlying continuous-time signal, x5(t), depends on the sampling frequency. If, 
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h(n) = (1/3)[u(n) – u(n–3)] 

1/3 

n 



for example, the sampling frequency is 16Hz, then x5(t) = cos 2π(16/3)t, and a frequency of 16/3 
Hz will be totally filtered out. If the sampling frequency is 150Hz, then x5(t) = cos 2π(150/3)t, 
and a frequency of 50 Hz will be eliminated. 

In calibrating the horizontal axis in terms of the cyclic frequency, F, we use the relation 

ω = ΩT = 2πFT = 2πF/Fs from which the point ω = 2π corresponds to F = Fs. 
 

 

 

 

 

 

 
ω 

 

 

 

 

 

 

 

(Aside) The system y(n) = x(n) 
+ 

x(n 1) 
+ 

x(n  2) is a crude low pass filter, but the 
3 3 3 

attenuation does not increase monotonically with frequency. In fact, the highest possible 
frequency, Fs/2 Hz, (or π rad/sample) is not well attenuated at all. The following is a slight 
variation of the three-term moving average: 

y(n) = x(n) 
+ 

x(n 1) 
+ 

x(n  2) 
4 2 4 

Its magnitude response is a ―raised cosine‖ (with no zero crossing, monotonically decreasing but 

wider than the 3-term). 

(End of Aside) 
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|H| = (1+2 cosω)/3 



–2π –π 0 π 2π 

H(ω)=–ω 

–2π –π 0 π 2π 



Example 1.7.2 [MATLAB fplot] [Moving average filter] 

H(ω) = 1 1 e j 1  e j 2 . 
3 

The program follows. Note that in MATLAB we use „w‟ for ω and the plot ranges over 

(–2, 2). Both ω and the phase, X ( ) , are in radians. 

 
subplot(2,1,1);fplot('abs((1/3)*(1+exp(-j*w)+exp(-j*2*w)))', [-2*pi,2*pi], 'k'); 

xlabel('\omega');ylabel('Magnitude'); 

subplot(2,1,2);fplot('angle((1/3)*(1+exp(-j*w)+exp(-j*2*w)))', [-2*pi,2*pi], 'k'); 

xlabel('\omega');ylabel('Phase'); 

 

 

 
1 

 
 
 

0.5 

 
 

 

0 

-6 -4 -2 0 



4 

 
2 

 
0 

 
-2 

 
-4 

-6 -4 -2 0 




2 4 6 

 
 
 
 
 
 
 
 
 
 
 

2 4 6 

 
 

 
[Homework] Plot the output signal y(n) = 

 

x(n)  x(n 1)  x(n  2) 

3 

 
for several values of n  0 

where the input is x(n) = cos 2π(1/3)n. Take x(–1) = x(–2) = 0. 
 

Example 1.7.3 [MATLAB filter, freqz] [Moving average filter] Consider a signal x(t) = cos 

(250t) sampled at 150 Hz. The corresponding x(n) = cos (2n/3) is the input to the moving 
average filter. The following MATLAB segment plots x(n) vs. n and y(n) vs. n. 

 

n=0:1:50; 

x=cos(2*pi*n/3); 

b=[1/3, 1/3, 1/3]; a=[1]; %Filter coefficients 

y=filter(b, a, x); 

subplot(3, 1, 1), stem(n, x, 'ko');title('Input x(n)=Cosine(2\pin/3)'); 
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xlabel('n'), ylabel('x(n)') 

subplot(3, 1, 2), stem(n, y, 'ko');title('Output y(n)=[x(n)+x(n-1)+x(n-2)]/3'); 

xlabel('n'), ylabel('y(n)'); 

w=0: pi/256: 2*pi; h=freqz(b, a, w); 

subplot(3, 1, 3), plot(w*75/pi, abs(h));title('Magnitude Response'); 

xlabel('Frequency'), ylabel('Magnitude'); 
 

 

Input x(n)=Cosine(2n/3) 

1 

 

0 

 

-1 
0 5 10 15 20 25 30 35 40 45 50 

n 

Output y(n)=[x(n)+x(n-1)+x(n-2)]/3 

0.5 
 

0 

 
-0.5 

0 5 10 15 20 25 30 35 40 45 50 

n 

Magnitude Response 

1 

 

0.5 

 

0 
0 50 100 150 

Frequency 

 

Example 1.7.4 [MATLAB filter] [Moving average filter] As an extension of above example, 

consider the signal consisting of a 2 Hz desirable component plus a noise component of 50 Hz 

(with a smaller amplitude), sampled at 150 Hz. 

x(t) = 5 cos (22t) + 2 cos (250t) 

x(n) = 5 cos (2n/75) + 2 cos (2n/3) 

In the following MATLAB segment we show both sequences, x(n) and y(n), on the same 

(multi)plot so that they have the same scale. The smoothing action of the filter is easily 

discernible in the multiplot. 
 

n = 0: 1: 50; 

x = 5*cos(2*pi*n/75) + 2*cos(2*pi*n/3); 

b = [1/3, 1/3, 1/3]; a = [1]; %Filter coefficients 

y = filter(b, a, x); 

plot(n, x, 'b*', n, y, 'ko'); 

legend ('Input x(n)', 'Output y(n)'); 

title ('Moving average filter'); 

xlabel ('n'), ylabel('x(n), y(n)'); 
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x
(n

) 



Moving average filter 
8 

 

 
6 

 
 

Input x(n) 

Output y(n) 

 
 

4    
 
 

2 

 

 
0    

 
 

-2 

 

 
-4 

 

 
-6 

0 5 10 15 20 25 30 35 40 45 50 

n 

 

The same plot is shown below over a longer period. 
 
 

Moving average filter 

8 

 
 

 
Input x(n) 

Output y(n) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 50 100 150 

n 
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[Homework] Examples 5.1.1, 5.1.2, 5.1.3 and 5.1.4, Proakis, 4
th
 Ed. 

 

Sketches of ideal digital low pass and high pass filters Ref. p. 23, O&S for LP filter. 

 

Example 1.7.5 [2003] [O & S, p. 20, and L.C. Ludeman, p. 51] A linear time-invariant system 

has unit sample response h(n) = u(n) – u(n–N). Find the amplitude and phase spectra. 

Note that this would be an N-term moving average filter if h(n) =(1/N)[ u(n) – u(n–N)]. 
 

 

 

 
 

 

 

 

n 

0 1 2 N–1 N 

 

 
h(n) = 1, 0  n  N–1 

0, elsewhere 


H(ω) = h(k ) e



N 1 

j k  =  1e j k  = 
1 e 

 j N 

1 e j
k    k  0 

 

e jN / 2 (e jN / 2  e jN / 2 ) 

= 
e j / 2 (e j / 2  e j / 2 ) 

=
 
sin(N / 2) e j ( N 1) / 2 

sin( / 2) 

|H(ω)| =  
sin(N / 2) 

sin( / 2) 

See the plots in Oppenheim and Schafer. 

and H (e 
j 

) = –ω(N–1)/2 

 

Example 1.7.6 [MATLAB fplot] [5-term moving average filter] The program for the case 

where N = 5 follows. 

H(ω) = 1 e
 j 1 

 e
 j 2 

 e
 j3 

 e
 j 4  = 

1  e  j 5

 

1  e j

Note that in MATLAB we use „w‟ for ω and the plot ranges from –2 to 2. Both ω and the 

phase, X ( ) , are in radians. 

 
subplot(2,1,1);fplot('abs((1-exp(-j*w*5))/(1-exp(-j*w)))', [-2*pi,2*pi], 'k'); 

xlabel('\omega (Rad)');ylabel('Magnitude'); 

subplot(2,1,2);fplot('angle((1-exp(-j*w*5))/(1-exp(-j*w)))', [-2*pi,2*pi], 'k'); 

xlabel('\omega (Rad)');ylabel('Phase (Rad)'); 
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N terms 

h(n) = u(n) – u(n–N) 

1 



6 

 

 
4 

 

 
2 

 

 
0 

-6 -4 -2 0 

 (Rad) 

4 
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0 

 
-2 

 
-4 

-6 -4 -2 0 

 (Rad) 
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Properties of the discrete-time Fourier transform (DTFT) 
 

For the DTFT Oppenheim & Schafer use the symbol X (e 
j 

) while Proakis uses X(ω). 

 
(1) Periodicity X(ω) is periodic with period 2π, that is, X(ω+2π) = X(ω) for all ω. Since e 

j n 
is 

periodic in ω with period 2π, it follows that X(ω) is also periodic with the same period. 

Replacing ω with (ω+2π) gives 
  

X(ω+2π) =  x(n) e
 j ( 2 ) n 

=  x(n) e
 j n 

e
 j 2 n 

=  x(n) e
 j n 

1 
n  

= X(ω) for all ω 

n   n  

As a result, while in the continuous time case  ranges from –  to  , in the discrete-time case 
we need only consider values of ω over the range 0 to 2π (or, –π to π, or any 2π-long interval). 

 

(2) Linearity The discrete Fourier-transform is a linear operation. If F{x1(n)} = X1(ω) and 
F{x2(n)} = X2(ω), then F{a1 x1(n) + a2 x2(n)} = a1 X1(ω)+ a2 X2(ω) for any constants a1 and a2. 

 

(3) Time shifting Time shift results in phase shift. If F{x(n)} = X(ω), then F{x(n–k)} = 

e
 j k 

X(ω). 
Proof We have 



F{x(n–k)} =  x(n  k) e
 j n 

n  

On the right hand side set n–k = m, so that n = m+k and the limits n = –  to  change to m = – 

 to + . Then 
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2  0 



 

F{x(n–k)} =   x(m) e
 j (mk ) 

= e
–jωk

   x(m) e
 j m  = e

–jωk 
X(ω) QED 

m   m  





(4) Frequency shifting Multiplication in the time domain by a complex exponential results in 

frequency shifting. Given F{x(n)} = X(ω), then F e 
j0 n 

x(n) = X(ω–ω0). 
Proof We have 

F e 
j0 n 

x(n)= e 
j0 n 

x(n)e
 j n

 

n  

Alternatively, using the synthesis equation, 
1 



=  x(n) e
 j (0 ) n  

= X(ω–ω0) QED 
n  

F-1{X(ω–ω0)} = X (   ) e 
j nd

2

Set ω–ω0 = λ so that ω = λ+ω0 and the limits ω = 0 to 2π change to λ = –ω0 to (–ω0+2π), which 

amounts to any interval of length 2π. Also dω= dλ. Then 
1 

F-1{X(ω–ω0)} = 
2 

X () e 
j ( 0 ) nd

2

= e j0 n 
  1  X () e 

j n
d = e 

j0 n 
x(n) QED 

2 2



(5) Time reversal corresponds to frequency reversal. Given F{x(n)} = X(ω), then F{x(–n)} = 

X(–ω). 
Proof We have 



F{x(–n)} = x(n) e
 j n 

n  

On the right hand side set m = –n so that the limits n = –  to  change to m =  to –  , and 


F{x(–n)} =  x(m) e 
j m 

m  

Since this is a summation the limits can be written in reverse order, and we have 


F{x(–n)} =  x(m) e
 j ( ) m 

= X(–ω) = X (e
 j 

) 
m  

QED 

 

 
(6) Differentiation in frequency F{n x(n)} = j 



X (e 
j 

) =  x(n) e
 j n

 

n  

dX (e
j 

) 
 

 

d


. Since 

we differentiate both sides with respect to ω to get 

dX (e 
j 

) 
 

d

or 



=  
n 

x(n) 
de j n 

d



=  x(n)( jn) e
 j 

n 
n  

dX (e 
j 

) 


j  =  n x(n) e
 j n  

= F{n x(n)} QED 

d n  



(7) Convolution If y(n) represents the convolution of two discrete-time signals x(n) and h(n), 
that is, y(n) = x(n)*h(n), then 
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1 

= 



1 2 



2 

 X 

Y (e 
j 

)= F{x(n)*h(n)} = X (e 
j 

) . H (e 
j 

) 

 
From the definition of the Fourier transform 

 

Y (e 
j 

)=  y(n) e
 j n 

= {x(n)* h(n)}e
 j n

 

n 

  
n  



=   h(k)x(n  k)e
 j n 

n   k   
Interchanging the order of summation 

    

Y (e 
j 

)=  h(k)   x(n  k) e
 j n 


k    n   

The inner sum (I.S.) is handled thus: Let (n–k) = λ. Then as n goes from –  to  , λ goes from – 

 to  as well. Further n = λ+k. Thus the inner sum becomes 
      

I.S. =  x(n  k) e
 j n 

=   x() e j ( k ) = 
 
 x() e j   e j k = e–jωk X (e j ) 

 
Thus we have 

n  





      



Y(e 
j 

)=   h(k )e
 j k 

X e 
j = X(e

jω
)   h(k ) e

 j k  
= X (e 

j 
) . H (e 

j 
) 

k   k 

The function H (e 
j 

) is referred to as the frequency response of the system. 

 
(8) Multiplication of two sequences Let y(n) be the product of two sequences x1(n) and x2(n) 

with transforms X (e 
j 

) and X (e 
j 

) , respectively. Then 
 

Y (e 
j 

)= F{x1(n). x2(n)} = X (e j ) * X (e j ) 
1 2 

1 j X e j ( ) d
2 

e 1 2 

2

This is called periodic convolution since both X (e j ) and X (e j ) are periodic functions. 

 

(9) Parseval’s Theorem If x(n) and X (e 
j 

) are a Fourier transform pair, then 

 x(n) 
2  

=  
  1     

 X e 
j 

2  

d
n   2

2

Proof The energy E of the discrete-time sequence is defined as 
 

E =  x(n) 
2 
=  x(n) x

* 
(n) 

n   n  

Making the substitution x
*
(n) = 

1
 

X *  j 
 j n 

2  
    

e e d , we get 


E =   x(n)   1  X 
* e 

j e j n 
d2

n    

Interchanging the order of integration and summation, 
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n   



2

     


E = 
1
 

2 
X 

* e 
j 








 x(n) e
 j n  d

= X (e 
j 

) 

1 
X 

* e 
j X e 

j d


= 
1 X e 

j 
2  

d QED 

2 

(10) Scaling – expansion in time For con tinuous-time Fourier transforms we have the property 

that if x(t) ↔ X(Ω), then x(at) — 
1 

X   . This amounts to time-compression if a > 1 and to 
a  a 

time-expansion if a < 1. 

The relation between time- and frequency-scaling in discrete time takes on a somew hat 

different form though. However, there is a result that does closely parallel x(at) — 
1 

X  . 
a  a 

Define y(n) = x(n/k), where k is a positive integer, as 
 

y(n) = x(n/k), if n is a multiple of k 

0, if n is not a multiple of k 

 

This is time expansion. For example, if k =3, then y(n) is obtained from x(n) by placing k–1 = 2 

zeros between successive values of x(n). That is, 

 

y(0) = x(0), y(1) = y(2) = 0, y(3) = x(1), y(4) = y(5) = 0, … Etc. 

 

Since y(n) equals zero unless n is a multiple of k, i.e., unless n = rk, where r = all integers from 
–  to + , we have the Fourier transform of y(n) as: 

Ye
j = y(n) e

 j n 

n   



= y(rk) e
 j  r k 

r   

Since y(rk) = x(rk/k) = x(r), we have 
 

Ye
j = x(r) e

 j r k 

r   
= x(r) e j (k ) r 

r   

= X e 
j k  

Thus we have the relation: Given x(n) — X e 
j , then x(n/k) — X e 

jk  . 

Example 1.8.1 [2003] (Frequency response) A discrete-time system is given by 

 

y(n) – 5 y(n–1) = x(n) + 4 x(n–1) 

 

where x(n) is the input and y(n) is the output. Determine its magnitude and phase response as a 

function of frequency. 

Solution The frequency response is obtained by taking the discrete-time Fourier transform of 

both sides of the difference equation: 

 

F{y(n) – 5 y(n–1)} = F{x(n) + 4 x(n–1)} 

 

With F{y(n)} = Y (e 
j 

) and F{y(n–k)} = e
–jωk

 Y (e 
j 

) the above equation becomes 
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= 







Y (e 
j 

)– 5 e
–jω

 Y (e 
j 

)= X (e 
j 

) + 4 e
–jω

 X (e 
j 

) 

Y (e 
j 

) (1 – 5 e
–jω

) = X (e 
j 

) (1 + 4 e
–jω

) 
   1  4sin 

j  j
2 2 

j tan 
 

14cos Y (e ) = H (e 
j 

) = 
1 4e

 = (1 4 cos )   (4 sin ) e  


X (e 
j 

) 
 

  j   j tan1  5sin 




1 5e 
(1 5 cos 
)

2
 

 (5sin )
2 
e 



 15cos 

    1  4sin  1  5sin 2 2 j tan  tan 
(1 4 cos )   (4 sin )    	 
     14cos  15cos  

= e 
(1  5 cos )

2 
 (5sin )

2
 

With the notation H () = 

as follows: 

H () e 
jH ( ) 

we can identify the magnitude and phase, respectively, 

|H(ω)| = 
(1 4 cos )

2 
 (4 sin )

2
 

(1 5 cos )
2 
 (5sin )

2 
=

 
  4 sin  

17  8 cos 
26 10 cos 
 5sin  

H (e 
j 

)=  tan
1
	  tan

1
	

 1  4 cos   1  5 cos  

1 4e
 j



The MATLAB program follows for H(ω) = 
 j 

. Note that in MATLAB we use „w‟ 
1 5e 

for ω and the plot ranges from –2 to 2. Both ω and the phase, X ( ) , are in radians. 

 
subplot(2,1,1);fplot('abs((1+4*exp(-j*w))/(1-5*exp(-j*w)))', [-2*pi,2*pi], 'k'); 

xlabel('Omega');ylabel('Magnitude'); 

subplot(2,1,2);fplot('angle((1+4*-exp(-j*w))/(1-5*exp(-j*w)))', [-2*pi,2*pi], 'k'); 

xlabel('Omega');ylabel('Phase'); 
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Example 1.8.2 [Convolution] If X (e 
j 

) = DTFT{x(n)} and y(n) = x(n)*x(–n) then from 

Properties 5 and 7 Y (e 
j 

)= DTFT{y(n)} = DTFT{x(n)*x(–n)}= X (e 
j 

) X (e
 j 

) . This result 

may also be obtained from the defining equation 


Y (e 
j 

)= {x(n)* x(n)}e
 j n 

n 



The convolution within the braces is x(n)*x(–n) =  x(k)x((n  k)) , so that 
k  

        

Y (e 
j 

)=    x(k)x(k  n) e
 j n 

n  k  
 

=  x(k)  x(k  n)e
 j n 

k  n 

Set k–n = m etc. 

 

Example 1.8.3 [2009] [Convolution] If X (e 
j 

) = DTFT{x(n)} and y(n) = 

Y (e 
j 

)= DTFT{y(n)}. 

 
 

x(n)  x
 
(n) find 

 

Example 1.8.4 [2008] Find a difference equation to implement a filter with unit sample response 

h(n) = 1/ 4n  
cos(n / 3) u(n) 

Solution In the math manipulation it would help to write cos(n / 3) in its exponential form. You 

should also memorize the two standard z-transform pairs: Z{ cos(0n) u(n)} and 

Z{ a
n 
cos( n) u(n) }. 

Hint Either use DTFT: Find the DTFT F{h(n)} = H(e
jω

) = 
 Nr()  

Dr() 
.
 

Y (e 
j 

) jω 
j


1) Based on the relation  = H(e ) set  Y (e ) Nr() = , 
X (e 

j 
) X (e 

j 
) Dr() 

2) Cross-multiply to get Y(e
jω

) Dr() = X(e
jω

) Nr(), 

3) Take inverse DTFT using time-shifting property (see below), and 
4) Rearrange terms. 

Or, use z-transforms: Find the z-transform Z{h(n)} = H(z) = 
Nr(z) 

. 

Dr(z) 

1) Based on the relation 
Y (z) 

= H(z) set Y (z) 
= 

Nr(z) 
, 

X (z) X (z) Dr(z) 

2) Cross-multiply to get Y(z) Dr(z) = X(z) Nr(z), 

3) Take inverse z-transform using time-shifting property, and 
4) Rearrange terms. 

 
Example 1.8.5 [2008] Find the inverse DTFT of  X (e 

j 
)=  1  

1  (1/ 3) e
 j10



Hint Use the result, derived in an earlier example, that for the exponential sequence x(n) = 

a
n 
u(n), |a| < 1, the DTFT is  

X (e 
j 

) =  a
n  

e
 j n  

=   ae
 j  n  

= 
1 

with a = 1/3 
 j

n  0 n  0 
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n even 



Then use the scaling property that if x(n) — X e 
j , then x(n/k) — X e 

jk  with k = 10. 

Alternatively, use the defining equation 

F-1{X(ω)} = x(n) = 
1 
 X (e 

j 
) e 

j n
d

2 

Example 1.8.6 [Scaling – compression in time] Given x(n) — X e 
j and y(n) = x(2n), find 

Y e 
j . 

Solution This is a specific result, not a general property. We have 

Yej = y(n) e
 j n 

n   



= x(2n) e
 j n 

n   



= x(n) e j  n / 2      
1 1 

  
n 

=   x(n)  (1)
n 

x(n)e
 j  n / 2  

= x(n) e j  n / 2 + 
1   x(n) (1) e

 j  / 2 
n    2 2 n    2 n   

= 
1 
 x(n) e j ( / 2) n  

+ 
1 



x(n) 
e 

 j ( / 2 ) n 

2 n   

Notationally, we may write this as 

2 n   

Y e 
j 

1 
= X e j / 2 

1 
+ X  e j / 2 

2 2 
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Digital Signal Processing – 1(B) 
 

I(B). The z-transform and realization of digital filters 

Review of z-transforms, Applications of z-transforms, Solution of difference equations of digital 

filters, Block diagram representation of linear constant-coefficient difference equations, Basic 

structures of IIR systems, Transposed forms, Basic structures of FIR systems, System function. 

 

Contents: 

Introduction 

Important properties of z-transforms 

Transforms of some useful sequences 

Region of convergence and stability 

Inverse z-transform by partial fractions 

Relationships among system representations 

Inverse z-transform by power series expansion (long division) 

Computation of frequency response 

Z-transforms with initial conditions 

Steady-state and transient responses for a first order system 

Realization of digital filters 

The Lattice structure – Introduction 

*Inverse z-transform by complex inversion integral 



Introduction 
 

For continuous-time systems the Laplace transform is an extension of the Fourier transform. 

The Laplace transform can be applied to a broader class of signals than the Fourier transform 

can, since there are many signals for which the Fourier transform does not converge but the 

Laplace transform does. The Laplace transform allows us, for example, to perform transform 

analysis of unstable systems and to develop additional insights and tools for LTI system analysis. 

The z-transform is the discrete-time counterpart of the Laplace transform. The z- 

transform enables us to analyze certain discrete-time signals that do not have a discrete-time 

Fourier transform. The motivations and properties of the z-transform closely resemble those of 

the Laplace transform. However, as with the relationship of the continuous time versus the 

discrete-time Fourier transforms, there are distinctions between the Laplace transform and the z- 

transform. 

 

Definition The two-sided (bilateral) z-transform, X(z), of the sequence x(n) is defined as 


X(z) = ʓ{x(n)} =  x(n)z 
n

 

n 

where z = r e 
j 

is the complex variable. The above power series is a Laurent series. 

The one–sided (unilateral) z-transform is defined as 


X+(z) = x(n)z 
n 

n  0 

The unilateral z-transform is particularly useful in analyzing causal systems specified by linear 

constant-coefficient difference equations with nonzero initial conditions into which inputs are 

stepped. It is extensively used in digital control systems. 
 
 

The region of convergence (ROC) is the set of z values for which the above summation 

converges. In general the ROC is an annular region in the complex z-plane given by 

 

ROC = Rx– < |z| < Rx+ 
 

Relationship between the z-transform and the discrete-time Fourier transform Setting z = 
r e j in the definition gives us 

 

X (z) 

 

=   x(n)re 
j n

 

z  r e n



[r n x(n)]e j n 

n 



Im 

z-plane 

   ROC  

Re 

Rx+ 

Rx– 

j  = 







If |z| = r = 1, then the z-transform, evaluated on the unit circle, gives the discrete-time Fourier 

transform of the sequence x(n), i.e., 

X (e 
j 

)= x(n)e
 j n 

= X (z) 
 

n 
z  e j 



Example 1.1.1 The positive-time signal 

 

x(t) = e
 t 

, t  0 

0, otherwise 

 
is sampled at T-second intervals resulting in the sequence x(nT) or x(n) 

x(n) = e
 t 

= e
 n T  

= eT  n 

= a
n  

, a = e
T

 

t  nT 
and n  0 

 

x(n) = a
n 

, n  0 

0, n < 0 

 
If a < 1 this sequence decays exponentially to 0 as n → ∞. Substituting x(n) into the defining 

equation, the z-transform is 


ʓ{x(n)} = X(z) =  an 
z 
n

 

n  0 



= (az
1 

)
n

 

n  0 

 
1 1az 

1, |az 
–1

| < 1 

  1  

1 az 
1

 

= 
z 

z  a 
, |z| > |a| 

 

 
 

The ROC is |z| > |a|. This X(z) is a rational function (a ratio of polynomials in z). The 

roots of the numerator polynomial are the zeros of X(z) and the roots of the denominator 

polynomial are the poles of X(z). 

This is a right-sided sequence. Right-sided sequences have a ROC that is the exterior of a 

circle with radius Rx– (|z| > |a| in this case). If the ROC is the exterior of a circle it is a right- 
sided sequence. 

 
Definition A right-sided sequence x(n) is one for which x(n) = 0 for all n < n0 where n0 is 

positive or negative but finite. If n0  0 then x(n) is a causal or positive-time sequence. 

Zero at 0 

a 
Re 

Pole at a 

z-plane 

ROC, |z| > |a| 
(Shaded area) Im 

= 



Example 1.1.2 The negative-time sequence x(n) = –b
n
 u(–n–1). Recall that the unit step 

sequence u(.) = 1 if the argument of u(.) is  0, i.e., if (–n–1)  0 or n  –1. 

x(n) = –b
n
, n  –1 

0, otherwise 
 

If b > 1 this sequence decays exponentially to 0 as n → –∞. The z-transform is, 
 1 1 

ʓ{x(n)} = X(z) = x(n)z 
n 

=  b
n 
z 

n 
= – (bz 

1 
)

n
 

n  n  n 

Let n = –m and change the limits accordingly to get, 
1 

X(z) = –  (bz
1 

)
m  

= 1–  b1 
zm

 

m  m  0 

We added 1 in the last step above to make up for the m = 0 term within the summation. The 

result is, 

X(z) = 1– 
1
 

(1 zb
1 

) 

= 
z 

, 

z  b 

, |z b
–1

| < 1 

 
ROC is |z| < |b| 

 

 

 

 

 

 

 

 

Re 

 

 

 

 

 

This is a left-sided sequence. Such a sequence has a region of convergence which is the 

interior of a circle, |z| < Rx+. In this case the ROC is |z| < |b|. 
Note that if b = a then the two examples above have exactly the same X(z). So what 

makes the difference? The region of convergence makes the difference. 

 

Definition A left-sided sequence x(n) is one for which x(n) = 0 for all n  n0, where n0 is 

positive or negative but finite. If n0  0 then x(n) is an anticausal or negative-time sequence. 

Im 
z-plane 

   ROC  
pole 

b 

zero 



 a z b 

z

Example 1.1.3 [Two-sided sequence] This is the sum of the positive- and negative-time 

sequences of the previous two examples. 
 

y(n) = a
n
, n  0 = a

n
 u(n) – b

n
 u(–n–1) 

–b
n
, n < 0 

 

Substituting into the defining equation, 
  1 

Y(z) = ʓ{y(n)} =   [a
n
u(n)  b

n
u(n 1)]z 

n 
=   an 

z 
n  
  bn z n 

 

Now, from Examples 1 and 2, 


n  n  0 

 
1 

n 

n    n   
   z (ROC |z| > |a|) & n    n   

   z (ROC |z| < |b|) 
n  0 z  a n  z  b 

So, the desired transform Y(z) has a region of convergence equal to the intersection of the two 

separate ROC‘s |z| > |a| and |z| < |b|. Thus 

Y(z) =    z  
z  a 

z 
 

 

z  b 
, with ROC {|z| > |a|}  {|z| < |b|} 

z(2z  a  b) 
=  , with ROC |a| < |z| < |b| 

(z  a)(z  b) 

The ROC is the overlap of the shaded regions, that is, the annular region between |a| and |b|. The 
two zeros are at 0 and (a+b)/2, and the two poles at a and b. 

 

Im 

zero zero (a+b)/2 

a b 
Re 

ROC 

poles 

When |a| < |b| 





If |b| < |a| the transform does not converge. 
 

 

 

In the above three examples we may express the z-transform both as a ratio of 

polynomials in z (i.e., positive powers) and as a ratio of polynomials in z
–1

 (negative powers). 

From the definition of the z-transform, we see that for sequences which are zero for n < 0, X(z) 

involves only negative powers of z. However, reference to the poles and zeros is always in terms 

of the roots of the numerator and denominator expressed as polynomials in z. Also, it is 

sometimes convenient to refer to X(z), written as a ratio of polynomials in z (i.e., positive power 

of z), as having poles at infinity if the degree of the numerator exceeds the degree of the 

denominator or zeros at infinity if the numerator is of smaller degree than the denominator. 

 

Example 4.1.4 [Finite-length sequence] Only a finite number of sequence values are non-zero, 

as given below. 

 
x(n) = 0 for n < N1 and for n > N2, where N1 and N2 are finite 

non-zero for N1  n  N2 
 

By the defining equation we have 
N2 

 1 2 

X(z) = n  N1 x(n)z 
n 

= x(N )z
 N1 +….. + x(N )z

 N2
 

Convergence of this expression requires simply that |x(n)| <  for N1  n  N2. Then z may take 

on all values except z =  if N1 is negative and z = 0 if N2 is positive. Thus the ROC is at least 0 
< |z| <  and it may include either z = 0 or z =  depending on the sign of N1 and N2. 

 

Important properties of z-transforms 
 

The proofs are easily obtained by using the basic z-transform definition and transformations in 

the summation. [Sec 2.3 Oppenheim & S] 

Im |z| > |a| 

zero 

z–1 

No ROC 
when |b| < |a| 

zero 

b a 
Re 

poles 

z–1 





2 

ʓ 

j2
 X (v)Y v 1

dv , ROC r 

2 1 

(1) Linearity If ʓ[x(n)] = X(z) with ROC rx1 <|z|< rx2 and ʓ[y(n)] = Y(z) with ROC ry1 <|z|< ry2 

then ʓ[a x(n) + b y(n)] = a X(z) + b Y(z) with ROC at least the overlap of the ROC‘s of X(z) and 
Y(z). If there is any pole-zero cancellation due to the linear combination, then the ROC may be 
larger. 

 
(2) Translation (Time-shifting) If ʓ[x(n)] = X(z) with ROC r1<|z|< r2 then ʓ[x(n–k)] = z

–k
 X(z) 

with the same ROC except for the possible addition or deletion of z = 0 or z = ∞ due to z
–k

. 
 

Example Given x(n) = {1, 2} and x2(n) = x(n+2) find X(z) and X2(z) and their respective ROCs. 

X(z) = 1+ 2z
1 

, ROC: entire z-plane except z = 0; X2(z) = z 
2 
(1+ 2z

1 
) = 

plane except z = ∞. 
z

2 
 2z , ROC: entire z- 

 

(3) Multiplication by a complex exponential sequence (Scaling in the z-domain) If ʓ[x(n)] = 
X(z) with ROC r  <|z|< r  then  ʓ[a

n
  x(n)] = X (z) with ROC |a| r  <|z|< |a| r . 

1 2 
z( z / a) 

1 2
 

Example Given x(n) = {1, 2} and x2(n) = 0.5
n 
x(n–2) find X(z) and X2(z) and their respective 

ROCs. 

 
(4) Multiplication by a ramp If ʓ[x(n)] = X(z) with ROC r1 <|z|< r2 then 

ʓ[n x(n)] =   z 
dX (z) 

with ROC r  <|z|< r . 

1 2 

dz 

Example Given x(n) = {1, 2} and x2(n) = (1+ n + n
2 
) x(n) find X(z) and X2(z) and their respective 

ROCs. ʓ[x2(n)] = ʓ[1] + ʓ[n x(n)] + ʓ[n [n x(n)]] = … 

(5) Time reversal If ʓ[x(n)] = X(z) with ROC r1 <|z|< r2 then ʓ[ x(–n)] = X (z
1

) with ROC 

1/ r <|z|< 1/ r 


Example Given x(n) = 2
n 

u(n) and X (z) = z X (z
1 

) determine x2(n). 

x(n) = (0.5)
n 
u(n) , X(z) = 

z 
, ROC: 0.5 <|z| 

z  0.5 

ʓ-1{ X (z
1 

) } = x(–n); x2(n) = ʓ-1{ z X (z
1 

)} = x(–(n+1)).= 2
((n1)) 

u((n 1)) 

 
(6) Convolution in time domain leads to multiplication in frequency domain Given [x(n)] = 



X(z) with ROC zRx and ʓ[y(n)] = Y(z) with ROC zRy and x(n)*y(n) =  x(k)h(n  k) then 
k 

ʓ[x(n)*y(n)] = X(z).Y(z) with ROC zRx  Ry. 

 
(7) Multiplication in time domain leads to convolution in frequency domain If ʓ[x(n)] = X(z) 

with ROC rx1 <|z|< rx2 and ʓ[y(n)] = Y(z) with ROC ry1 <|z|< ry2 then 

ʓ[x(n).y(n)] =
 1 

 
 z 
 v 
 

x1 ry1 <|z|< rx2 ry2. 

where 
C2 

C2 

is a complex contour integral and C2 is a closed contour in the intersection of the ROCs 

of X(v) and Y(z/v). 



(8) Initial Value Theorem If x(n) is a causal sequence with z transform X(z), then 

x(0) = lim X (z) 
z 



(9) Final Value Theorem If ʓ[x(n)] = X(z) and the poles of X(z) are all inside the unit circle then 
the value of x(n) as n→  is given by 

x(n)  
n 

= lim [(z 1) X (z)] 
z 1 

Some also give this as x(n)  
n 

= lim [(1  z
1 

) X (z)] 
z 1 

 

 

Transforms of some useful sequences 
 

(1) The unit sample δ(n): 


ʓ[δ(n)] =  (n) z
 n

 

n   

Delayed unit sample δ(n–k): 

=1. z
0
 = 1, ROC all z 



ʓ[δ(n–k)] =  (n  k) z
 n

 

n   

(2) Unit step u(n) (positive time): 
 

=1. z
–k

 = z
–k

, ROC |z| > 0 if k > 0 (|z| <  if k < 0) 

ʓ[u(n)] = u(n) z
 n 

= 1 z
 n = 1+ z

–1 
+ z

–2 
+… 

n   



    1  

1  z 
1

 

n  0 

=  
z  

, ROC |z
–1

| < 1 or |z| > 1 

z  1 
(3) Unit step –u(–n–1) (negative time): 



ʓ[–u(–n–1)] =  u(n 1)z
 n

 

n   


1 

= (1) z 
 n 

n   


1 

= – z
 n 

n   

z 

 

0 

= 1 – z 
 n

 

n   

=1 – (1 + z + z
2
 +…) = 1 – 1  

1  z 

, ROC |z| < 1 
z  1 

(4) Exponential a
n
u(n) , derived in earlier example: 

z 

ʓ[ anu(n) ] = 
 

 

z  a 
, ROC |z| > |a| 

(5) Exponential  bnu(n 1) ; negative time; derived earlier: 
z 

ʓ[  b
n
u(n 1)] = 

 
 

z b 
, ROC |z| < |b| 

z 

(6) Unit ramp n u(n). Given that ʓ[u(n)] = U(z) = 
z 1

 

ʓ[n u(n)] = – z 
dU (z)  

= –z  
d  z 

 
  


  z[(z 1).1 z.1] 

 

 = 
dz dz  z  1 (z 1)

2
 

z 
=     

(z  1)
2
 

(7) Sinusoid sin 0n u(n): ʓsin 0n u(n)= 

ROC |z| > 1, same as that of U(z) 

 
z sin 0 

, ROC |z| > 1 
 

 

 

z  2z cos 0 1 

2 

= 

= 



n 

    


j 2   z
2 

z(e j0  e j0 )  1

j 2  z
2 

z(e j 0  e j ) 1

0 0 

i 



 

ʓ     

e j0 n e j0 n 



sin  0n u(n)  = sin  0 n z n   =   j 
 z  n 

n  0 
1 j

n  0  2 
 j

= 
j 2

n 

0 z1   0 z1  
 n  0 

 
1  1 

e 



n  0 
1 







 j 1 

=   	, ROC | e 

j 2 1 e 
j0 z

1 

1  e j0 z1 



0 z | < 1 or |z| > 1 

=  1  z z 

  	j   	j 

j 2  z  e  0 z  e
  0 


z  (z  e

 j0 )  (z  e 
j0 ) 

=  	


z  (e 
j0  e

 j0 ) 




Using the identities 

=  	

 0 






we have 

cos 0n = 
ej0  e j0 

2 
and 

 
z sin0 

sin 0n = 
e j0  e j0 

 
 

j2 

ʓsin 0 n u(n)= 2 

z 2z cos 0 1 

As an extension, using property #3, 

, ROC |z| > 1 

ʓ a n 
sin  n  u(n)= 

(z / a) sin 0
 az sin0 , ROC |z| > a 

0 
(z /a)

2 
2(z /a) cos  1

= 
z

2 
2az cos   a

2
 

 
ej0 n  e j0 n 

(8) Cosinusoid cos 0n u(n). Using the relation cos 0 n = 
2 

that for the sinusoid we get 
ʓcos n u(n)= z

2
 z cos 0 

 
 

and a procedure similar to 

0 2 , ROC |z| > 1 

z  2 z cos 0 1 
As an extension, using property #3, ʓ a n 

cos  n  u(n)= (z /a)   (z / a) cos    z  az cos  , ROC |z| > a 2 2 
 

0 
0     = 0 

 

(z / a)
2 
 2(z / a) cos  1 z

2 
2az cos   a

2
 

0 0 

 

 

Region of convergence and stability 
 

Suppose x(n) is a causal sequence that can be written as a sum of complex exponentials. This 

takes in a wide class of signals including sinusoids, exponentials, and products thereof. Let 
N 

x(n) = a 
n 
u(n) 

i 1 

Taking the z transform of x(n) gives 

ʓ[x(n)] = X(z) = 
N z 

 

i 1  z  ai 



The region of convergence R is the intersection of the regions of convergence for each 

exponential as follows: 
N 

R =  Ri where Ri = {z: |z| > |ai|} 
i1 

Therefore, R = {z: |z| > largest of |ai|} as shown here (Figure) 
 

 

Since the ROC for a translated exponential remains the same as that for the original 

exponential, all right-sided sequences that are sums of translated exponentials have ROCs similar 

to that expressed above. 

By a similar argument all left-sided sequences expressible as a sum of translated complex 

exponentials have a ROC, L, given by 

L = {z: |z| < smallest of |bi|} 

If we have a combination of right- and left-sided sequences, the corresponding ROC is 

the intersection of R and L. Therefore the total ROC becomes an annular region as shown below 

and given by 

RTotal = R  L = {z: Largest of |ai| < |z| < smallest of |bi|} 

 

Annular region Im 

is the total ROC Largest ai 

 
 

Smallest bi 

 
Re 

 

 

 
 

 
All other ai inside 
the inner circle 

All other bi outside 
the outer circle 

 

ROC, 
|z| > Largest |ai| 

 

 
Largest |ai| 

 

 

 

 

 
All other ai 
inside circle 

Re 

z-plane 

Im 



The stability of a system with an impulse response that is the sum of translated right- and 

left-sided sequences can be determined from the region of convergence. Assume that h(n) is the 

unit sample response of a causal or non-causal linear shift-invariant system. Let ʓ[h(n)] = H(z), 
the so-called system function. Then: 

 
Theorem A linear shift-invariant system with system function H(z) is BIBO stable if and only if 
the ROC for H(z) contains the unit circle. 

 

This theorem can be used to determine stability for a given H(z) without obtaining the 

impulse response or checking outputs for all bounded input signals. 

 

Illustration of stability and causality For A system function with 2 poles at, say, z = 0.5, and z 

= 1.5, there are three possible regions of convergence. 

 

(1) ROC is 0.5 < |z| < 1.5. Here the system is stable since the unit circle is inside the 

region of convergence. The impulse response, h(n), is two-sided, so the system is noncausal. 

 

 

 

 

 

 

 

 

 

 
Re 

Im 

Unit circle 

1.5 0.5 

ROC 



(2) ROC is |z| < 0.5. Here the system is not stable. The impulse response, h(n), is left- 

sided, so the system is noncausal. 

 

 

 

 

 

 

 

 

 
Re 

 

 

 

 

 

 

 
 

(3) ROC is |z| > 1.5. Here the system is not stable. The impulse response, h(n), is right- 

sided, so the system may be causal. 

 

 

 
 

Inverse z-transform by partial fractions 
 

(Aside) Comparison of inverse z-transform methods A limitation of the power series method is 

that it does not lead to a closed form solution (although this can be deduced in simple cases), but 

it is simple and lends itself to computer implementation. However, because of its recursive 

nature care should be taken to minimize possible build-up of numerical errors when the number 

of data points in the inverse z-transform is large, for example by using double precision. 

1 

   1.5  0.5 

ROC 

Re 

Im 

Im 

Unit circle 

1.5 0.5 

ROC 



Both the partial fraction method and the inversion integral method require the 
evaluation of residues albeit performed in different ways. The partial fraction method requires 

the evaluation of the residues of X(z) or 
X (z) 

. The complex inversion integral requires the 
z 

evaluation of the residues of X (z) z
n1 

. In many instances evaluation of the complex inversion 

integral is needlessly difficult and involved. 

Both the partial fraction method and the inversion integral method lead to closed form 
solutions. The main disadvantage is having to factorize the denominator polynomial of X(z) 

when it is of order greater than 2. Another disadvantage is multiple order poles and the resulting 

differentiation(s) when determining residues. 

The partial fraction method directly generates the coefficients of parallel structures for 

digital filters. The inversion integral method is widely used in the analysis of quantization errors 

in discrete-time systems. 

(End of Aside) 

 

As in Laplace transforms, in order to expand a rational function into partial fractions, the 
degree of the numerator should be less than the degree of the denominator – proper fraction. If it 
is not then we perform long division as below where Q(z) is the quotient and N1(z) is the 

remainder. 

X(z) = 
N(z)

 
D(z) 

= Q(z) + 
N1 (z)

 
D(z) 

 
Long Division 

Q(z) ←Quotient 

Denominator→ D(z) N(z) ←Numerator 
 ---  

 N1(z) ←Remainder 
 

The long division is done until we get a remainder polynomial N1(z) whose degree is less than 
the degree of the denominator D(z). We then obtain x(n) as 

 N z
x(n) = ʓ-1{X(z)} = ʓ-1{Q(z)} + ʓ-1  

1 


 D(z) 
Since N1(z)/D(z) is a proper fraction it can be expanded into partial fractions. The overall inverse 
transform is obtained by looking up a table of z-transform pairs. 

However, there is an alternative available in the case of z-transforms which is not 

available in Laplace transforms. This is a result of the fact that z-transforms are characterized by 

a z in the numerator (as can be verified by looking at a table of z-transforms). Therefore, instead 

of expanding X(z) we may, instead, expand [X(z)/z] into partial fractions giving 

X (z) 
z 

A 

z  z1 

B 
+ + … 

z  z 
2 

so that X(z) is given by 
A z Bz 

X(z) =  +  + … 

z  z1 z  z2 

This can be inverted by a simple look-up of a table of transforms. Note also that in some cases 

X(z) = N(z)/D(z) may not be a proper fraction but [X(z)/z] is and, therefore, this method obviates 

the need for long division of N(z) by D(z). (In still other cases even [X(z)/z] may not be a proper 

fraction. See later under ―General procedure for partial fraction expansion‖.) 

= 



2 

1 = 

 

	 	

Example 1.5.1 (See also long division later). Find the inverse z-transform, using partial 

fractions, of 

X(z) = 2 z
2 
 3 z 

z 
2 
 3 z  2 

= 
N(z) 

D(z) 

This is not a proper fraction since the degree of the numerator is not less than the degree of the 

denominator. However, (X(z)/z) is a proper fraction 

X (z) 
=

 
z 

   2 z  3  

z 
2 
 3 z 

2 z  3 
 

 = 
(z 1) (z  2) 

which has the partial fraction expansion 

X (z) 
 

z 

= 
1 

+ 

(z 1) 

1 
 

 

(z 2) 
or X(z) = z 

(z 1) 

z 
 

 + 
(z  2) 

By looking up a table of z-transforms the inverse z-transform is 

 

ʓ-1{X(z)} = x(n) = u(n) + 2
n
 u(n) 

Note that we are giving here the causal solution that corresponds to a ROC |z| > 2 (not 1 < |z| < 

2 or |z| < 1) so that x(n) is a right-sided sequence. 

The alternative method is to divide N(z) by D(z) as below (as is standard practice in 

Laplace transforms). Note that in this long division the numerator and denominator polynomials 

are arranged in the order of decreasing powers of z. There are three other ways (all of them 

wrong) of arranging the two polynomials for the long division. 

 

Long Division 

2 ←Quotient 

Denominator→ z
2
 –3z + 2 2z

2
 – 3z ←Numerator 

2z
2
  – 6z + 4 

3z – 4 ←Remainder 
 

Thus X(z) can be expressed as 
X(z) = 2 + 3z 4 = 2 +X (z) where X (z) = 3 z  4 

1 

(z 1)(z  2) 
1 

(z 1)(z  2) 

X1(z) is a proper fraction and can be expanded into partial fractions as below: 

X (z) =  3z  4  
(z 1)(z  2) 

  A 
z 1 

B 
 

 

z  2 

Solving for A and B we get A = 1 and B = 2, so that X(z) may be written 

X(z) = 2 +   1  
z 1 

2 
 

 

z  2 
Taking the inverse z-transform we get 

x(n) = ʓ-1{X(z)} = ʓ-1 

2   

1  
   

2 


 z 1 z  2

= ʓ-1{2} + ʓ-1 
  1  

+ ʓ-1 
 2 




 1 

 z 1  z  2
1 z

1
. z  z 

A term like ʓ-1 	 is handled by writing  as  . We know that ʓ-1 	 = u(n), so 
 z 1 z 1 z 1  z 1

 1 

ʓ-1  z 
z 
 = u(n–1) 

 z 1

+ 

+ 







Similarly ʓ-1 
 2  = 2 . 2

n–1
 u(n–1). Thus 

 z  2 

x(n) = 2 δ(n) + u(n–1) + 2 . 2
n–1

 u(n–1) 

 

This can be verified to be equivalent to x(n) = u(n) + 2
n
 u(n) obtained earlier. 

 
In MATLAB (Partial fractions) The partial fractions may be computed by using the residuez 
function. In this method X(z) is arranged as a ratio of polynomials in negative powers of z and, in 

the denominator, the leading coefficient a0  0. See ―General procedure for partial fraction 
expansion‖ later. 

X(z) = 
2  3 z

1
 

13z
1 
2z

2
 

  R1  

= K + 
1 p z

1
 

R2  
 

 

+ 
1  p z 

1
 

1 2 

We define the coefficient vectors b = [2, -3] and a = [1, -3, 2]; R = [R1, R2] represents the 
residues (partial fraction constants), p = [p1, p2] the poles and K a constant. 

 

%Partial fractions 

b = [2, -3], a = [1, -3, 2], 

[R, p, K] = residuez (b, a) 

 

The MATLAB results returned are 

R = 

1 

1 

p = 

2 

1 

K = 

[] 

 

The MATLAB output tells us that the poles are at z = 2 and z = 1 and the corresponding residues 

are, respectively, 1 and 1. Further K = 0. Therefore, 
2  3 z

1
 

1 1 z z 
 

    

X(z) = 
13z

1 
2z

2 
= 0 + 

12z
1 + 

11z
1 =

 z 2 
+ 

z 1 

Note that the X(z) = 
1
 

12z
1

 

+ 
1 

1 

1 1z 
obtained by the residuez function and X(z) 

= 
z 

1 

(z 1) 

1 
 

 

(z 2) 
are 

the same since X(z) has no repeated poles. This won‘t be the case if X(z) has repeated poles. 

 

Example 1.5.2 Find if the discrete LTI system described by 

 

y(n) – y(n–1) + 0.5 y(n–2) = x(n) + x(n–1) 

 

is BIBO stable or not. Find its transfer function and impulse response. Sketch its pole-zero plot. 

Solution Take the z-transform of both sides: 

 
 

ʓ{y(n) – y(n–1) + 0.5 y(n–2)} = ʓ{x(n) + x(n–1} 

Y(z) – z 
1 

Y(z) + 0.5 z 
2 

Y(z) = X(z) + z 
1 

X(z) 

Y(z) (1– z 
1 

+ 0.5 z 
2 

) = X(z) (1 + z 
1 

) 

+ 



 

 
H(z) = 

Y (z) 
=

 

X (z) 

1 z
1

 

1 2 
=

 
1   z 0.5z 

 
 

(z 

(z 1) / z 
2 
 z  0.5) / z 

    z(z  1)  

z
2 
 z  0.5 

 

The denominator has roots at 

 (1)  (1) 
2 
 4.1.(0.5) 

z1, z2 =  = 
2 

 
1 2 

2 

 

1  j1 
= 

2
 

 

= 0.5  j0.5 

= (0.5 + j0.5)  and (0.5 – j0.5) 

Thus the transfer function H(z) has zeros at z = 0, z = 1, and poles at z = 0.5 ± j0.5. For a causal 

system (right-sided sequence, h(n)) the region of convergence is |z| > |0.5 + j0.5| or |z| > 0.707. 

(Figure) 
 

 

 
The impulse response is given by h(n) = ʓ-1{H(z)}. We need partial fractions for H(z); 

we shall instead handle H(z)/z: 
H (z)   z 1  z  1 

 
 

z 
= 

z
2 
 z  0.5 

= 
(z  0.5  j0.5) (z  0.5  j0.5) 

A 
=  + 

z  0.5  j0.5 

Solving for A and A
*
, we get 

* 

A 
 

 

z  0.5  j0.5 

z 1 
A =  = 0.5  j0.5  1 

= 
1.5  j0.5 

 

z  0.5  j0.5 z 0.5 j 0.5 0.5  j0.5  0.5  j0.5 j 

 

 
Thus we have 

= 0.5 – j1.5 = 

A
*
 = 0.5 + j1.5 

e j tan13 

 
* 

  H (z) 
z 

  A  
z  (0.5  j0.5) 

A 
 

 

z  (0.5  j0.5) 

H(z) = A 
z
 

z  (0.5  j0.5) 
+ A

*
 

z
 

z  (0.5  j0.5) 
 

  
= a = b 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 

Pole at 0.5 – j 0.5 
Zero at 0 

Zero at –1 

Re 

Pole at 0.5 + j 0.5 Unit circle 

Im 

5 / 2 

1

= + 

2 = 



2 

2 

2 

2 2 

2 

2 2 

2 2 

2 

 1 

   

where  
 

a = 0.5 + j0.5 = 
 

b = 0.5 – j0.5 = 
1 

e j  / 4
 

e j tan1
1 = 

1 
e j / 4 

 

The inverse z-transform is 

 

h(n) = A a
n
 + A

*
 b

n
, n  0 

0, otherwise 
 

So that for n  0,  
  1  / 4 

n
 

 
*  1 

 
 j  / 4 

n
 

h(n) = A 



e 
j 




 1 

n
 

+ A  e 
 

n 
j n / 4 * 

 

 
 
 j 








n / 4 

= A   e 
 

+ A   e 
 

n n 

 1 
 j 

3   1 


	 

j n / 4  1 
 

 

3   1 




 j  n / 4 

=   	 e +   j  	 e 

 2 
1  1 

 
 

2   2 
n 

 2 2   2 
n 3     1 



= 	 ( e j n / 4 + e j n / 4 ) + j   (  e j  n / 4 + e j  n / 4 ) 
2  2 

n 
2  

n 

  1   e j  n / 4   e j  n / 4  3  1   e j  n / 4  e j  n / 4 


=    
   

 + j    
2  2    

 j2 

j2 



 1 

n
  1 

n 

e j  n / 4  e j  n / 4 
=  

 
cos (n/4) + 3    

   



j2 



To sum up,  
 1 

n

 

h(n) =   [cos (n/4) + 3 sin (n/4)], n  0 

 2 

0, otherwise 
 

Alternatively, since the two terms in 

h(n) = A e j  n / 4

 + A
* e j  n / 4 

, n  0
 

(  2)
n 

(  2)
n

 

are complex conjugates of each other we can write 

 e j n / 4 




h(n) = 2 Re A , n  0 
n 

 

sin (n/4) 

cos (n/4) 

0.5
2 
 0.5

2
 

2 



2 

2 2 2 

 1   1 
      z  

z 
2 
 2 z   

 2   2 

2 

2 2 

= 

ʓ  n    z  az cos 

  0 

0 

 

0 

Alternative In the above solution the impulse response initially contains complex numbers; 

these have been algebraically manipulated into sine and cosine terms. A more direct way to 

obtain the impulse response in a form that contains no complex numbers is to use results #7 and 

#8 in ―Transforms of some useful sequences‖ and manipulate the transform 
2 

H(z) =     z(z  1)    z   z   

z
2   
 z  0.5  z 

2 
 z 0.5 

into those forms. Comparing the denominator of H(z) with the denominator of the transforms of 

the sine and cosine functions 

ʓ a n 
sin  n  u(n)== 

az sin 0
 , ROC |z| > a 

 
and 

 

0 
z

2 
2az cos   a

2
 

2 

a cos n u(n) = , ROC |z| > a 

we get 

from which 

0 
0 

z
2 
2az cos   a

2
 

 

z
2 
 z  0.5 = z

2 
 2az cos  a

2
 

a
2 
= 0.5 → a = 

1  
, 

1 

2a cos 0 = 1 → ω0 

1 

= /4, 

cos 0 = ,  a cos  = ½, sin 0 = ,  a sin  = ½ 
2 

0 
2 

0 

The numerators of the two transforms then are 
1 1 1 2 2 1 1 2 1 

az sin  0 =  z  =     z and z    az cos   0 = z  	z  = z  z 
2 2 2 2 2 2 

In light of these we manipulate the numerator of H(z) so that it will contain 
1 

z and 
2 

z
2 
 

1 
z 

2 
  2 1    3  

Numerator = z
2 
 z =  z      z    z 

Denominator = z 
 2 

 z  0.5 = z
2

 
 2 1 
2 z 

1
   

1 
 2

 

 

 
Thus 

 

 

  2 1 

	 	 	

     

 3   2 1 1 

z 
2  
 z  z  

2 
z    2 

z  z      z  z 

H(z) =  =     =  2 + 3  2  

z 
2 
 z  0.5 z

2 
 z  0.5 z

2 
 z  0.5 z

2 
 z  0.5 

We have, in effect, arranged H(z) as 

z
2 
 
  1   

z
  1 

   
H(z) = 2 1 2 1  2  1 + 3 

z  2 z   2 

               
 
         1     1    1 


Therefore, 

 2   2   2       

 2 1   1 
-1 -1  z    2 z 




-1 
 2 

z 


h(n) = ʓ {H(z)} = ʓ   2  +3 ʓ 

 z    z  0.5
 

  2 

 z    z  0.5
 

2 

2 



2 

 1  1 
n

 

=   cos(n / 4) u(n) +3 

n 

 sin(n / 4) u(n) 

 2   


In MATLAB (Pole-zero plot) It is convenient to specify the transfer function as a ratio of 

polynomials in z
1

 

H(z) =  
1 z 

1 z
1

 

1 
 0.5z

2
 

The numerator coefficients, from left to right, are {bi, i = 0 to M}, specifying the vector b = [b0, 
b1] = [1, 1]. Similarly, the denominator coefficients are {ai, i = 0 to N} from left to right, (with a0 
= 1) specifying the vector a = [1, a1, a2] = [1, -1, 0.5]. 

 

%Pole-zero plot 

b = [1, 1]; a = [1, -1, 0.5]; zplane (b, a) 
 

 

 

 

1 
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-0.8 
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In MATLAB (Partial fractions) The partial fractions may be computed by using the residuez 
function as below. Note that H(z) is arranged as a ratio of polynomials in negative powers of z. 

1 z
1  R1    R2  

H(z) =  = K + 
1 z

1 
 0.5z

2 
1 p z

1
 

+ 
1  p z 

1
 

1 2 

We define the coefficient vectors b = [1, 1] and a = [1, -1, 0.5]; R = [R1, R2] represents the 
residues (partial fraction constants), p = [p1, p2] the poles and K a constant. 

 

%Partial fractions 

b = [1, 1], a = [1, -1, 0.5], 

Im
a
g
in

a
ry

 P
a
rt

 

  

  

 



+ 

[R, p, K] = residuez (b, a) 

 

The MATLAB results returned are 

R = 

0.5 - 1.5i 

0.5 + 1.5i 

p = 

0.5 + 0.5i 

0.5 - 0.5i 

K = 

[] 
 

Therefore,  
1 z

1 
0.5 j1.5 0.5  j1.5 

H(z) = 
1 z

1
  0.5z 

= 0 + 
2 1(0.5 j0.5)z 

+    
1 

1  (0.5  j0.5)z 
1

 

 

Example 1.5.3 Find the inverse transform of X(z) = 

(b) |z| < (1/3), (c) (1/3) < |z| < 1. 

z 
, where the ROC is (a) |z| > 1, 

3z
2 
 4z  1 

Solution The three possible regions of convergence are shown below. The example shows that 

the inverse transform, x(n), is unique only when the ROC is specified. 
 

 

 

(a) For ROC ≡ |z| > 1 

X (z) 
= 

1 
= 

1 
= 

1 

z  2 4 z  
1   2 1 z  

1 

  1 

3 z 	 3 z    z 			3 z(z 1)     (z 1)
 3 3   3 3   3 

= 
1 

= 
A  

+ 
B 

   

3(z 1)z  (1/ 3) z  1 z  (1/ 3) 

1 
A = 

3z  (1/ 3)







z  1 

=1/2, and B = 
1 

3z1







z  1/ 3 

= –1/2 

X (z) 
 

(1/ 2) 
 

 

(1/ 2) 
 

 

z 
= 

z  1 
+ 

z  (1/ 3) 

 

 
The inverse is 

X (z) = (1/ 2)z  (1/ 2)z 

z 1 z  (1/ 3) 

(1/ 2)z (1/ 2)z x(n) = ʓ-1{X(z)} = ʓ-1 


 


-1 
(1/ 2)z 

+ ʓ-1 
 (1/ 2)z 



 = ʓ   	

 z 1 z  (1/ 3)    z 1   z  (1/ 3) 

(a) (b) (c) 



z  1 

3(z 1)z  (1/ 3)

  	

The ROC is outside the largest pole signifying a right-sided sequence for each pole. The inverse 

becomes 

1 
1 1 n 1 1  1  n 

x(n) = (1)
n
 u(n) –   u(n) = u(n) –   u(n) 

2 2 3  2 2  3 

(b) For ROC ≡ |z| < (1/3). The partial fraction expansion does not change. Since the ROC is 

inward of the smallest pole, x(n) consists of two negative-time sequences. 

x(n) = ʓ-1{X(z)} = ʓ-1 
(1/ 2)z  

+ ʓ-1 
 (1/ 2)z 

  z 1   z  (1/ 3) 1 n 
1  (1/ 3)

n u(–n–1) 
 

= (–1 ) u(–n–1) – 
2 2 

= (1/ 2)1 (1/ 3)
n u(n 1) 

(c) For ROC ≡ (1/3) < |z| < 1. The partial fraction expansion stays the same. The pole at z = 1 

corresponds to a negative-time sequence (left-sided sequence) while the pole at z = 1/3 gives a 

positive-time sequence (right-sided sequence). 
(1/ 2)z (1/ 2)z x(n) = ʓ-1{X(z)} = ʓ-1  -1 

(1/ 2)z 
+ ʓ-1 

 (1/ 2)z 


 = ʓ   	

 z 1 z  (1/ 3) 
n 

  z 1   z  (1/ 3) 
n 

= 
1 

(–1
n
) u(–n–1) – 1 


1 

 u(n) = – 

1
 u(–n–1) – 1 

 
1 

 u(n) 

2 

The overall result is a two-sided sequence. 

2 3  2 2  3 



Example 1.5.4 (Sometimes there is no z in the numerator to factor out, but we still can divide 
z 1 

X(z) by z as in this example.) Find x(n) for X(z) = 
3z 

2 
 4z 1 

where the ROC is |z| > 1. 

Solution 

  X (z)   z 1 
=

 z  1 =  A B C 
 

   

z 
=  

z(3z 
2  
 4z 1) 3z(z 1)z  (1/ 3)

1 

z 
+ 

z 1
+ 

z  (1/ 3) 

A = = 
z  0 

3(1)1/ 3
= 1

 

 

B = 

z  1 

= …= 1 

C =
 z  1  

3z(z 1) 

 

 

 
z  1/ 3 

 

= …= –2 

X (z) 
 

z 

= 
1 

+ 

z 

1 

z  1 

2 
 

 

z  (1/ 3) 

X (z) = 1 + 
z 

– 2 

z  1 

z 
 

 

z  (1/ 3) 
 1 

n
 

x(n) = δ(n) + u(n) – 2   u(n) 

 3 



(z 1)

2
 

Example 4.5.5 [2002] Find the inverse z-transform of X(z) =  . 
z 

2  
 0.1 z  0.56 

Solution The roots of the quadratic in the denominator are given by 

z  1 

3zz  (1/ 3)

– 



b
2 
 4ac 

+ 

 

 

 b   (0.1)  (0.1)
2 
 4 (1)(0.56) 

z1, z2 =   =   
2a  2 (1) 

= 
0.1  0.01  2.24 

2 
2 

X(z) =
  (z 1)  

(z  0.8)( z  0.7) 
2 

= 
0.1 

2 

2.25 0.1  1.5 
= 

2
 

 

= 0.8 and –0.7 

  X (z)   (z 1)   A   B  C 
 

 

z 
= 

z (z  0.8) ( z  0.7)
=

 

(z 1)
2
 

z 
+ 

z  0.8 
+ 

z  0.7 

A = 
(z  0.8) ( z  0.7) 

 
 

z  0 

= …= –1/0.56 = –1.79 

 

B = 

z  0.8 

= …= 1/30 

 

C = 

z  0.7 

= …= 2.75 

 X (z) 
= 
 1.79 

+
 (1/ 30) 

+
 2.75  

z z z 0.8 z 0.7 

X (z) = –1.79 + 
(1/ 30) z 

+ 
2.75 z  

z 0.8 z 0.7 

x(n) = ʓ-1{X(z)} = 1.79 δ(n)
 1  

(0.8)
n 
u(n)  + 2.75  (0.7)

n 
u(n)  

30 

Example 1.5.6 Find the inverse z-transform of X(z) = 
1 

, |z| > ½. 

z  (1/ 2)z  (1/ 4)
Solution  

  X (z) 
1 

= 
A 

+ B C 
 

    

z 
= 

zz  (1/ 2)z  (1/ 4) z z  (1/ 2)
+ 

z  (1/ 4) 
 

A = 

z  0 

= …= 8 

 

B = 

 
 

C = 

 
X (z) 

 

 

 

 
= 

8 
+ 

 
 

 

 
z  1/ 2 

 

 

 
z  1/ 4 

8 

= …= 8 

 

= …= –16 

 
16 

 
 

z z z  (1/ 2) 
–
 z  (1/ 4) 

X (z) = 8 +  8 z  
z  (1/ 2) 

n 

16 z 
 

 

z  (1/ 4) 
n 

x(n) = 8 δ(n) + 8 

 

1
 u(n) – 16 

 1 
 u(n) 

 2   4 

(z 1)
2
 

z ( z  0.7) 

(z 1)
2
 

z ( z  0.8) 

1 

z  (1/ 2)z  (1/ 4)

1 

z z  (1/ 4)

1 

z z  (1/ 2)

– 



=     

 



z 
4  
 z

2
 

Example 1.5.7 Find the inverse of X(z) = 
z  (1/ 2)z  (1/ 4) 

for ROC ½ < |z| < ∞ 

X (z) 
=

 z3   z z
3 
 z 

 
 

z z  (1/ 2)z  (1/ 4) z
2 
 (3 / 4)z  (1/ 8) 

There is a pole at z = ∞. The numerator degree is 3 and is greater than the denominator degree. 

By long division we reduce the numerator degree by 2 so that the resulting numerator degree is 
less than that of the denominato3 r degree. 3  (23 /16)z  (3 / 32) 

X (z) 
= 2 z    z = z  

4 
+   2 



   z z  (3 / 4)z  (1/ 8) z  (3 / 4)z  (1/ 8) 
 

(Note that in the long division leading to the above result the numerator and denominator 

polynomials are arranged in the order of decreasing powers of z. There are three other ways (all 

of them wrong) of arranging the two polynomials for the long division.) 
The proper fraction part can now be expanded into partial fractions: 

(23 /16)z  (3 / 32) 
 

z
2  
 (3 / 4)z  (1/ 8) 

= 
A 

+ 

z  (1/ 2)

B 
 

 

z  (1/ 4) 

(23 /16)z  (3 / 32) 
A = 

z  (1/ 4) 

(23 /16)z  (3 / 32) 
B = 

z  (1/ 2) 
3 

 

 

 
z  1/ 2 

 

 

 
z  1/ 4 

= 5/2 

 
 

= –17/16 

X (z) = z  + (5 / 2) (17 /16) + 
 

 

z 4 z  (1/ 2)

X (z) = z
2 
 

3z 
+ (5 / 2)z 

z  (1/ 4) 

+ 
(17 /16)z 

 
 

4 
x(n) = δ(n+2) + 

 
 

3z  (1/ 2)5 
(n  1) + 

1z  (1/ 4) 

 n  

 
17


1


n 




  
       

 
u(n) 

4 2  2  16  4   

The answer has values for n = –1 and n = –2 due to the pole at z = ∞. The resulting x(n) is not a 
causal sequence. 

 

In MATLAB (Partial fractions) The transform X(z) represents a noncausal sequence. 
 

X(z) = 
z 

4 
 z 

2
 1 z 

2
 

=     
z 

2 
 (3/ 4)z  (1/ 8) z 

2 
 (3/ 4)z 

3 
 (1/ 8)z 

4
 

Partial fractions cannot be computed by using the residuez function directly on X(z) since a0 = 0. 
However, 3  (23/16)z 

2 
 (3/ 32)z 	3 

X(z) =  z
2 
   z+  = z 

2 
 z +X (z) 

 

where 
4 

  
z 

2  
 (3/ 4)z  (1/8)   4 

1
 

 (23/16)z 
2  
 (3/ 32)z  (23/16)  (3/ 32)z 

1
 X1(z) =  z 

2 
 (3/ 4)z  (1/ 8) 

= 
1 (3/ 4)z 

1 
 (1/ 8)z 

2
 

 

On which we may use the residuez function. 
 

z  4 
Example 4.5.8 Assuming that H(z) = 

independently of each other 

 
 

z  5 
is a causal system function, prove the following 



1  0.25z 1 z  0.5z 

(a) h(n) = –(4/5)  (n) + (9/5) 5
n 
u(n) 

(b) h(n) = 5
n 
u(n) + (4) 5

n1 
u(n-1) 

(a) h(n) =  (n) + (9) 5
n1 

u(n-1) 

Solution (a) H (z) 
= 

(4 / 5) 
+ 

(9 / 5) 
, (b) H (z) = z 

+
 4 , (c) By long division H (z) = 

z 

1+ 
9 

. 

z  5 

z z  5 z  5 z  5 

 

Example 4.5.9 Partial fractions can be obtained with the z-transform, say H(z), expressed as a 

ratio of polynomials in negative powers of z. This amounts to expanding H(z)/z into partial 

fractions. Here is an example: 
8z

3 
 4z 

2 
 11z  2 

H(z) = 
z  (1/ 4)z 

2 
 z  (1/ 2)

This example is from ―Parallel realization of IIR filters‖, towards the end of this Unit where we 
obtain 

H (z)  
= 

16 
+ 

8 

z z z  (1/ 4)
+

 

(16) z  20 

z
2  
 z  (1/ 2)

However, we may also proceed with negative powers of z as below (we may view z
–1

 = p as a 

new variable): 
8z

3  
 4z 

2 
11z  2 8  4z 

1  
 11z

2 
 2z 

3
 

H(z) = 
z  (1/ 4)z 

2 
 z  (1/ 2) 

= 
1 0.25z 

1 1  z 
1 
 0.5z 

2 
8  4z

1 
 11z

2  
 2z

3
 

= 
1 1.25z

1
  0.75z

2
  0.125z

3
 

 

By long division we reduce the degree of the numerator by 1 and then expand the proper fraction 
part into partial fractions: 

 

Long Division 
16 ←Quotient 

Denominator→ – 0.125z
–3

 + 0.75z
–2

 – 1.25z
–1

+ 1 – 2z
–3

  + 11z
–2

  – 4z
–1

 + 8 ←Numerator 

– 2z
–3

 + 12z
–2

 – 20z
–1

 + 16 

– z
–2

 + 16z
–1

  –8 ←Remainder 
 

 

 
 

Let 

 8 16z 
1 
 z 

2
 

H(z) = 16 +     
11.25z 

1 
 0.75z 

2 
 0.125z 

3
 

 8 16z 
1 
 z 

2
 

11.25z 
1 
 0.75z 

2 
 0.125z 

3
 

A Bz 
1 
 C 

= 
1 0.25z 

1 
+ 
1  z 

1 
 0.5z 

2 
Comparing coefficients of like powers of z in the numerators on both sides 

z
0
: A + C = –8 

z
1
: –A + B – 0.25C = 16 

z
3
: 0.5A – 0.25B = –1 

which give A = 8, B = 20, and C = –16, and 

H(z) = 16 + 

 8 

1 
16  20z 

1
 

+ 
 1 2 



+ + 

In MATLAB The partial fractions may be computed by using the residuez function: 
8  4z

1 
 11z

2  
 2z

3   R   R R 
H(z) =  = K + 

1 1.25z
1 
 0.75z

2 
 0.125z

3
 

1 

1 p z
1

 

2  
 

1 p z
1

 

3  

1 p z 
1

 
1 2 3 

We define the coefficient vectors b = [8, -4, 11, -2] and a = [1, -1.25, 0.75, -0.125]; R represents 

the residues (partial fraction constants), p the poles and K a constant. Note that in the 

numerator z 
3 

means M = 3, and in the denominator z 
3 

means N = 3; since M is not less than N 

this is not a proper rational function, so that K will have a nonzero element(s). 
 

%Partial fractions 

b = [8, -4, 11, -2], a = [1, -1.25, 0.75, -0.125], 

[R, p, K] = residuez (b, a) 

 

The MATLAB results returned are 

R = 

-8 -12i 

-8 +12i 

8 

p = 

0.5 + 0.5i 

0.5 - 0.5i 

0.25 

K = 

16 
 

Therefore, 

H(z) = 16 +
   8  j12 

+
  8 j12 

+
  8  

1(0.5 j0.5)z
1 

1(0.5 j0.5)z
1 

1 0.25 z 
1

 





L 

Inverse z-transform when there are repeated roots With repeated roots, that is, a k-th order 

pole at z = a we have X(z) in the form 

X(z) = 
z
 

(z  a)
k
 

, ROC |z| > |a| 

The table below gives the inverse z-transforms for several values of k and for the general case of 

arbitrary k. 

 

Repeated Roots 

X(z) x(n) = ʓ-1[X(z)] for ROC |z| > |a| 

z 
 

(z  a) 

a
n
 u(n) 

z 
 

(z  a)
2
 

n 
a

n 1
u(n) 

1! 

z 
 

(z  a)
3
 

n(n 1) 
a

n 2
u(n) 

2! 

z 
 

(z  a)
4
 

n(n 1)(n 2) 
a

n 3
u(n) 

3! 

… … 

  z  

(z  a)
k
 

 
 

n(n 1)(n  2)...(n  k 2) n  k1 

(k 1)! 
a u(n)

 

 
 

General procedure for partial fraction expansion Since X(z)/z must be rational, it takes the 

form 
  z K   z 

K 1  
 ..........   z  

X (z) 
= 

   K K 1 1 0 

z L z 
L 
 


L1 z 

L1 
 ..........   z  0 

If K < L then no adjustment is needed. The partial fraction expansion is straightforward. 
If K ≥ L then divide until the remainder polynomial in z has a degree of L–1 or less: 

L1 

X (z) = (c z
K–L

 + … +c z + c ) + dL1 z  ..........  d z  d 
K–L   1 0  

z 
1 0  L z L  L1 z 

L1 
 ..........  z  0 

The first part of the above expression, (cK–Lz
K–L

 + … +c1z + c0), will eventually contribute δ 
functions to the output sequence some of which are time-advanced so that the resulting x(n) will 

be noncausal. The second part – the proper fraction – is expanded into partial fractions. Assume 
we have one repeated pole of order m, call it z1, and that all the rest are distinct, call them zm+1, 
zm+2,…, zL. Then let 

d z 
L1 

 ..........  d z  d 
(z) =  L1 1 0  

  z 
L 
  z 

L1 
 ..........   z  

L L1 1 0 
  A  A A Bj 

 

m + m1 +…+  1    




	 

z  z  z  z  z  z  j  m1 z  zj 
1 1 1 

The coefficients Aj (m of them) and Bj ( L  m of them) are found as follows: 

Aj =    1   d m j
 (z  z)

m 
(z) 

, j = 1, 2, …, m 

(m   j)! dz
m j 1 




z  z1 

m1 m 

1 

1 

= 

+ 



z 

z  0.52
 

z 

z 1

 
= 

 

	 	 	

    z       

Bj = [(z  z j ) (z)] , j = m+1, m+2, …, L 
z  z j 

In the resulting x(n) the contribution of the Aj terms is a number of exponentials multiplied by n, 
(n–1), (n–2), etc., and the contribution of the Bj terms is a number of complex exponentials. 

 

Example 1.5.10 Find the inverse of  
z 

2 

H(z) = 
z

3 
 2z 

2
 

z 
1.25z  0.25 1  2z

1
  1.25z 

2
 

, |z| > 1 

 0.25z
3

 

Solution This transform is a proper rational function. We shall use this example to give a 

summary of the three styles of obtaining partial fractions: (1) Expanding H(z) directly, (2) 

Expanding H (z) / z and (3) Expanding H (z 
1 

) as in MATLAB (also Mitra). 

When the poles of H(z) are distinct the partial fraction coefficients returned by the 

MATLAB function residuez are the same as in expanding H (z) / z . However, when there are 

repeated poles it makes a difference in the coefficients as well as in the final analytical forms of 

the inverse transforms in these two methods. In addition, directly expanding H(z) results in an 

analytical form that is still different from the other two. In any event the three inverse transforms 

are the same as far as the actual sequence values are concerned. 
 

(1) Expanding H(z) We have 

H(z) = 
z 

= z 
 

A B B 
 

  

3 2 2 = 
 + 2 

2  +
  1  

z  2z 1.25z  0.25 (z 1)(z  0.5) (z  1) (z  0.5) (z  0.5) 

There is a pole at z = –1 and a repeated pole at z = –0.5. The coefficients A, B2 and B1 are given 
by 

 

A = = 

z  1 

 

B2 = = 
z  0.5 

 d  z 


 

1 

1  0.52    
= –4

 

 0.5 

 0.51 
= –1

 

= (z  1).1  z(1)









= 
(0.5  1)  (0.5) 

= 4
 

 

B1 =     


Thus 
dz  z 1 


z  0.5  z  12

  z  0.5 
 0.5  12

 

(4) (1) 4 
H(z) = 

z  1 
+  
z  0.52   

+ 
z  0.5

Taking the inverse z-transform, 

h(n) = –4 ʓ-1 
  1   

–1ʓ-1 
 1  

+ 4 ʓ-1 
 1 



 z  1  z  0.52  

  z  0.5

= –4 ʓ-1 


z
1 z    

–1ʓ-1 
  1 z  

+ 4 ʓ-1 

z 
1 z 



 z  1 z  0.52
 

 n 
 z  0.5

= –4 (1)
n  

u(n)



nn1 

–1 

 1! 

(0.5)
n1 

u(n)







n  n1 

+ 4 (0.5)
n 
u(n)




n  n1 

= 4 (1)
n 
u(n 1) –4 (n 1)(0.5)

n 
u(n 1) – 8 (0.5)

n 
u(n 1) 

 
(2) Expanding H(z) / z We have 



 

 2

   

	 	 	

H (z) 
 

= 
1 

= z 
 

 

C D2 D 
 

  3 2 = + 
2  +

  1  

z z   2z   1.25z  0.25 z 1z  0.52 z 1 z  0.5 z  0.5

The coefficients C, D2 and D1 are given by 

  1  
C =  

z  0.52
 

1 
= 4 

 

 1  0.52 

1 
D2 =  

z  0.5 

= 
 0.5 1 

= 2
 

 d     1    
= (z  1).0  1(1)


 	 

= 
 1 = –4 

 

D1 =     



Thus 
dz  z  1 


z  0.5  z  12

  z  0.5 
 0.5  12

 

H (z) 
= 

4 

z z  1 
+

 

2 

z  0.52
 

(4) 
+ 
z  0.5

H(z) = 4 
z 

z  1 
+ 2

 

z 
– 4 

z 

z  0.52 z  0.5
Taking the inverse z-transform, 

h(n) = 4 ʓ-1 
  z  

+ 2 ʓ-1 
 z  

– 4 ʓ-1 
 z 



 z 1  z  0.52  

  z  0.5

= 4 (1)
n 
u(n) + 2 

n 
(0.5)

n1
 u(n) – 4 (0.5)

n
 u(n) 

1! 

= 4 (1)
n 
u(n) – 4 n(0.5)

n 
u(n) – 4 (0.5)

n 
u(n) 

 

(3) Expanding H(z 
1 

)as in MATLAB We start with H(z) expressed as a ratio of polynomials in 

negative powers of z. However, for the sake of continuity we have 
2 

H(z) =  z  z
3 
 2z 

2 

1.25z  0.25 

  z  

1  2z
1 
 1.25z 

2 
 0.25z

3
 

2 

H(z) =  z 
= 

z 1 z  0.5 

z 

1  1 z 
1 1  0.5z 

1 2

 

E 
= 
1  1 z 

1
 

+ 
F1 

10.5z
1

 

+ 
F2 

1 0.5z 1 2 

(We have ordered the coefficients in the order in which MATLAB displays them). We can define 

z 
1 

= v so that z = –1 corresponds to v = –1 and z = –0.5 to v = –2. The transform now appears as 
v

2 
E F F 

H(v) = 
2 
= 




 +  1 + 2 

2 
11v1 0.5v

The coefficients E, F2 and F1 are given by 

= 

11v


12 

1 0.5v 1  0.5v


= 4 

E = 
 

 

F2 = 

 

z1  1 

 

= 

z1  2 

1 0.5(1)2 

(2)
2
 

= –4 
11.(2) 

1 

z 1

1 0.5z 
1 2

 

z 2 

11z 
1 

z 2 

z  1 

= 





= 





	 	

1 

 d   v
2 

 (1  v). 2v  v
2 
.(1) (1 2)2(2)  (2)

2
 

F1 =    = 




 =  = 0 

 
 

Therefore, 

dv 11v  v  2  1  v2
 

4 0 (4) 
H(z) =  

1  1 z
1 

+  
1  0.5z 

1 
+  
1  0.5z 1 2

 

 v  2 
(1 2)

2
 

z z 
2 

z z 
= 4  – 4  = 4  – 4z    

z 1 

Taking the inverse z-transform, 

z  0.52
 z 1 z  0.52

 

h(n) = 4 ʓ-1 
  z  

– 4 ʓ-1 


z 
z 



 z 1    z  0.52  


n 

= 4 (1)
n 
u(n)– 4 

1! 

(0.5)
n1 

u(n)
 n  n1 

n 

= 4 (1)
n 
u(n)– 4 (0.5)

1 

1! 

(0.5)
n 
u(n)

 n  n1 

= 4 (1)
n 
u(n)+ 8 (n 1)(0.5)

n1 
u(n 1) 

 
In MATLAB This particular set of partial fractions may be computed by using the residuez 

function: 

z2 E F1 F2 

H(z) = 1  2z1  1.25z 2   0.25z3  = K + 1 p z1 + 1 p z1 + 
2

 

1 2 1 p2 z 
We define the coefficient vectors b = [0, 0, 1] and a = [1, 2, 1.25, 0.25]; R = [E, F1, F2] 
represents the residues (keyed to the above partial fraction coefficients), p the poles and K a 
constant. 

%Partial fractions 

b = [0, 0, 1], a = [1, 2, 1.25, 0.25], 
[R, p, K] = residuez (b, a) 

The MATLAB results returned are 

R = 

4 

-0 + 0i 

-4 - 0i 

p = 

-1 

-0.5 + 0i 
-0.5 - 0i 

K = 

[] 
 

Therefore,  
 

H(z) = 
 

z2 

 
 

= 0 + 

 

4 0 (4) 
 

   

1  2z
1 
 1.25z 

2 
 0.25z

3
 1 (1)z

1
 

+ 
1  (0.5)z 

1 
+

 1 (0.5)z 
1 2

 



z
3 
 z

2 
 z  (1/16) 

zz  (1/ 2)2
 

z
3 
 z

2 
 z  (1/16) 

zz  (1/ 4)

  



 

 
 

1  1 z 
1

 1 0.5z 
1 2 




=
  4 + 


 (4) 

which agrees with the hand-calculated results. 
 

Example 1.5.11 Find the inverse of 

z
3  
 z 

2  
 z  

1 
z

3 
 z 

2 
 z  

1
 

  

X (z) =  16   =  16 , for |z| > ½ 

 z 


3 

1 2  1 
   z    

2   4 
2 

z
3 
 (5 / 4)z 

2 
 (1/ 2)z  (1/16) 

 X (z) 
= 

   z   z    z  (1/16)     
=

 A 
+ 

B2 + 
B1 +

  C  

z zz  1/ 22 z  1/ 4 z z  (1/ 2)2 z  (1/ 2) z  (1/ 4) 

z
3 
 z

2 
 z  (1/16) 

A =  
z  (1/ 2)2 z  (1/ 4)






z  0 

 (1/16) 
=  
 1/ 22  1/ 4

= 1
 

(1/ 4)
3 
 (1/ 4)

2 
 (1/ 4)  (1/16) 

C = = 
z  1/ 4 

 

B2 = = 
z  1/ 2 

(1/ 4)(1/ 4)  1/ 2

(1/ 2)
3 
 (1/ 2)

2 
 (1/ 2)  (1/16) 

 
 

(1/ 2)(1/ 2)  1/ 4
 d   z

3 
 z 

2  
 z  (1/16)   d  z

3 
 z 

2 
 z  (1/16)

B1 =   dz 	zz  (1/ 4)  =  dz  z
2 
 (z / 4) 

   z  1/ 2    z  1/ 2 


  z2  

 (z / 4)3z
2  
 2z  1 z 3  

 z 
2  
 z  (1/16)2z  (1/ 4)= 

 

 
 

X (z) 




=1–9 
= + (5/ 2) (9) 

z2  
 (z / 4)2

 

9 


 z  1/ 2 

z z z  (1/ 2)2   
+ 
z  (1/ 2)

+ 
z  (1/ 4) 

X (z) = 1+ 
5
 

2 

z 
9
 

z  (1/ 2)2
 

z 
+ 9 

z  (1/ 2)

z 

z  (1/ 4) 

Taking the inverse z-transform, 

x(n) = ʓ-1{X(z)} 
= ʓ-1{1} + (5/2)ʓ-1  

z
 

 
 

–9ʓ-1 
 z

 

 
 

+ 9ʓ-1 
 z 



5 1 
 z  (1/ 2) 2 

 z  (1/ 2)  z  (1/ 4) 
= δ(n) + n  n1u(n) –9    nu(n) + 9    un (n) 

        1   1 

2  2  2   4 

Other possibilities If we choose to expand X(z), rather than X (z) / z , into partial fractions, 

we need to perform long division to reduce the degree of the numerator by 1 resulting in 
2 

X (z) = 1 +  (z  / 4)  (z / 2) = 1+ X (z) 

z
3  
 (5 / 4)z

2 
 (1/ 2)z  (1/16) 

1
 

where X1 (z) is the proper fraction part of the above 
(z

2 
/ 4)  (z / 2) 

X1 (z) = 
z

3 
 (5 / 4)z

2 
 (1/ 2)z  (1/16) 

2 
= 9 

= 5/2 



z 1 

z(1/4)

1 2 
2 

X (z) 
=

 
  

+
 

2           

Either X1 (z) itself or X1 (z) / z may now be expanded into partial fractions. 

 
In MATLAB The partial fractions may be computed by using the residuez function: 

1  z
1  
 z

2 
 (1/16)z

3 R R R 
X(z) =  = K +  1 

+  2 +  3  

1  (5 / 4)z
1 
 (1/ 2)z

2 
 (1/16)z

3 
1  p  z1

 1  p z1 1 p z 1 2 

We define the coefficient vectors b = [1, -1, 1, -1/16] and a = [1, -5/4, 1/2, -1/16]; R represents 
the residues (partial fraction coefficients), p the poles and K a constant. Note that in the 

numerator z 
3 

means M = 3, and in the denominator z 
3 

means N = 3; since M is not less than N 

this is not a proper rational function, so that K will have a nonzero element(s). 

 

%Partial fractions 

b = [1, -1, 1, -1/16], a = [1, -5/4, 1/2, -1/16], 

[R, p, K] = residuez (b, a) 

 

The MATLAB results returned are 

R = 

-14.0000 

5.0000 

9.0000 

p = 

0.5000 

0.5000 

0.2500 

K = 

1 

Therefore, 
1  z

1  
 z

2 
 (1/16)z

3 
9 (14) 5 

X(z) =  = 1 +  +  + 
 

 

1  (5 / 4)z
1 
 (1/ 2)z

2 
 (1/16)z

3 
10.25z

1     
10.5z

1 1 0.5z 1 2
 

z 
2  
 z 

Example 1.5.12 Find the inverse of X(z) =  
z  (1/ 2)3 z  (1/ 4) 

for ROC |z| > ½. 
       z  1    A    A + 

A1 + B 

z z  (1/ 2)3 z  (1/ 4)
= 3 

z  (1/ 2) 
3
 z  (1/ 2)2 z  (1/ 2)  z  (1/ 4) 

 

A3 = = 
z  1/ 2 

(1/ 2)  1 

(1/ 2)  (1/ 4) 
= 6

 

1 
 d  z 1 



A2 = (32)! dz z(1/4)
   z  1/ 2 

= …= –20 

 
A1 = 

1  d 
2   z 1 

(31)!dz
2 z(1/4)


= …= 80 

 

 
B = 

 
X (z) 

 




z  1/ 4 

6 

 z  1/ 2 

 
= …= –80 
 

(20) 80 (80) 
  = 

3 
+ 

2  
+ 
 

+ 
 

   

z z  (1/ 2) z  (1/ 2) z  (1/ 2) z  (1/ 4) 

z 1 

z  (1/ 2)3
 



 

1 

X (z) = 6 
z 

20 

z  (1/ 2)3
 

x(n) = ʓ-1{X(z)} 

z 
+ 80 

z  (1/ 2)2
 

z 
80

 

z  (1/ 2)
z 

z  (1/ 4) 

= 6ʓ-1 
 z  

– 20ʓ-1 
 z 



  

 	

  z  (1/ 2) 
3 

 z  (1/ 2)2  


+ 80ʓ-1 

 z   
– 80 ʓ-1 

 z 




 
  z  (1/ 2) 

 

 z  (1/ 4) 

n (n 1) 1 
n  2 

u(n) – 20 n   
n1 

u(n) + 80    
n
u(n) – 80   u

n 
(n) 

= 6    
  

 1  1   1 

2 ! 

The u(n) may be factored out etc. 

2 2 2  4 



MATLAB  
 

X(z) = 

 
z 2  z 3 

 
 

1 (7 / 4)z 
1 
 (9 / 8)z 

2 
 (5/16)z 

3 
 (1/ 32)z 

4
 

 

%Partial fractions 

b = [0, 0, 1, 1], a = [1, -7/4, 9/8, -5/16, 1/32], 

[R, p, K] = residuez (b, a) 

 

The MATLAB results returned are 

R = 

1.0e+002 * 

 

1.44 + 0.0i 

-0.88 - 0.0i 

0.24 

-0.80 

p = 

0.5 + 0.0i 

0.5 - 0.0i 

0.5 

0.25 

K = 

[] 

144 (88) 24 (80) 
X(z) = 

1 (1/ 2)z 
1 

+ 
  (1/ 2)z 1 2   

+
 1  (1/ 2)z 1 3  

+ 
1 (1/ 4)z 

1
 





Relationships among system representations 
 

A discrete-time linear shift-invariant system can be characterized by its unit sample response, a 

difference equation, a system function, or a frequency response. Assume that a system is 

described by the linear constant coefficient difference equation 
N M 

 ak y(n  k ) = br x(n  r) 
k  0 r  0 

 

System function Take the z-transform of both sides of the above equation 
 N   M 

ʓ  ak y(n  k) = ʓ br x(n  r) , or 

k 0 

N 

 r  0 
M 

 ak  ʓ y(n  k)= br  ʓ x(n  r), or 
k  0 


N 

k  0 

 
ak z 

N 

r  0 

k M r 

Y (z) = br z 
r  0 

M 

 
X (z) , or 

Y(z)  ak 

k  0 

z 
k  

= X(z) 
r  0 

br z r 

M 

The system function is H(z) =
 Y (z)

 
brz r

 

 r  0  
N 

X (z)  ak 

k  0 

z k 

 

Unit sample response If x(n) = δ(n) then X(z) = ʓ[x(n)] = ʓ[δ(n)] = 1. The corresponding y(n) is 
the unit sample response h(n). We have 

Y (z) 
= H(z),  or Y(z) = H(z).X(z) = H(z).1 = H(z) 

X (z) 

So, given H(z), the system function, the unit sample response is h(n) = ʓ-1[H(z)]. 

The difference equation from the H(z) The system function H(z) is first written in terms of 

negative powers of z and set equal to 
Y (z) 

. Then cross-multiply and take the inverse z-transform 
X (z) 

to get the difference equation. 

 

Frequency response of the system is the Fourier transform (DTFT) of the unit sample response 

h(n): 


H (e 
j 

) = h(n)e
 j n 

n   

Compare this with the system function H(z) defined as the z-transform of the unit sample 
response h(n) 



H(z) = h(n) z
n

 

n   

Thus the frequency response, if it exists, can be obtained by replacing the z in H(z) by e 
j 

as 

follows: 

= 



e 



H(e 
j 

)   h(n)e
 j n 

= H(z) 
n  

The system is implicitly BIBO-stable. 

 
 
z  e j

The above relationships for a stable, causal system represented by a linear constant 

coefficient difference equation are summarized in diagram below. 
 
 

Set z = j H(e 
j 

) 
 

 
Difference 

Equation 

Take z-transform, 
solve for Y(z)/X(z) H(z) 

Take inverse 

z-transform 
 

z–1 

h(n) 
 

 

Write in terms of z
–1

, cross 

multiply, take inverse z-transform 

 

Take z-transform 

 

 

 

Example 1.6.1 Find the impulse response of y(n) = a y(n–1) + x(n). 

Solution Note that we have solved this in the time domain earlier. Taking the z-transform of both 
sides (with zero initial conditions), 

 

Y(z) = a z
–1

 Y(z) + X(z), or 

H(z) =  Y (z) 
X (z) 

1 

1 az 
1

 

z 

z  a 

Assume causality. Then from the table of transforms, h(n) = ʓ-1[H(z)] = a
n
 u(n). 

Causality in terms of the z-transform, H(z), and the ROC A causal LTI system has an 

impulse response h(n) = 0 for n < 0, and is, therefore, a right-sided sequence. This also implies 

that the ROC of H(z) is the exterior of a circle in the z-plane. For a causal system the power 

series 


H(z) = h(n) z
 n 

= h(0) + h(1) z 
–1

 + h(2) z 
–2

 + … → Eq. (1) 
n  0 

does not include any positive powers of z. Consequently, the ROC includes z =  . Therefore, we 

have the principle: 

 
A discrete-time LTI system is causal if and only if the ROC of its system function is the 

exterior of a circle, and includes z =  . 
 

The initial value theorem says that for a causal sequence, h(n), the initial value is given by 

h(0) = lim 
z 

H (z) 

This may be seen by setting z→  in Eq. (1) making all terms go to zero except the term h(0). 

Thus, for a causal sequence, h(n), if h(0) is finite, then, lim 
z  

H (z) is finite. Consequently, with 

H(z) expressed as a ratio of polynomials in z (positive powers of z), the order of the numerator 

polynomial cannot be greater than the order of the denominator polynomial (if it were there 

= = = 



K K 1 1 0 → Eq. (2) 

z  b z 

 a z 

N 



= = 

1 

0 1 N 1 z 

would be positive powers of z in the power series of H(z), corresponding to non-zero h(n) for 

negative n; also z = ∞ would not be included in the ROC); or, equivalently, the number of finite 

zeros of H(z) cannot be greater than the number of finite poles. 

The above discussion is summed up as follows: A discrete-time LTI system with rational 

system function H(z) is causal if and only if 

 

1. The ROC is the exterior of a circle outside the outermost pole, and, 

2. With H(z) expressed as a ratio of polynomials in z, (positive powers of z), the 

order of the numerator is not greater than the order of the denominator. 

 

Condition 1 alone is not enough because the sequence may be right-sided but not causal. 
If H(z) is represented as a ratio of polynomials in z as 

  z 
K 
  z 

K 1 
 ..........   z  



H(z) = 
 zL  

 z 
L1 
 ..........   z  

L L1 1 0 

then L  K if the system is causal – in other words denominator degree  numerator degree. On 

the other hand, if we write H(z) as the ratio of polynomials in z
1 

(negative powers of z) as 
b   b z 

1 
 ..........  b  M 1 M 

H(z) = 0 1 M 1 M 
 

a  a z 
1 
 ..........  a N 1 N N 

M 1 M 

= 
b0   (b1  / z)  ..........  (bM 1 / z )  (bM / z ) 

 

a0  (a1 / z)  ..........  (a 
 

N 1 / z 
N 1 

)  (a / z 
N 

) 

then, if the system is (to be) causal, a0  0. This is seen by setting z→  , and requiring that h(0) 
= (b0/a0) be finite. This is illustrated with an example where a0 = 0, e.g., 

1 z 
1 
 z 

2
 z 

2 
 z  1 

H(z) = =     1 

0  z  z  
2 

z  1 

which, by long division, can be seen to contain z
1 
– a positive power of z – hence non-casual.) 

 
Note When H(z) is written as a ratio of polynomials in z (positive power of z), as in Eq. (2), we 

have required that L  K for causality. These L and K are not to be confused with the N and M 
contained in the difference equation. Consider, for example, the system 

 

y(n) + a y(n–1) = x(n) + b x(n–3) 

 

where, according to the notation of the difference equation, N = 1 and M = 3. Apparently M is 

greater than N and this is allowable. In other words, there is no restriction on the relative values 

of N and M. For, the transfer function is given by 

H(z) = Y (z) 
3 

1 b z = z 3 (z
3 

 b) 
 

 

z
3 
 b 

 
 

 
 

X (z) 
= 

1  a z 
1 

z 
1

(z  a) 
= 

z 
2 
(z  a) 

and it is seen that the numerator degree (K = 3) is not greater than the denominator degree (L = 

3). Thus the system is causal. 

As another example consider y(n) + a y(n–1) = x(n) + b x(n+1) which is non-causal 

because of the x(n+1) term. The transfer function is 
H(z) =  Y (z) 1 




z(b  z 1 ) =   (b  z 1 )   = (b  z 
1 ) 

 

  b z  

X (z) 1  a z 
1 

1 a z 
1

 

 
z 1 

 
 a z 2 0  z 

1 
 a z 

2
 

Note that, when the numerator and denominator are expressed in terms of negative powers of z, 
―a0‖ = 0. On the other hand, when the numerator and denominator are expressed in terms of 
positive powers of z, we have 



= 
  

b z 

 r 0  

k 

0  1 2 N 

2 

H(z) =  Y (z) b z z 
X (z) z  a 

with the numerator degree greater than the denominator degree. 

 

(Omit) Rational transfer function; LTI system Given the system with the N
th

 order difference 

equation, 

a0 y(n) + a1 y(n–1) + … + aN y(n–N) 

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0  0 

we may write it in the more compact form 
N M 

 ak   y(n  k ) = br  x(n  r) , a0  0 
k  0 r  0 

(Note that some authors take the coefficient of y(n), a0, to be 1. In the above difference equation 
we may divide through by a0 so that the coefficient of y(n) is 1). 

We can find the transfer function of the system by taking the z-transform on both sides of 
the equation. We note that in finding the impulse response of a system and, consequently, in 

finding the transfer function, the system must be initially relaxed (―zero initial conditions‖). 

Thus, if we assume zero initial conditions, we can use the linearity and time-shift properties to 

get 

 

 

so that 

N 

Y(z)  ak 

k  0 

z 
k 

= X(z) 

 

M 

M 

r 

r 

r  0 

 
H(z) = Y (z) b rz r 

Eq. (1) 

X (z) 
=

 N 

k  0 

ak zk
 

The corresponding impulse response can be found as h(n) = ʓ–1
{H(z)}. The poles of the system 

transfer function are the same as the characteristic values of the corresponding difference 
equation. For the system to be stable, the poles must lie within the unit circle in the z-plane. 

Consequently, for a stable, causal function, the ROC includes the unit circle. 

The system function, H(z), is a rational function: 

 
N (z) 

 
 

 
b  b z 

1 
 b z 

2 
 ..........  b z 

 M
 

M 

b z 
k 

H(z) = D(z) = 0 
 

1 1 
2 2 

 .........  a 
M 
 = k  0  

0 1 2 N 

 a z 
a a z a z z N N 

k 

k 

k  0 

Here N(z) and D(z) stand for numerator and denominator respectively. If a0  0 and b0  0, we 
can avoid the negative powers of z by factoring out b0z

–M
 and a0z

–N
 as follows: N (z)  M M 

M 1 
 ..........  (b / b ) 

H(z) =  
= 

b0 z 
. 

z  (b1  / b0 )z M 0 
  

D(z) N z 
N 
 (a / a )z 

N 1 
 .........  (a / a ) 

a0z 1 0 N 0 
Since N(z) and D(z) are polynom

 
ials
 

in z, they can be expressed in factored form as 
b (z  z ) (z  z ).........(z  z ) 

H(z) =  N (z)  
=    

0  
 z

N–M. (z  
1 

   
2 

 
M 

 D(z) a 


  p ) (z p ).........(z p )  



= 

1 z 
z N 

M 

(z  zk ) 
N–M   k  1 , where C = (b0/a0) 

= C z . N 

(z  pk ) 
k  1 

Thus H(z) has M finite zeros at z = z1, z2, …, zM, and N finite poles at z = p1, p2,…, pN, and |N–M| 
zeros (if N > M) or poles (if N < M) at the origin z = 0. Poles and zeros may also occur at z =  . 
A pole exists at z =  if H(  ) =  , and a zero exists at z =  if H(  ) = 0. If we count the poles 

and zeros at z = 0 and z =  as well as the N poles and M zeros, we find that H(z) has exactly the 
same number of poles and zeros. 

By definition the ROC of H(z) should not (can not) contain any poles. 

 

Proper rational function Taking a0 = 1, we have 
H(z) =  N (z) b  b z 

1 
 b z 

2 
 .......... b z 

M
 

D(z)  = 0 

 a
1 1

  a
2 

z 
2 
 .........  a 

M 



1 2 N 

This is called a proper rational function if aN ≠ 0 and M < N. This amounts to saying that the 
number of finite zeros is less than the number of finite poles. (Finite zeros and poles exclude 
those at z = 0). This condition is related to partial fraction expansion and has nothing to do with 
causality. 

(End of Omit) 
1 

Example 1.6.2 Give the pole-zero plot for H(z) =  z    z  

z 
2  
 z

1 
1 1  z 

1 
 z 

2
 

Solution The denominator has roots (poles) at 
 (1)  (1)

2  
 4(1) (1) 1   1  4 1  5 

z1, z2 =  =  =  = 1.62 and –0.62 
2 2 2 

 

There is a zero at z = 0. Further, since the denominator degree is greater than the numerator 

degree by 1 it is clear that H(  ) = 0, so that there is an additional zero at z = ∞. 

In MATLAB the transfer function is specified as a ratio of polynomials in z 
1

 

0  1.z 
1

 

H(z) = 
1 1.z

1
 1.z 

2
 

The numerator coefficients, {bi, i = 0 to M} and the denominator coefficients {ai, i = 0 to N} are 
specified as the two vectors b = [0, 1] and a = [1, -1, -1]. 

 

%Pole-zero plot 

b = [0, 1]; a = [1, -1, -1]; zplane (b, a) 
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Example 1.6.3 Give the pole-zero plot for 

 

H(z) = z
1 
 2z

2 
 3z

3 
 4z

4 
 5z

5 
 6z

6 
 7z

7 
 8z

8 
 9z

9
 

 

Solution From  
 

H(z) = 

 
z

8 
 2z

7 
 3z

6 
 4z

5 
 5z

4 
 6z

3 
 7z

2 
 8z  9 

 
 

z9 

 

we can see that there are 9 poles at z = 0 and 8 zeros at sundry places and an additional zero at z 

= ∞ owing to the denominator degree being greater than the numerator degree by 1. 

For the MATLAB segment the numerator and denominator coefficients are taken from 
0  z

1 
 2z

2 
 3z

3 
 4z

4 
 5z

5 
 6z

6 
 7z

7 
 8z

8 
 9z

9
 

H(z) = 
1 

 

%Pole-zero plot 

b = [0: 9]; a = [1, 0]; zplane (b, a) 
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Example 1.6.4 Give the pole-zero plot for 

 

y(n) = x(n) + 0.81 x(n–1 ) – 0.81 x(n–2) – 0.45 y(n–2) 
 

Solution The zeros are 

z1, z2 = 

The poles are given by 

 
 0.81  (0.81)

2 
 4 (1)(0.81) 

2 (1) 

 

 
= 0.5819 and –1.3919 

z1, z2 = ± j0.67082 
 

For the MATLAB program the coefficient vectors are b = [1, 0.81, -0.81] and a = [1, 0, 

0.45]. 
 

%Pole-zero plot 

b = [1, 0.81, -0.81]; a = [1, 0, 0.45]; zplane (b, a) 
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0 1 2 M 

From the general form H(z) in Eq.(1) we can obtain two important special forms: (1) the 

all-zero system, and (2) the all-pole system. (There are, of course, trivial poles or zeros present.) 
M 

b z 
r 

The all-zero system If ak = 0 for 1  k  N, we have H(z) = 

consider that a0 is absorbed in the br coefficients, so that 

r  0 

a0 

. Either take a0 = 1 or 

1 2 b z
M  b z 

M 1 
 ...  b 

 

H(z) = b   b z  b z  ...  b zM   = 0 1 M 

0 1 2 M 
zM 

In this case, H(z) contains M zeros and an M
th

 order pole at the origin z = 0. Since the system 
contains only trivial poles (at z = 0) and M non-trivial zeros, it is called an all-zero system. Such 

a system has a finite-duration impulse response (FIR), and is called an FIR system or a moving 

average (MA) system. Note that the corresponding deference equation is 

 

a0 y(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) 
 

The all-pole system On the other hand, if bk = 0 for 1  k  M, we have 

H(z) = 
 

 


k  0 

b0 

a z k 

= 
1 

a0  a1 z 

 

 a2 

b0 

z2  .........  a 

 
zN 

 b   z 
N

 
=   0  . 
 

 0  z 
N 
 (a / a0 )z 

N 1 
 (a / a0 )z 

N 2 
 ...  (a / a0 ) 

Here again, either take a0 = 1 or imagine that it is absorbed in the other coefficients viz., b0, a1, 
a2, …, aN. Thus 

H(z) = 
b z 

N
 

z 
N  
 a z 

N 1  


0    

a z 
N 2  

 ...  a 
1 2 N 

Here H(z) has N poles and an N
th

 order zero at the origin z = 0. We usually do not make reference 

to these trivial zeros. As a result this system function contains only non-trivial poles and the 

corresponding system is called an all-pole system. Due to the presence of the poles, the impulse 

response of such system is infinite in duration, and hence it is an IIR system. (We can divide the 

numerator into the denominator and thereby expand H(z) into an infinite series from which it is 

evident that h(n) is of infinite duration). Note that the corresponding deference equation is 
 

a0 y(n) + a1 y(n–1) + … + aN y(n–N) = b0 x(n) 
 

The pole-zero system The general form, though, contains both poles and zeros and the system is 

called a pole-zero system with N poles and M zeros, 
b  b z

1 
 b z

2 
 ..........  b z

 M
 

H(z) =  
a   a z

1 
 a z

2 
 .........  a N 

0 1 2 N 

Poles and/or zeros at z = 0 and z =  are implied but are not counted explicitly. Due to the 

presence of poles, the pole-zero system is an IIR system. 

 

 

Inverse z-transform by power series expansion (long division) 
 

If the z-transform is expressed as a rational function (a ratio of polynomials in z or z
–1

) we can 

use long division to expand it into a power series. If the transform is expressed as an irrational 

function we can use the appropriate power series expansion formula available in mathematical 

N 

N 

1 2 N 



tables such as the CRC Tables. Note that if the transform is expressed as an irrational function 

then the partial fraction expansion method of inversion won‘t work. 

By definition the z-transform of the sequence x(n) is given by 


X(z) =  x(n) z 
n 

= …+ x(–2) z
2
 + x(–1) z

1
 + x(0) z

0
 + x(1) z

–1
+… 

n   

This is a power series (Laurent series). So by long division we obtain the power series expansion 

of X(z) and then, by comparison with the power series definition given above, we can identity the 

sequence x(n). In particular the coefficient of z
–k

 is the sequence value x(k). 

The method is useful in obtaining a quick look at the first few values of the sequence 

x(n). This approach does not assure an analytical solution. The ROC will determine whether the 

series has positive or negative exponents. For right-sided sequences the X(z) will be obtained 

with primarily negative exponents, while left-sided sequences will have primarily positive 

exponents. For an annular ROC, a Laurent expansion would give both positive- and negative- 

time terms. This last possibility is illustrated in the example below by taking a little help from 

partial fractions. 
 

Example 1.7.1 Find the inverse transform, by long division, of 

2 z 
2 
 3 z 

X(z) = 
z 1z  2

=
 

2 z 
2 
 3 z 

 
 

z 
2 
 3 z  2 

where the ROC is (a) |z| > 2, (b) |z| < 1, (c) 1< |z| < 2 

 

Solution (a) ROC is |z| > 2. We expect a right-sided sequence, with predominantly negative 

exponents of z. For the long division arrange numerator and denominator as decreasing powers 

of z and then divide; or as increasingly negative power of z i.e., z
–1

 and then divide. 

 

2 +3z
–1

+5z
–2

 + 9z
–3

 + … ←Q(z) 

D(z)→ z
2
 –3z + 2 2z

2
 – 3z ←N(z) 

2z
2
 – 6z + 4 

3z – 4 
3z – 9 + 6z

–1
 

5 – 6z
–1

 

5 –   15z
–1

  + 10z
–2

 

9z
–1

 – 10z
–2

 

9z
–1

 – 27z
–2

 + 18z
–3

 

17z
–2

 – 18z
–3

 

… 

Im z 

Re z 

2 1 

ROC 



1 2 

Thus X(z) = 2 + 3 z
–1

 + 5 z
–2

 + 9 z
–3

+… By comparison with the defining equation 
 

X(z) = …x(–1)z
1
 + x(0) + x(1)z

–1
 + x(2)z

–2
 + … 

 

we see that the sequence values are 

x(–2) = x(–1) = 0, or x(n) = 0 for n < 0, and 

x(0) = 2, x(1) = 3, x(2) = 5, etc. 

 
Alternatively, it is also possible to write X(z) as a ratio of polynomials in z

–1
 

2  3 z 
1

 

X(z) = 
1  3 z  2 z 

Note that the polynomials are written in the order of increasing negative powers of z, that is, z
–1

. 

Long division gives (the same answer as obtained earlier): 

 

2  +3z
–1

+  5z
–2

 + 9z
–3

 + … ←Q(z) 

D(z)→ 1– 3z
–1

 + 2z
–2

 2 – 3z
–1

 ←N(z) 
2 – 6z

–1
 + 4z

–2
 

3z
–1 

– 4z
–2

 

3z
–1 

– 9z
–2 

+ 6z
–3

 

5z
–2 

– 6z
–3

 

… 

 
 

Solution (b) The ROC is |z| < 1. We expect a left-sided sequence with predominantly positive 

exponents of z. For the long division the polynomials are written in the order of increasing 

powers of z (or decreasingly negative powers of z, i.e., z
–1

). 
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–(3/2)z –  (5/4)z
2
 – (9/8)z

3
 – … ←Q(z) 

D(z)→ 2 – 3z + z
2
 –3z + 2z

2
 ←N(z) 

–3z + (9/2)z
2
  – (3/2)z

3
 

– (5/2)z
2
  + (3/2)z

3
 

– (5/2)z
2
  + (15/4)z

3
 – (5/4)z

4
 

– (9/4)z
3
  + (5/4)z

4
 

– (9/4)z
3
 + (27/8)z

4
 – (9/8)z

5
 

 

Thus X(z) = –(3/2)z – (5/4)z
2
 – (9/8)z

3
 – … = …– (9/8)z

3
 – (5/4)z

2
 – (3/2)z. By comparing with 

the defining equation 

 

X(z) = …x(–3)z
3
 + x(–2)z

2
+ x(–1)z + x(0) + x(1)z

–1
 +… 

Im 

ROC 

1 2 



we see that the sequence is given by 

x(–1) = –3/2, x(–2) = –5/4, x(–3) = –9/8, …etc., and x(n) = 0 for n  0 

The other way of long division is shown below: 

–(3/2)z –  (5/4)z
2
 – (9/8)z

3
 – … ←Q(z) 

D(z)→ 2z
–2

– 3z
–1

 + 1 – 3z
–1

 + 2 ←N(z) 

– 3z
–1

 + (9/2) – (3/2)z 

… 

 
 

(Omit) Solution (c) The ROC is 1 < |z| < 2. We expect a two-sided sequence with both positive 

and negative exponents of z. Looking at the pole-zero configuration, the pole at z =1 implies a 

right-sided sequence and the pole at z = 2 a left-sided sequence. Obviously just a single long 

division cannot give both the left-sided and the right-sided sequences simultaneously. We shall 

obtain the partial fraction expansion first and then proceed with the division to obtain the 

sequences separately. These two sequences are then combined into one sequence to get the 

solution. Note that we do this only to illustrate the method of long division. But once we use 

partial fractions the utility of long division is nullified. 
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X (z) 
 

2z  3 A B 
 

   

z  
=

(z 1) (z  2)
= 

2z 3 

z  1
+
 z  2 

A = 
z  2 

B = 

 
z  1 

 

 

 
z  2 

= (2 . 1 – 3) / (1 – 2) = 1 
 

= (2 . 2 – 3) / (2 – 1) = 1 

X (z) 
z 

  1  

z  1 

1 
 

 

z  2 

X (z) = z  
z  1 

z 

z 
 

 

z  2 

For the term we have a right-sided sequence given by long division thus: 
z  1 

2z 3 

z  1 

Im 

   ROC  

2 1 

+ 

+ 

= 



H(z) = 
r  0

 

1 + z 
–1

 + z 
–2

 + z 
–3

 +…… ←Q(z) 

D(z)→ z – 1 z ←N(z) 

z – 1 

1 

1 – z
–1

 

z–1 

z–1  – z–2 

z–2 

  …  
 

The corresponding sequence is xR(n) = 1, n  0 
0, otherwise 

 

 
For the term 

z 
 

 

z  2 

 

we have a left sided sequence 

 
 

– (1/2)z – (1/4)z
2
 – (1/8)z

3
 ……. ←Q(z) 

D(z)→ –2 + z z ←N(z) 

z – (1/2)z
2
 

(1/2)z
2
 

(1/2)z
2
 – (1/4)z

3
 

(1/4)z
3
 

(1/4)z
3
 – (1/8)z

4
 

(1/8)z
4
 

  …  
 

The corresponding sequence is xL(n) = – 2
–n

, n < 0 

 

The complete sequence is then 
0, otherwise 

 

 

 
(End of Omit) 

x(n) = xR(n) + xL(n) = 1, n  0 

–2
–n

, n < 0 

 

 

Computation of frequency response 
 

Let the system function be given by 
M 

b rz r 
 N 

 ak 

k  0 

z k 

The frequency response is H (e 
j 

) or H(ω) = H(z) 
z  e

j 
. Thus 



1 e j  n 

2 jn 

1 

–π –ωc 0 ωc π 2π 

A
2  
 B

2
 

C 
2  
 D

2
 

N 



M M M 

r br  cos  r   jbr  sin  r 

H (e 
j 

) = |H(ω)| e 
jH () 

= 
r  0

 
r  0 
N 

r  0 
N 

 

 

 

 

 

 

 
where 

 ak e
 j k 

k  0 

M M 

br  cos  r  jbr  sin  r 

=  Nr   0 rN 0 = 

 ak cos  k  j ak sin  k 
k 0 k  0 

 ak cos  k  j ak sin  k 
k  0 k  0 

 

 

A  jB 
C  jD 

M M N N 

A =  br  cos   r , B =  br sin   r , C =  ak  cos   k , D =  ak  sin   k . 
r  0 r  0 k  0 k  0 

The magnitude and phase of H (e 
j 

) are given, respectively, by 

1  B 
|H(ω)| = and H() = tan   

 A 



tan 
1  D 
 
  C  



Theorem The frequency response H (e 
j 

) for a BIBO-stable system will always converge. 

 
Accordingly every BIBO-stable system will have a frequency response and a describable steady- 

state response to sinusoidal inputs. But, the converse of this statement is not true, that is, the fact 

that H (e 
j 

) exists does not imply that the system is stable. 

 
Example 1.8.1 [The ideal low pass filter] For the H(ω) given in figure below find h(n), the unit 

sample response. 

 

|H(ω)| Periodic 

 

 

 
ω 

 

 

 

 

 

 

 
–π –ωc 0 ωc 

ω 

π 2π 

Solution The unit sample response is the inverse DTFT of H(ω) 
1  

 
1 

c
 

 
c 

1 e jc n  e jc n 
h(n) =   H () e 

j  n
d    j  n = 

2 
= 

2 1e 
c 

d =  
c 

 n j2 

sin  n 
= 

 n 

, for all n 

 

 

 

 
 

 

<H(ω) 
Periodic 

Phase = 0 

c 

= 



z  4 

z  5 

cos  42  
 (sin)

2
 



=    





It is seen that h(n) ≠ 0 for negative n so that the ideal low pass filter is noncausal. Moreover, 


although h(n) tails off as n goes from 0 to ∞ and from 0 to –∞, it can be shown that  h(n) is 
n 

not finite. This means that the ideal low pass filter is not BIBO-stable either. 
 

Example 4.8.2 [2002] A discrete system is given by the difference equation 

y(n) – 5 y(n–1) = x(n) + 4 x(n–1) 

where x(n) is the input and y(n) is the output. Determine the magnitude and phase response as a 

function of frequency for ω ≤ π. (Note that the system is not stable since it has a pole at z = 5, 

which is outside the unit circle. The fact that the steady state frequency response exists does not 

mean that the system is stable.) 

Solution [See also Unit I] Taking the z-transform and with a dose of algebra we find the transfer 

function 

H(z) =  Y (z) 
X (z) 

z  4 
 

 

z  5 

The frequency response is given by 
e 

j 
 4 N () 

H(ω) = H(z)  
z  e 

j = =  =     
e 

j 
 5 D() 

N(ω) = e 
j 
 4 = cos   4  j sin = |N(ω)| e 

jN ( )
 

 sin 

|N(ω)| = and N () = tan
1 

	

 cos  4 

D(ω) = e 
j 
 5 = cos  5  j sin  = |D(ω)| e 

jD()
 

|D(ω)| = cos  52  
 (sin)

2
 and D()= 

1 
tan   

sin 






|H(ω)| = 

 

cos  42  
 (sin)

2
 

cos  52  
 (sin)

2
 

 cos  5 

1  sin 
 1  sin 

H () = N () – D() = tan  	
–  tan    

 cos  4   cos  5

The frequency response can be plotted. Note that |H(ω)| is an even function and H () 

odd function of ω. 

Using MATLAB: 

 
is an 

H(ω) = e 
j 

 4 
 j

1 4e b(1)  b(2)e 
 j 

 b(3)e
 j 2 

 ... 
 

 

e 
j 
 5 

= 
1  5e

 j = 
a(1)  a (2)e

 j 
 a(3)e

 j 2 
 ... 

Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In 
our example b(1) = 1, b(2) = 4, a(1) = 1, and a(2) = –5. The MATLAB segment and the 

corresponding plots follow. Note that the plot goes from –2 to 2. Compare with the solution 
obtained in Unit I using a different function. 

 

b = [1, 4]; %Numerator coefficients 

a = [1, -5]; %Denominator coefficients 

w = -2*pi: pi/256: 2*pi; 

[h] = freqz(b, a, w); 

subplot(2, 1, 1), plot(w, abs(h)); 

xlabel('Frequency \omega'), ylabel('Magnitude'); grid 

N () 

D() 

= 

z j 

e 
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subplot(2, 1, 2), plot(w, angle(h)); 

xlabel('Frequency \omega'), ylabel('Phase - Radians'); grid 
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Example 1.8.3 Assume H(z) = 12z 

2 
 1 is a causal system. Find the difference equation and 

6z 
2  
 z  1 

the frequency response. 
Solution Arrange H(z) in terms of negative powers of z 

H(z) = 
Y (z) 

= z
2 
(12  z

2 
) 2 

(12 z ) 
 

 

X (z) z
2 
(6  z

1 
 z

2 
) 

Cross multiplying 

= 
(6  z 

1 
 z 

2 
) 

Y(z) (6  z
1 
 z

2 
) = X(z) (12  z

2 
) 

6Y (z)  z
1

Y (z)  z
2

Y (z) = 12X (z)  z
2 

X (z) 

Taking the inverse z-transform 

6y(n)  y(n 1)  y(n  2) = 12x(n)  x(n  2) 

y(n) = 
1 

y(n–1) + 
1 

y(n–2) + 2x(n) – 
1 

x(n–2) 

6 6 6 
The poles of H(z) are located at 

 

z1, z2 = 
 (1)  (1)

2 
 4 (6) (1) 

2 (6) 
=

 

 

12 
=

 

1  5 = 0.5 and –1/3 
12 

and are inside the unit circle. This being a causal system, the ROC is |z| > ½ and contains the 

unit circle. The system is stable, and the frequency response is meaningful. It is given by 
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= 12z 
2 
1 12(e 

j 
)

2 
1 N () 

 

H(ω) = H(z) j    =  = 
 

where 

z  e 6z 
2 
 z 1  

z  e j
6(e j )2    e 

j 
1 D() 

N(ω) = 12(e 
j 

)
2 
1 = 12e 

j 2 
1= 12cos 2  j12sin 2 1 

   12sin 2     j tan1  12cos 21 

= 12 cos 2 12  
 (12sin 2)

2 e  



D(ω) = 6(e 
j 

)
2 
 e 

j 
1 = 6e 

j 2 
 e 

j 
1 

= 6cos 2  j6sin 2  cos  j sin 1 
      6sin 2sin      j tan 1  6cos2cos 1 

= 6 cos 2  cos  12  
 (6sin 2  sin )

2 e  



The magnitude response is given by 

(12 cos 2 1)
2 
 (12 sin 2)

2
 

|H(ω)| =    
(6 cos 2  cos  1)

2 
 (6 sin 2  sin )

2
 

The phase response is given by 
     12 sin 2     6 sin 2  sin 

H () =  tan 
1
	  tan 

1
	

12cos 2 1  6 cos 2  cos  1


Using MATLAB:  
2 2 

H(z) = 12z  1 
=

 12  z  

6z 
2 
 z  1 

12  e j 2

6  z 
1 
 z 

2
 

b(1)  b(2)e
 j 

 b(3)e
 j 2 

 ... 
H(ω) = =     

6  e j   e j 2 a(1)  a (2)e
 j 

 a(3)e
 j 2 

 ... 

Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In 
our example b(1) = 12, b(2) = 0, b(3) = –1, a(1) = 6, a(2) = –1 and a(3) = –1. The MATLAB 

segment and the corresponding plots follow. Note that the plot goes from – to . 

b = [12, 0, -1]; %Numerator coefficients 

a = [6, -1, -1]; %Denominator coefficients 

w = -pi: pi/256: pi; 

[h] = freqz(b, a, w); 

subplot(2, 1, 1), plot(w, abs(h)); 

xlabel('Frequency \omega (Rad)'), ylabel('Magnitude'); grid 

subplot(2, 1, 2), plot(w, angle(h)); 

xlabel('Frequency \omega (Rad)'), ylabel('Phase - Radians'); grid 
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Example 1.8.4 Discuss the stability of H(z) = 

 
z1 

1 z
1 
 z

2
 

 
assuming it is a causal 

system. Find the difference equation and the frequency response. 

(b) Determine the frequency, magnitude and phase responses and time delay for the system 
y(n) + (1/4) y(n–1) = x(n) – x(n–1). 

Solution 

(a) Find the ROC and the poles: 

H(z) = z 1 

=
 

 

1  z 
1 
 z 

2
 

z 
 

 

z 
2 
 z

1 
1 

There is a zero at z = 0. The denominator has roots at 
 (1)  (1)

2  
 4(1) (1) 1   1  4 1  5 

z1, z2 =  =  =  = 1.62 and –0.62 
2 2 2 

 
 

1.62 –0.62 

   Re  

ROC 

|z| > 1.62 
Unit circle 
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z 1 

z  0.25 

cos 12  
 sin

2 
 

 

 

The pole locations are shown here. For the system to be causal the ROC is the exterior of a circle 

with radius = 1.62. In this case ROC does not include the unit circle. (Equivalently, all the poles 

do not lie within the unit circle). Hence the system is not stable. 

 

(b) Taking the z-transform on both sides of y(n) + (1/4) y(n–1) = x(n) – x(n–1) we get 
 

Y(z) + (1/4) z
–1

 Y(z) = X(z) – z
–1

 X(z), or 
Y(z) {1 + (1/4) z

–1
} = X(z) {1 – z

–1
}, or 

1 

H(z) =  Y (z) 
X (z) 

    1  z  

1  (1/ 4)z 
1

 

   z 1  

z  0.25 

There is a single zero at z = 1 and a single pole at z = –0.25 which is inside the unit circle – hence 
stable. The frequency response is given by 

 

 

where 

H(ω) = H(z) 

 
 

j




z  e 

j = = 
z  e j

e 
j 
1 

 
 

e 
j 
 0.25 

= N () 

D() 

 

 

 

 
 sin  

1 

N(ω) = e 1 = cos  j sin 1 = e 
j tan 

 cos 1 
 

D(ω) = e 
j 
 0.25 = cos  j sin  0.25 

 sin     j tan1  cos 0.25 

= cos  0.252  
 sin

2    e  



The magnitude response is given by 

cos  12  
 sin 

2 
|H(ω)| =     

cos   0.252  
 sin 

2 
The phase response is given by 

  sin     sin 
H () =  tan 

1
	  tan 

1
	

 cos  1  cos   0.25 

The time (group) delay is given by  

Using MATLAB: 

d 
H () . 

d

H(ω) e 
j 
1 

1 e
 j b(1)  b(2)e 

 j 
 b(3)e

 j 2 
 ... 

 

= = j  j   j  j 2

e  0.25 1  0.25e a(1)  a (2)e  a(3)e  ... 

Here the vectors b and a specify, respectively, the numerator and denominator coefficients. In 

our example b(1) = 1, b(2) = –1, a(1) = 1, a(2) = 0.25. The MATLAB segment and the 

corresponding plots follow. Note that the plot goes from – to . 

b = [1, -1]; %Numerator coefficients 

a = [1, 0.25]; %Denominator coefficients 

w = -pi: pi/256: pi; 

[h] = freqz(b, a, w); 

subplot(2, 1, 1), plot(w, abs(h)); 

xlabel('Frequency \omega (Rad)'), ylabel('Magnitude'); grid 

subplot(2, 1, 2), plot(w, angle(h)); 

xlabel('Frequency \omega (Rad)'), ylabel('Phase - Radians'); grid 
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Z-transforms with initial conditions 

 

To solve the N
th

 order difference equation 
N M 

y(n) = –  ak y(n  k ) +  br x(n  r) 
k  1 r  0 

with (non-zero) initial conditions we need N initial conditions on the output y(n) and M initial 

conditions on the input x(n). Usually the input is applied suddenly (i.e., it is stepped into the 

system) at n = 0, so that no initial conditions are needed for it, that is, x(n) = 0 for n < 0. The 

output y(n), however, in general, will have non-zero initial conditions for n = –1 to –N. 

We are solving for y(n) for n ≥ 0, so that Y(z) = ʓ{y(n)} is the one-sided z-transform. The 
difference equation contains other terms like y(n–1), y(n–2), etc. which are delayed versions of 
y(n). Suppose N = 3, then we shall have y(n–1), y(n–2), and y(n–3) to deal with. The transform of 
y(n–1) is handled as follows. First, for the sequence y(n) as shown below we define 

Y+(z) = ʓ{y(n), n ≥ 0} = A  Bz 
1 
 Cz

2 
 ... 

We shall refer to this loosely as just Y(z) when there is no possibility of confusion. 
 

 

 

 
 

 

 

 

 
–3 –2 –1 

n 

0 1 2 

y(–2) 

y(n) 

A 

y(–1) C 

y(–3) 
B 

P
h
a
s
e
 -

 R
a
d
ia

n
s
 

M
a
g
n
it
u
d
e
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We then obtain y(n–1) by delaying the sequence by one unit, shown below. 
 

 

 

 

 

 

 
 

 

–2 –1 0 

n 

1 2 3 

 

As can be seen from the graph 

ʓ{y(n–1), n ≥ 0} = y(1) z
0 
 Az 

1 
 Bz 

2 
 Cz

3 
 ... = z

1
Y (z)  y(1) 

 

 

 
In a similar fashion 

z
–1

Y+(z) 

ʓ{y(n–2), n ≥ 0} = y(2)z
0 
 y(1) z

1 
 Az 

2 
 Bz 

3 
 Cz

4 
 ... 

z
–2

Y+(z) 
 
 

and by extension 

= z
2

Y (z)  y(2)  y(1)z
1

 

ʓ{y(n–3), n ≥ 0} = z
3

Y (z)  y(3)  y(2)z
1 
 y(1)z

2
 

For N = 3 this would be the last. But we can generalize 

ʓ{y(n–k), n ≥ 0} = z
k

Y(z)  y(k)  y(k 1)z
1 
 ...  y(1)z

(k 1)
 

In the case of the input x(n), since it is applied suddenly at n = 0, the initial conditions are 

zero, that is, x(–1) = x(–2) = …= x(–M) = 0, so that 

ʓ{x(n–k) u(n)} = z
k 

X (z) 

With this intuitive background we give below the mathematical derivation of the z- 

transform of the delayed truncated sequence. 

 

Z-transform of delayed truncated sequence (initial conditions) The one-sided z-transform of 
x(n) is 



X+(z) = ʓ{x(n) u(n)} =  x(n) z 
n

 

n  0 

 

Given the sequence x(n), we delay it by k units, and then truncate it to the left of n = 0 to get x(n– 

k) u(n). We want find the z-transform of x(n–k) u(n). 
 

ʓ{x(n–k) u(n)} =  x(n  k) u(n) z 
n 

=  x(n  k) z 
n

 

n  n  0 

If we let n–k = r, then n = r+k, and the summation limits n = 0 to ∞ become r = –k to ∞. Then 


ʓ{x(n–k) u(n)} = x(r) z 
(rk ) 

= 
r k 



z 
k  x(r) z 

r 

r  k 

   1   1 

= z 
k 
  x(r) z 

r  
  x(r) z 

r 
 = k X (z)  x(r) z 

r 


 r  0 r  k   r  k 
 

X+(z) IC 

y(n–1) 

A 
C 

y(–1) 
B 





= z
k X (z)  x(k) z

k  
 x(k 1) z

k 1  
 ...  x(1) z

1 
= z

k 
X (z)  x(k)  x(k 1) z

1 
 ...  x(1) z

(k  1)
 

 

Due to Initial Conditions 

We shall loosely refer to X+(z) as X(z) and write the result as 

ʓ{x(n–k) u(n)} = z
k 

X (z)  x(k)  x(k 1) z
1 
 ...  x(1) z

(k 1)
 

Due to Initial Conditions 
 

The above result is used to solve linear constant coefficient difference equations with 

inputs that are stepped into a system. Suppose we want the solution of 
N 

 ak y(n  k) 
k  0 

M 

= br x(n  r) , n ≥ 0 
r  0 

subject to the initial conditions 

{y(i), i = –1, –2, …, –N} and {x(i), i = –1, –2, …, –M} 
We take the z-transform of the equation using the result derived above for delayed-truncated 

sequences 
 N   M 

ʓ  ak y(n  k )  = ʓ br x(n  r) , n ≥ 0 

k  0 
N 

 r  0 
M 

ak {y(n  k )} = br {x(n  r)}, n ≥ 0 
k  0 r  0 

 

where we have used Z to mean ʓ the z-transformation operation. The left hand side is 

LHS = a0 ʓ{y(n)} + a1 ʓ{y(n–1)} + a2 ʓ{y(n–2)} + … + aN ʓ{y(n–N)} 
= a0 Y(z) + a1 {z

–1
 Y(z) + y(–1)} + a2 {z

–2
 Y(z) + y(–2) + y(–1) z

–1
} + 

… + aN {z
–N

 Y(z) + y(–N) + y(–(N–1)) z
–1

+ … + y(–1) z
–N+1

} 

(Note that in terms of the derivation earlier all of the Y(z)‘s are Y+(z)‘s, i.e. , one-sided 
transforms). All the Y(z) terms can be grouped together under a summation, and all the remaining 

terms, due to the initial conditions {y(i), i = –1, –2, …, –N}, can be grouped together so that the 
above can be written as 

N 

LHS =  ak 

k  0 

z 
k

Y (z) + g{z
–1

, y(–1), y(–2), …, y(–N)} 

 

Initial condition terms 

By following a similar procedure the right hand side can also be written as follows (here again 

the X(z)‘s are X+(z)‘s, i.e. , one-sided transforms): 
M 

RHS = b zr  
r 

X (z)+ h{z
–1

,  x(–1), x(–2), …, x(–M)} 
r  0 

 

Initial condition terms 



r 

z = X(z) b z + h{…} – g{…} 



 a z 



Writing out in full, LHS = RHS becomes 
N M 

ak z 
k 

Y (z) + g{…} =  b z 
r X (z) + h{…} 

k  0 r  0 

Factoring out Y(z) and X(z) and rearranging we have 
 

Y(z) 

N 

 ak 

k  0 

M 

k r 

r 

r  0 

M 

b rz 
r

 

Y(z) =  X(z) 
 r  0 

+ h{

...}  g{...} 

 
 

N N    ak z 
k k 

k 

k  0 

Taking the inverse z-transform we get 

 M 

 b z 

 

k  0 

 

r    
  

–1 
 r  0 –1 h{...}  g{...}r 

 

y(n) = ʓ X (z) 
 + ʓ  


To summarize: to solve for y(n) we take the z-transform of the linear constant coefficient 

difference equation using initial conditions, manipulate in the z-domain to get Y(z) and then take 

the inverse z-transform of Y(z) to get y(n). 

 
Example 1.9.1 Find the solution to 

3 1  1 n 

y(n) –    y(n–1) +    y(n–2) =   , n  0 

2 2  4
with initial conditions y(–1) = 4, y(–2) = 10. 
Solution There are three methods of solution: 

1. Find the iterative solution in the discrete-time domain. In general this will not 

give an analytical (closed) form of solution. 

2. Solve in the discrete-time domain (homogeneous solution + particular solution). 

3. Solve in the frequency domain as we do below. 

 

For an input sequence x(n) that is stepped into a system, specified in words like x(n) = 0 

for n < 0, the initial conditions are clearly zero and do not matter. But for an output sequence 

y(n) where the initial conditions y(–1), y(–2) are explicitly given to be non-zero we need to use 

the above derived ―z-transform for delayed truncated sequence‖. In particular we have 

ʓ{y(n)} = Y(z) 

ʓ{y(n–1)} =  z
1Y (z)  y(1) z

1 
ʓ{y(n–2)} = z

2 Y (z)  y(2) z
2 
 y(1) z

1 

Taking the z-transform of the difference equation we get 
 3 1   1 

n 
ʓ  y(n)     y(n 1)      y(n  2) = ʓ     n  0 
 2 2   4  

 
3 1 z 

ʓ{y(n)} – 
2 

ʓ{y(n–1)} + 
2 

ʓ{y(n–2)} = 
z  (1/ 4)

 

Y(z) –  
3 

z
1Y (z)  y(1) z

1 +  
1 

2 2 
z
2 Y(z)  y(2) z

2 
 y(1) z

1 = 
z
 

z  (1/ 4) 

    

 
N 

ak z k  
N 

 a z 
k 

 k 0  
k 

k  0 

 




=     

=     

= + + 

5 15 51 

= 

Plugging in the initial conditions y(–1) = 4 and y(–2) = 10 

Y(z) –  
3 z

1
Y(z)  4 + 

2 

1  z2
Y (z)  10  4 z

1 = 

2 

z 
 

 

z  (1/ 4) 
 3 1  

1 
z 
2  –1 z 

1  z        
Y(z) 

 2
 

2  – 6 + 5 + 2 z = z  (1/ 4) 

Y(z)11.5z
1 
 0.5z

2 = 
z 

 
 

z  (1/ 4) 
2 

+ 1 – 2 z
–1

 2z 
2  (9 / 4)z  (1/ 2) 

z z  (1/ 4)

Y(z) (1–z
–1

) (1–0.5z
–1

)= 
2z  (9 / 4)z  (1/ 2)

 

z z  (1/ 4)


Y(z) 
(z 1)z  (1/ 2)




z 2 

2z 
2 
 (9 / 4)z  (1/ 2) 

z z  (1/ 4)

z 2z 
2 
 (9 / 4)z  (1/ 2)Y(z) = 

z  (1/ 4)(z 1)z  (1/ 2)
Y (z)  2z  2   (9 / 4)z  (1/ 2)    A  B   C  

z z  (1/ 4)(z 1)z  (1/ 2) 
=

 

2z 
2 
 (9 / 4)z  (1/ 2)

+ + 
z  (1/ 4) z  1 z  (1/ 2) 

A = 
(z 1)z  (1/ 2)



z 1/ 4 

= 1/3 

 

B = 

z 1 

 

C = 

= 2/3 

 
 

= 1 

z 1/ 2 

Y (z)  (1/ 3) (2 / 3)   1  

z z  (1/ 4) z  1 z  (1/ 2) 

Y(z) = 
1 

z 2 z z 


3 z  (1/ 4)

+ 
3 z  1

+ 
z  (1/ 2) 

 

 
n 

  

y(n) =  
1 
 

1 
  

2
1

n 
  

1 


n 
u(n) 


  3  4  3  2  

The iterative solution for this problem was obtained in Unit I. The time-domain solution 

was covered in HW (Extra). The solution is repeated below 
 

y(n) = 2, ,...

 4   16  64 


Example 4.9.2 [2002] Solve the following linear difference equation 

y(n) + 
1 

y(n–1) – 
2 

given y(–1) = y(–2) = 1. 

1 
y(n–2) = 0 

4 

Solution Note that the output is a natural response corresponding to the specified initial 

conditions. There is no forced response since x(n) = 0. 
The iterative solution is 

y(n) =  
   1 

, 
3
,  

1 
,  

7 




 ,...

  4  8 4 32 

2z
2  
 (9/ 4)z  (1/ 2)

z  (1/4)z  (1/2)

2z
2  
 (9/ 4)z  (1/ 2)

z  (1/ 4)(z 1) 



 

For the solution in the frequency domain we take the z-transform of the difference 

equation 

ʓ 
 

y(n)  
1 

y(n 1)  
1 

y(n  2)
 

= ʓ 0 n  0 
 2 

1 
ʓ{y(n)} + 

2 

4 
1 

ʓ{y(n–1)} – 
4 



ʓ{y(n–2)} = 0 

Y(z) + 
1
 

2 
z
1Y (z)  y(1) z

1 –  
1
 

4 
z
2 Y (z)  y(2) z

2 
 y(1) z

1 = 0 

Y(z) + 
1
 

 2 
z
1Y (z)  1 z

1 –  
1
 

4 z
2 Y (z) 1z

2 
1z

1 = 0 

Y(z) 1 0.5 z
1 
 0.25 z

2 =  0.25  0.25z
1 

(0.25)z z 1
Y(z) =   

z 
2  
 0.5z  0.25 

Y (z) 
=

 

z 

(0.25)z 1 
z 

2 
 0.5z  0.25 

The denominator on the right hand side has roots at 
 0.5  (0.5)

2  
 4(1)(0.25)  1  5 

z1, z2 =  =  = 0.309 and –0.809 
2 4 

Y (z)  (0.25)z 1   A   B  

z 
=  

(z  0.309)(z  0.809)
= 

z  0.309
+ 

z  0.809 

(0.25)z 1
A = 

(z  0.809) 

 (0.25)z 1B = 
(z  0.309) 

 

= 0.155 

z  0.309 

 

= – 0.405 

 

Y(z) =   0.155z  
z  0.309 

z 0.809 

  0.405z 

z  0.809 

y(n) = 0.155  (0.309)
n   

– 0.405(0.809)
n 
, n ≥ 0 

The first few values of the sequence are y(n) =  0.25, 0.376,  0.25, 0.219,... and should be 

compared with the iterative solution. 

In the context of MATLAB, we may use filter(b, a, x) to generate the sequence y(n). The 

coefficients of y(.) and x(.) are numbered slightly differently as below: 
 

a1 y(n) + a2 y(n–1)+ a3 y(n–2) + …= b1 x(n) + b2 x(n–1)+ b3 x(n–2)+ … 
 

From the difference equation 

y(n) + 
1 

y(n–1) – 

2 

1 
y(n–2) = 0, n  0 

4 
we note that the input is x(n) = 0 and the coefficients of y(.) and x(.) give us the a and b vectors: 

a = [1, 0.5, -02.5] and b = [1]. The non-zero initial conditions y(–1) = y(–2) = 1 must first be 

converted to equivalent initial conditions for the filter function to work. We specify the vector 

yic = [y(–1), y(–2)] = [1, 1] and generate the equivalent initial conditions eic by the function 

filtic(b, a, yic). The equivalent initial conditions are then used to generate the filter output 

through filter(b, a, xn, eic). The MATLAB segment follows: 

– 



%Non-zero initial conditions 

b = [1], a = [1, 0.5, -0.25], yic = [1, 1], 

n = 0:25, xn = 0 .*n 

% 

%Equivalent initial conditions 

eic = filtic(b, a, yic), 

yn = filter(b, a, xn, eic) 

subplot(2, 1, 1), stem(n, xn); 

xlabel('n'), ylabel('xn'); title('Input Sequence'); 

subplot(2, 1, 2), stem(n, yn); 

xlabel('n'), ylabel('yn'); title('Output Sequence'); 

 

 

The output is: 

yn = [-0.25 0.375  -0.25 0.2188  -0.1719 0.1406   -0.1133 … 0.0031   -0.0025 0.0020] 
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Example 1.9.3 Find the response sequence for the filter defined by 

y(n) – 7 y(n–1) + 126 y(n–2) = x(n) 
Assume the system is initially relaxed. Obtain the system function and plot its poles and zeros. 

Solution The phrase ―initially relaxed‖ means that the initial conditions are zero, that is, y(n) = 0 

for n < 0 and x(n) = 0 for n < 0. The question doesn‘t specify what the input x(n) is, so assume 

δ(n). (What will the output be if both the input and the initial conditions are zero?) 

 
 

Steady-state and transient responses for a first order system 

y
n
 

x
n
 



 
0 

0 

= 0 

We consider sinusoidal inputs. Although the presentation is only for a first order system, the 

relationship established for the steady-state response in terms of the transfer function of the 

system is a general result for stable systems and sinusoidal inputs. 

The system is 

y(n) = a y(n–1) + x(n), n ≥ 0 

with the initial condition y(–1) and the input x(n) = cos0 n u(n). (We have considered the time- 

domain behavior of this system in Unit I). Assume |a| < 1in order to have a stable system. The 

system function is obtained with zero initial conditions, 

 

Y(z) = a z
–1

 Y(z) + X(z), or 

H(z) =  Y (z) 
X (z) 

1 

1 az 
1

 

z 

z  a 

The solution of the difference equation is obtained by taking the z-transform and using 

the given initial condition 
 

Y(z) = a [z
–1

 Y(z) + y(–1)] + X(z) 

Y(z) 1 az
1 = a y(–1) + X(z) 

Y(z) = a y(–1) 
1
 

1 az 
1

 

+ X(z) 
1
 

1 az 
1 

2 

= a y(–1) H(z) + X(z) H(z) 

Since X(z) = ʓ{x(n)} = ʓ{ cos0 n u(n)} = 

2 

z  z cos
2 

z  2z cos0 1 

, we have 

Y(z) = a y(1) H(z) + z   z cos0 H(z) = Y (z) + Y (z) 
1 2 

 

z 
2   
 2z cos 1 

0 

 

= Y1(z) = Y2(z) 

Here Y1(z) is the zero-input response due to the initial condition(s) 
a y(1) z 

Y1(z) = a y(1) H(z) = 
 

 

z  a 
and Y2(z) is the forced response due to the input x(n) 

z2  z cos0 z z 
2 
 z cos

Y2(z) = z 
2 
 2z cos 1 

H(z) = z  az 
2 
 2z cos 1

0 0 

Y1(z) is already in a convenient form for taking the inverse, but Y2(z) must be expanded into 

partial fractions as below. 
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Factoring of… 
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e j0 

2e j0     a
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z 
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  A z   

+ 
    B z 

+ 
   B  z  

z  a z  a z  e 
j0  

z  e j0 

Taking the inverse z-transform we get 

y(n) = a y(–1)  a
n
u(n) + A a

n
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* e j0  n 

u(n) 
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 Using the fact that B = e j0  = 
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2 ReBej0  n = 2 Re 
 2 
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Since H(z) =  H ( j ) =  H( j )  e 
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Thus y(n) becomes 

y(n) = [a y(–1) + A] a
n
u(n) + 

Transient response 

conjugates, hence 

= 2 ReBe 
j0 n u(n) 

These are complex 

z (z cos0 ) 

z az e
 j0 

H ( j ) cos  n  H ( j u(n) 0 0 0 

Steady-state response 

 
= y1(n) 

j

z  e 0 



x(n) 

X(z) 


y(n)= 

Y(z)= X 

a1 y(n–1) 

1 

Since |a| < 1 the transient term will eventually go to zero as n → ∞. Even if the initial condition 

is zero, y(–1) = 0, there is still a transient response Aa
n
u(n) which eventually dies down. 

If there is a nonzero initial condition, y(–1), but the input x(n) = 0, the solution becomes 

y(n) = y1(n) = a y(–1) a
n
u(n) which also dies down as n → ∞. 

 
 

Realization of digital filters 
 

Given H(z), the system function, or h(n), the impulse response, the difference equation may be 

obtained. This difference equation could be implemented by computer program, special purpose 

digital circuitry, or special programmable integrated circuit. This direct evaluation of the 

difference equation is not the only possible realization of the digital filter. Alternative 

realizations of the digital filter are possible by breaking up the direct realization in some form. 

 

Direct Form realization of IIR filters An important class of linear shift invariant systems can 

be characterized by the following rational system function (where X(z) is the input, Y(z) the 

output and we have taken a0 = 1 in comparison with the earlier representation): 
M 

Y(z) 1   M1 b z 
k 

    b   b  z   ..........  b z  
k 

k  0 H(z) = = 0 1 M 1  bM z 
=

 
X (z) 1 a z 

1 
 ..........  a N 1 z N 1  aN z 

N 

1  
k  1 

ak z 

 

By cross multiplying and taking the inverse z-transform we get the difference equation 
N M 

y(n) = –  ak y(n  k ) +  br x(n  r) 
k  1 r  0 

= –a1 y(n–1) –a2 y(n–2) –… –aN y(n–N) 
+ b0 x(n) + b1 x(n–1) + … + bM x(n–M) 

 

To construct a filter structure we shall need three types of block diagram elements: a delay 

element, a multiplier and an adder, illustrated below: 

 

 

y(n) 

Y(z) 

a1 
y(n–1) 

 

 

z
–1

Y(z) 

 

x(n)+ a1y(n–1) 

(z)+a1z
–1

Y(z) 

 

 

 

a1 z
–1

Y(z) 

We can construct a realization of the filter called the Direct Form I by starting with y(n) and 

generating all the delayed versions y(n–1), y(n–2), …, y(n–N); similarly starting with x(n) and 

generating all the delayed versions x(n–1), x(n–2), …, x(n–M). We then multiply the above terms 

by the respective coefficients and add them up. This is shown below (next page). 

This is an N
th

 order system N being the order of the difference equation. There is no 

restriction as to whether M should be less than or greater than or equal to N. The total number of 

delay elements = (N+M). It is not in canonic form because it uses more than the minimum 

M 

y(n–1) 

z
–1

Y(z) 

a1 y(n–1) 

a1 z
–1

Y(z) 
z–1 

N k 



possible number of delay elements. It is called ―Direct Form‖ because the multipliers are the 

actual filter coefficients {a1, a2, …, aN, b0, b1, b2, …, bM}. 
The difference equation of this realization (or structure) continues to be 

 

y(n) = –a1 y(n–1) –a2 y(n–2) –… –aN y(n–N) 

N multiplications 
 

+ b0 x(n) + b1 x(n–1) + … + bM x(n–M) 

 

(M+1) multiplications 
 

and will be referred to as the Direct Form I difference equation. The total number of 

multiplications can be counted and is seen to be (N+M+1). We can also count and see that there 

are (N+M) additions. Finally, to calculate the value y(n) we need to store N past values of y(.), 

and M past values of x(.), that is, a total of (N+M) storage locations (storage for the present value 

of x(.) is not counted). 
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Rearrangement of Direct Form I The above diagram of Direct Form I, or the corresponding 
expression for H(z), is sometimes rearranged as below. This shows visually that the transfer 

z–1 

–a1y(n–1) 

–a2 

z–1 z–1 

z–1 

z–1 z–1 



 
H1(z) 

W (z) 


  k 

function H(z) is arranged as a cascade of an all-zero system, H2(z), followed by an all-pole 

system, H1(z): 

 
H(z) = 

 
Y (z)   M 

 
 

= b z 	1  = H (z) H (z) 
X (z)  k  0 

k
           N 

k   2 1 

 1   ak z 

 k  1 


H2(z) H1(z) 

 
The overall block diagram then is shown thus: 

 

 

W(z) Y(z) 
 

 

 

 

W(z)  
M

 k 


The all-zero system is H2(z) = 
 

 

X (z) 
=  bk z 
 k  0 

 
from which, by cross-multiplying and 


taking the inverse z-transform, we get the difference equation below: 

W(z) = H2(z) X(z) = X(z)  M b z k 
 

k 

 k  0 
w(n) = b0 x(n) + b1 x(n–1) + … + bM x(n–M) 

 

W(z) 
 

 

 




The all-pole system is H1(z) =
 Y (z) 

= 
 N 1 



 

from which, by cross-multiplying 

 1   ak z 
k  



 k  1 

and taking the inverse z-transform, we get the difference equation as below: 
 
 

Y(z) = H1(z) W(z) = W(z) 
	1 


 N 

 1   ak z
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 k  1 

y(n) = w(n) – a1 y(n–1) – a2 y(n–2) –… – aN y(n–N) 
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z–1 

 
H2(z) 

 

Even though it seems that there are two equations, one for w(n) and another for y(n), there is, in 

effect, only one since w(n) in the second equation is simply a short hand notation for the first 

equation and can be eliminated from the equation for y(n). 

Overall, the Direct Form I has the following alternative appearance: 
 

b0 
x(n) w(n) y(n) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

H2(z) (All-zero System) H1(z) (All-pole System) 
 

 
Derivation of Direct Form II The transfer function H(z) can be written as the product of the 
two transfer functions H1(z) and H2 (z) as follows where we have reversed the sequence of the 
two blocks: 
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Cross-multiplying, taking the inverse z-transform of the above two and rearranging, we have 
N M 

p(n) = x(n) –   ak  p(n  k) ,  and y(n) =  br  p(n  r) 
k  1 

The two equations are realized as below: 
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The two branches of delay elements in the middle of the above block diagram can be replaced by 

just one branch containing either N or M (whichever is larger) delay elements, resulting in the 

Direct Form II shown below: 
 

 

 

(Aside) This diagram of the filter structure is properly called a block diagram. There is another 

representation called the signal flow graph. See below for signal flow graphs and transposed 

structures. 

x(n) p(n) b0 y(n) 

 

–a1 b1 

 

–a2 

 

–aN–1 

 bM 

–aN 

z–1 

z–1 

z–1 



In the above diagram each column of adders on each side can be replaced by a single adder 

resulting in the more familiar form shown below. There are now only two adders. 

 

Direct Form II 

 

 

 

The number of delay elements = max {N, M} – this is the minimum possible, hence called 

a canonic form. The multipliers are the actual coefficients from the difference equation. Hence 

this is also a direct form. 

The numbers of multipliers and adders are also the minimum possible, but this does not 
mean that it is the best realization from other considerations like immunity to round off and 
quantization errors. 

The difference equations are: 

p(n) = x(n) –a1 p(n–1) –a2 p(n–2) –… –aN p(n–N) , and 

y(n) = b0 p(n) + b1 p(n–1) + … + bM p(n–M) 

x(n) p(n) b0 

 
y(n) 

–a1 b1 

p(n–1) 

–a2 

bM 

N
th

 Delay 

–aN 
p(n–N) 

z–1 

z–1 

z–1 

z–1 

z–1 



The above equations show that in order to generate y(n) we need the present value of x(.) 

and N (or M or whichever is larger) past values of p(.). This requires N storage locations not 

counting the present value of x(.). We also see that the number of multiplications = N+M+1, and 

number of additions = N+M. 

Comparing the difference equations of Direct Forms I and II: 

 To compute y(n) in DF I we need the past N outputs, the present input, and the 

past M inputs. 

 To compute y(n) in DF II we need the N (or M) values of p(n–k) for k = 1,2, …, N, 

and the present input. 

This illustrates the concept of the state of a system. 
 

Definition The state of a system is the minimum information required that along with the input 

allows the determination of the output. 

 

From the above discussion the N (or M) values p(n–k), k = 1, 2, …, N, make up the state of the 

system. 

 

Comparison of Direct Forms I and II 
 Direct Form I Direct Form II 

No. of multiplications N+M+1 N+M+1 

No. of additions N+M N+M 

No. of storage locations N+M N 

State y(n–k), k = 1 to N 

x(n–k), k = 1 to M 
p(n–k), k = 1 to N 



Signal flow graph A signal flow graph representation of a difference equation is essentially the 

same as its block diagram representation, except for a few notational differences. The signal flow 

graph is a network of directed branches that connect at nodes. Associated with each node is a 

variable or node value. Each branch has an input signal and an output signal. In a linear signal 

flow graph the output of a branch is a linear transformation (such as a constant or a delay shown 

alongside the branch) of the input to the branch. Sometimes this branch transmittance is unity 

and not explicitly shown. By definition, the value at each node in a graph is the sum of the 

outputs of all the branches entering the node. 

Source nodes have no entering branches and sink nodes have only entering branches. 

We repeat below the Direct Form II block diagram developed earlier. 
 

 

 

The signal flow graph corresponding to the above structure is shown below. With regard 

to the ―a‖ and ―b‖ coefficients we have arbitrarily taken M = N, but M and N are independent of 

each other. In this figure the bottom-most right and left nodes are unnecessary. 
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= = 

Transposition (Flow graph reversal) leaves the overall system function between input and 

output unchanged and leads to a set of transposed system structures that provide some useful 

alternatives. 

Transposition of a flow graph is accomplished by reversing the directions of all branches 

while keeping the branch transmittances as they were and reversing the roles of the input and 

output so that source nodes become sink nodes and vice versa. Clearly, if a signal flow graph 

configuration is transposed, the number of delay branches and the number of coefficients remain 

the same. Thus a canonic structure remains canonic in the process of transposition. 

The result of applying the transposition theorem to the signal flow graph of the direct 

form II structure (and reorienting the diagram so that the input and output still appear on the left 

and right sides, respectively) is shown below. This will be referred to as the ―direct form II 

transposed‖. 

 

x(n) b0 y(n) 

 

 
 

Comparison of the direct form II with its transposed version shows that 

 The direct form II structure implements the poles first and then the zeros 

 The transposed direct form II structure implements the zeros first and then the 

poles 

These differences can become important in the presence of quantization in finite precision digital 

implementations or in the presence of noise in discrete-time analog implementations. 

When the transposition theorem is applied to cascade or parallel structures, the individual 

second-order systems are replaced by transposed structures. 

 

Example 1.11.1 Develop a canonic direct form realization of the transfer function 
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Solution Write numerator and denominator as polynomials in negative powers of z with the 
leading term (a0) in the denominator equal to 1 
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Making the following comparison with the standard notation 
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we identify the following parameters: 

b0 = 3, b1 = 0, b2 = 4, b3 = 0, b4 = 0, b5 = –2 
a1 = 3, a2 = 5, a3 = 0, a4 = 4 

 
 

 
By inspection of the above structure we can write the difference equations 

 

p(n) = x(n) –3 p(n–1) –5 p(n–2) –4 p(n–4) and 

y(n) = 3 p(n) + 4 p(n–2) – 2 p(n–5) 

x(n) p(n) y(n) 
 

3 (b0) 

p(n–1) 

–3 
(– 

a1) 

–5 (–a2) 4 (b2) 

p(n–3) 

–4 (–a4) 

–2 (b5) 

p(n–5) 

z–1 

z–1 

z–1 

z–1 

z–1 



  

Example 1.11.2 [Ludeman, 5.1] A system is specified by its transfer function as 

H(z) = (z 1) (z  2)(z 1) z 1   1 
 

 
1 1 


  

 
1 1     

 


z   
 j 


z   

   j   
 

z j z j 
 

  

 2 2    2 
    2 

 

 4  



 4 



Realize the system in the following forms: (a) Direct Form I, and (b) Direct Form II. 

Solution We need to express H(z) as a ratio of polynomials in negative powers of z with the 
leading term (a0) in the denominator equal to 1. Multiplying out the factors in the numerator and 
denominator and rearranging 

H(z) = (z 
2 
1) (z 

2 
 2z) 1  2z 

1  z2 
 2z 

3
 

 


z 

2  
 z  

1  z
2  
16 = 

1  z 
1 
 

9
 

z 2  
1 

z 3 
1 4 

z 


 2  

16 16 32 

 

By inspection of the above structure we can write the difference equations 

 

p(n) = ? 

y(n) = ? 

x(n) p(n) y(n) 

 

1 (b0) 

1 (–a1) –2 (b1) 

–9/16 –1 (b2) 

1/16 2 (b3) 

–1/32 
p(n–4) 

z–1 

z–1 

z–1 

z–1 



x(n) b0 
 

y(n) 

b1

–a1 

b2
z–1 

z–1 

1  a z 
2 


2 

Biquadratic section When M = N = 2 we have the biquadratic section, an important building 

block. Thus H(z) is a ratio of two quadratics in z
–1

 given by 
b  b z 

1 
 b z 

2
 

H(z) = 0 1
 1  a z 2 

1 2 

The corresponding DF II structure is shown below with the difference equations. 

 
Biquadratic section – DF II 

 

p(n) = x(n) – a1 p(n–1) – a2 p(n–2) 
y(n) = b0 p(n) + b1 p(n–1) + b2 p(n–2) 

The biquadratic may also be implemented in the DF I with the difference equation: 

DF I: y(n) = b0 x(n) + b1 x(n–1) + b2 x(n–2) – a1 y(n–1) – a2 y(n–2) 

Shown below is an alternative realization of the biquadratic made possible by factoring 
out the coefficient b0. This is more convenient for amplitude scaling by tuning the value of b0. 

b (1  bz
1 
 b z

2 
) 

H(z) = 0 1 
1

 

1 a z  a z 
2

 

1 2 

 

Alternative Biquadratic 

 

 

 

 

 

 

 

 

 

 

 
–a2 

 
As an exercise label the signal out of the left adder as w(n) and write down the difference 

equations. 

x(n) 


p(n) 
b0 


y(n) 

b1 

–a1 

b2 

–a2 
p(n–2) 

z–1 

z–1 



b z 

1 

1  a z a z 

1 



i = 

Cascade realization of IIR filters Many different realizations exist depending on how we 

choose to write and rearrange the given transfer function. Two very important ways of 

decomposing the transfer function are the cascade and parallel decompositions. 

In the cascade realization H(z) is broken up into a product of transfer functions H1, H2, 
…, Hk, each a rational expression in z

–1
 as follows: 

Y (z) = H(z) = H (z) H (z) … H (z) H (z) 
k 

X (z) 

so that Y(z) can be written as 

k–1 2 1 

 

Y(z) = Hk(z) Hk–1(z) … H2(z) H1(z) X(z) 
 
 

 
Although H(z) could be broken up in many different ways, the most common cascade 

realization is to require each of the k product H‘s to be a biquadratic section. In many cases the 
design procedure yields a product of biquadratic expressions so no further work is necessary to 
put H(z) in the required form. The product terms Hi(z) could take various forms, depending on 

the actual problem. Some possbible forms are 
0 , H (z) = b0   b1 z1 

H (z) 
1 a z 

1  
 a z 2 i 

1 a z 
1 
 a z 2

 
1 2 

b b z 1  
2 

2 

Hi(z) = b0 + b1z
–1

 + b2z
–2

, Hi(z) =   0 1 2 
 

1 a z 
1

 

b  b z 
1 
 b z 

2
 

Hi(z) = 0 1
 1    

2  
2 (Biquadratic) 

1 2 

b  b z 
1

 
Hi(z) = 0 1 





(Bilinear) 

1 a z 
1
 

Each of the Hi(z) could then be realized using either the direct form I or II. 

Different structures are obtained by changing the ordering of the sections and by 

changing the pole-zero pairings. In practice due to the finite word-length effects, each such 

cascade realization behaves differently from the others. 
 

Example 1.11.3 Develop two different cascade canonic realizations of the following causal IIR 

transfer function 

H(z) = 
z(0.3z  0.5)(2z  3.1) 

 
 

(z 
2 
 2.1z  3)(z  0.67) 

Solution Write in terms of negative powers of z: 

H(z) = z z
2 
(0.3  0.5z 

1 
)(2  3.1z1 ) = (0.3  0.5z 

1 
)(2  3.1z

1 ) 

z
3 
(1 2.1z

1  
 3z

2 
)(1 0.67z

1 
) (1 2.1z

1 
 3z

2 
)(1 0.67z

1 
) 

y1(n) y2(n) yk–1(n) y(n) 

X(z) Y(z) 

H(z) 

Hk(z) H2(z) H1(z) 

1 



0.3  0.5z 
1

 

1  0.67z 
1

 

2  3.1z 
1

 

1 2.1z 
1 
 3z 

2
 

2  3.1z 
1

 

1 0.67z 
1

 

0.3  0.5z 
1

 

1  2.1z 
1 
 3z 

2
 

Two (of several) different cascade arrangements, based on how the factors are paired, are shown 
below in block diagram form. Note that the intermediate signal y1(n) is different from the 
intermediate signal y3(n). 

 

 

 
x(n) 

Cascade – A 

y1(n) y2(n) = y(n) 
 

 
 

  

 

 

 

 

 
x(n) 

Cascade – B 

y3(n) y4(n) = y(n) 
 

 

 
  

 

 

 

 

Cascade A is shown below using the direct form II for each block separately: 

x(n) p1(n) 
0.3

 



y1(n) 


–0.5 

–2.1 
 

 

3 p1(n–2) 

y1(n) p2(n) 
2
 















y2(n) = y(n) 






3.1 

 

–0.67 

z–1 

z–1 

z–1 



Cascade B is shown below using the direct form II for each block separately: 
 

x(n) p3(n) 
2
 



y3(n) 


3.1 

–2.1 

3 p3(n–2) 

y3(n) p4(n) 
0.3

 















y4(n) = y(n) 





–0.5 

 

–0.67 

 

Note in this example that if H(z) =
 A(z) B(z) 

, then depending on the pole-zero pairings and the 

C(z) D(z) 

sequence order of the blocks in the cascade we can have 4 different implementations (structures). 

These are equivalent from input to output though not at the intermediate point between the 

blocks. Moreover the quadratic (z
2
 + 2.1z – 3) has real roots and so can be split into two factors 

each of which can be combined with the other factor (z + 0.67) in the denominator. This results 

in more than the 4 structures shown here. 
 

 

 

A(z) 

C(z) 

B(z) 

D(z) 

A(z) 

D(z) 

B(z) 

C(z) 

B(z) 

C(z) 

A(z) 

D(z) 

B(z) 

D(z) 

A(z) 

C(z) 

z–1 

z–1 

z–1 



y1(n) 
 

 
y2(n) 
 

 

 

 

 

 
yk(n) 

  

0 1 0 1 0 1 

Example 1.11.4 [Ludeman, 5.1] A system is specified by its transfer function as 

H(z) = (z 1) (z  2)(z 1) z 1   1 
 

 
1 1 


  

 
1 1     

 


z   
 j 


z   

   j   
 

z j z j 
 

  

 2 2    2 
    2 

 

 4  



 4 



Realize the system as a cascade of two biquadratic sections. 
Solution In the numerator all the zeros are real-valued, so any two factors can be combined to 

produce a quadratic; thus there are C(4, 2) ways of doing this. But in the denominator a pair of 

factors must be combined so as to produce real-valued coefficients, i.e., combine two factors 

with complex conjugate poles. 

In general, whether in the numerator or denominator, a pair of factors associated with a 

pair of complex conjugate roots must be combined so that the resulting quadratic expression will 

have real coefficients. 

 

Parallel realization of IIR filters The transfer function H(z) is written as a sum of transfer 

functions H1(z), H2(z), …, Hk(z) obtained by partial fraction expansion: 
Y (z) = H(z) = H (z) + H (z) +  … + H (z) + H (z) 

 
Thus 

1 2 

X (z) 
k–1 k 

Y(z) = H(z) X(z) = [H1(z) + H2(z) + … + Hk–1(z) + Hk(z)] X(z) 
= H1(z) X(z)+ H2(z) X(z)+ … + Hk–1(z) X(z)+ Hk(z) X(z) 

 
and is shown in block diagram fashion below. Note that the outputs y1(n), y2(n), …, yk(n) are 
independent of each other; they are not coupled as in the case of the cascade structure. 

Based on whether H(z)/z or H(z) is the starting point for partial fractions we have parallel 

forms I and II (S. K. Mitra). Both of these methods are illustrated below. 
 
 

 

 
Parallel Form I (This corresponds to expanding H(z)/z instead of H(z) into partial fractions). 
This structure arises when the Hi(z) are all selected to be of the form 

b   b z 
1 

b z 
2  
 b z  z(b z  b )  

Hi(z) = = = 
1 a z 

1  
 a z 2 

z 
2 
 a z  a z 

2 
 a z  a 

1 2 1 2 1 2 

x(n) 

X(z) 
Σ y(n) 

Y(z) 

H(z) 

Hk(z) 

H2(z) 

H1(z) 



where the quadratic terms are used for each pair of complex conjugate poles so that the 
coefficients of the corresponding Hi(z) will be real. Each Hi(z) is then realized as either a DF I or 
DF II. Special cases of Hi(z) are 

H (z) = b , H (z) = 
b0

 
b z   , H (z) = b z

–1
 

 

  

i 0 i 
1 a1z 

  0  

z  a1 

 

Parallel Form II (This corresponds to expanding H(z) directly into partial fractions). This 

structure arises when the Hi(z) are all selected to be of the form 
b z 

1 
 b z 

2 
b z  b 

Hi(z) = 
  1 2 = 
1 a z 

1 
 a z 2

 

1 2  
  

z 
2 
 a z  a 

1 2 1 2 

 

Example 4.11.5 Obtain the parallel realization for 
8z

3 
 4z 

2 
 11z  2 

H(z) = 
z  (1/ 4)z 

2 
 z  (1/ 2)

Solution For the Parallel Form I we expand H(z)/z. Note that in the denominator the factor 

z2  
 z  (1/ 2) represents a complex conjugate pair of poles at  (1/ 2)   j(1/ 2). 

H (z) 8z
3  
 4z 

2  
11z  2 = 

A 
+ B C z  D    =      +    

z z z  (1/ 4)z
2  
 z  (1/ 2) z z  (1/4) z 

2 
 z  (1/ 2)

8z
3 
 4z 

2 
11z  2 

A =  
z  (1/4)z

2 
 z  (1/2)



= 

z  0 

 2 
 

 

(1/ 4)(1/2) 

... 

 

= 16 

B = 

 
To determine C and D 

8z
3 
 4z

2 
11z  2 

 

 
z  1/ 4 

= … = = 8 
... 

z z  (1/ 4)z 
2 
 z  (1/ 2)

Az  (1/ 4)z
2  
 z  (1/ 2) B z z

2  
 z  (1/ 2) (Cz  D) z z  (1/ 4)

= 
z z  (1/4)z

2  
 z  (1/ 2)

Putting A = 16 and B = 8, and equating the numerators on both sides 

8z
3 
 4z

2 
11z  2 

= 16z  (1/ 4)z2  
 z  (1/ 2) 8zz2  

 z  (1/ 2) (Cz  D) z z  (1/ 4)
Equating the coefficients of like powers of z on both sides we have 

z
3
: 8 = 16 + 8 + C → C = –16 

z
0
: –2 = 16 (–1/4) (1/2) which is an identity → doesn‘t help 

z
1
: 11 = 16 (1/2) + 16 (–1/4) (–1) + 8 (1/2) + D (–1/4) → D = 20 

Therefore we have 

H (z)  
= 

16 
+ 

8 

z z z  (1/ 4)
+

 

(16) z  20 

z
2  
 z  (1/ 2)

H(z) = 16 + 
8z 

+ 

z  (1/ 4) 
8 

z(20 16 z) 

z
2 
 z  (1/2)

 16  20z 
1

 

H(z) = 16 + + 
1  0.25z 

1
 1  z 

1
  0.5z 2 = H1(z) + H2(z) + H3(z) 

1 i 

8z
3 
 4z 

2  
11z  2 

z z 
2 
 z  (1/ 2)

1 = 



y1(n) 

x(n) 


p2(n) 
8 


y2(n) 

 
y(n) 

0.25 


p3(n) 

–16 


y3(n) 

20 

1 

z–1 

z–1 

z–1 

The corresponding parallel form I diagram is shown below. 

 
16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

–0.5 

 

HW Identify other signals on the diagram as needed and write down the implementation 

equations in full. 

 
p2(n) = x(n) + 0.25 p2(n–1), 
y2(n) = 8 p2(n) 

 
p3(n) = x(n) + 1 p3(n–1) – 0.5 p3(n–2), 
y3(n) = –16 p3(n) + 20 p3(n–1) 

 

y(n) = y1(n) + y2(n)+ y3(n) 
 

For the Parallel Form II we expand H(z) 
8z

3 
 4z 

2 
 11z  2 

H(z) =  
z  (1/ 4)z

2  
 z  (1/ 2) 

=
 

 
8z

3 
 4z 

2 
11z  2 

 
 

z
3 
1.25z 

2 
 0.75z  0.125 

By long division we reduce the degree of the numerator by 1 

 

 

Long Division 

8 ←Quotient 

Denominator→ z
3
 – 1.25z

2
 + 0.75z – 0.125 8z

3
 – 4z

2
 + 11z– 2 ←Numerator 

8z
3
 – 10z

2
 + 6z – 1 

6z
2
 + 5z  – 1 ←Remainder 



y1(n) 

x(n) 
 

y2(n) 


y(n) 

0.25 2 

 

y3(n) 

4 

1 

8 
z–1 

z–1 

z–1 

H(z) = 8 + 6z
2  
 5z 1 = 8 + 6z 

2 
 5z 1 

z
3  
1.25z

2  
 0.75z  0.125 z  (1/ 4)z 

2 
 z  (1/ 2)

The proper fraction part can now be expanded into partial fractions. Let 
6z 

2 
 5z 1 A B z  C 

z  (1/ 4)z 
2 
 z  (1/ 2) 

= 
z  (1/ 4)

+ 
z 

2 
 z  (1/ 2)

6z 
2 
 5z  1 

A =  
z

2  
 z  (1/ 2)






z  1/ 4 

= … = 
... 

= 2 
... 

To determine B and C  

6z 
2 
 5z 1 Az 

2 
 z  (1/ 2) (Bz  C)z  (1/ 4)

z  (1/ 4)z
2 
 z  (1/ 2) 

= 
z  (1/ 4)z 

2 
 z  (1/ 2) 

Putting A = 2, and equating the numerators on both sides 

6z 
2 
 5z 1 = 2z 2 

 z  (1/ 2) (Bz  C)z  (1/ 4)

Equating the coefficients of like powers of z on both sides we have 

z
2
: 6 = 2 + B → B = 4 

z
0
: –1 = 2 (1/2) + C (–1/4) → C = 8 

Therefore we have 
2 4z 8 

H(z) = 8 + 
z  (1/ 4) 

+ 
z 

2 
 z  (1/ 2)

1 2 

2z 1 4z  8z 
 

H(z) = 8 + 
1  0.25z 

1
 

+ 
1 z 

1
  0.5z 2 

= H1(z) + H2(z) + H3(z) 

 

The corresponding parallel form II diagram is shown below. 

 
8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

–0.5 



b0 b1 b2 b3 bM 

       
y(n) 

z–1 z–1 z–1 z–1 

  



 

HW Identify other signals on the diagram as needed and write down the implementation 

equations in full. 

 

Example 4.11.6 [Ludeman, 5.1] A system is specified by its transfer function as 

H(z) = (z 1) (z  2)(z 1) z 1   1 
 

 
1 1 


  

 
1 1     

 


z   
 j

  z 





   j 

 
z j z j 

 
   

 2 2    2 
    2 

 

 4  



 4 



Implement the parallel realization in constant, linear and biquadratic sections. 
Solution For the Parallel Form I expand H(z)/z and for the Parallel Form II expand H(z). In the 

denominator keep the complex conjugate roots together. 

 

Realization of FIR filters A causal FIR filter is characterized by its transfer function H(z) given 

by 
Y (z)  = H(z) =  

M 

b z = b   + b z
–1

 + … + b – 

X (z) r r 

r  0 

0 1 M
z 

or, by the corresponding difference equation 
M 

y(n) = br x(n  r)  = b0 x(n) + b1 x(n–1) + b2 x(n–2) … + bM x(n–M) 
r  0 

Note that some use the notation below with M coefficients instead of M + 1 
M 1 

y(n) = br x(n  r)  = b0 x(n) + b1 x(n–1) + b2 x(n–2) … + bM–1  x(n–M+1) 
r  0 

We see that the output y(n) is a weighted sum of the present and past input values; it does not 

depend on past output values such as y(n–1), etc. The block diagram is shown below. It is also 

called a tapped delay line or a transversal filter. 
 

 
x(n) 

M
th

 Delay  
x(n–M) 

 

 

 

 

 

 

 

 

 
 

 

It can be seen that this is the same as the direct form I or II shown earlier for the IIR filter, except 

that the coefficients a1 through aN are zero and a0 = 1; further the delay elements are arranged in 
a horizontal line. As in earlier diagrammatic manipulation the multipliers can all feed into the 

rightmost adder and the remaining adders removed. 

Other simplifications are possible based on the symmetry of the coefficients {br}, as we 
shall see in FIR filter design. 

M 



z 

k 

N  

 

Cascade realization of FIR filters The simplest form occurs when the system function is 

factored in terms of quadratic expressions in z
–1

 as follows: 
K 

H(z) = 




Hi (z) =  0i  b1i z 
1 
 b z 2 

i 1 i 1 

Selecting the quadratic terms to correspond to the complex conjugate pairs of zeros of H(z) 
allows a realization in terms of real coefficients b0i, b1i and b2i. Each quadratic could then be 
realized using the direct form (or alternative structures) as shown below. 

 

 

   b0K y(n) 
– 

1 
 

 
b1K 

 

 
 

b2K 

 

 

 

 

Parallel realization of FIR filters These are based on interpolation formulas by Lagrange, 

Newton, or Hermite methods. In general, these realizations require more multiplications, 

additions and delays than the others. 

 

 

The Lattice structure – Introduction 

In order to introduce the Lattice structure consider the all-pole IIR filter (b1 through bM are zero) 

H(z) = 
 

 


k  0 

b0 

a z k 

= 
1 

a0  a1 z 

 

 a2 

b0 

z
2 
 .........  a 

 

zN 

We shall take a0 = 1 and b0 = 1 so that 
H(z) = 

1 1 

 

N 
k 

1 ak z 
k  1 

= 1 2 N  

1 a1 z  a2 z  .........  aN z 

We shall write the subscript k on the coefficients a as an index within parentheses: thus ak 
becomes a(k); further we shall also incorporate the order N of the filter as a subscript on the 
coefficients a: thus for an N

th
 order filter we shall have the set of coefficients aN(k), with k = 1 to 

N. With this notational refinement the system function goes through the following steps 

H(z) = 
1 

= 1  a(1) z
1 


1   a(k) z 
k 

k  1 

12 N 

a(2) z .... a(N ) z 

N 

x(n) 

K 



x(n) 
b01 b02 

 

b11 b12 

b21 b22 

y(n) z–1 

z–1 z–1 

b 2i 

N 



1 

= 1  

1 

1 
H(z) = N = 

 

1 
= 

1 
  

1 
k   1 

aN(k ) z 
k 1 aN (1) z

1 
 a (2) z

2 
 ....  a (N ) zN

 AN (z) 

where AN(z) denotes the denominator polynomial. 

Using the above notation we shall consider the implementation of a first order filter, that 

is N = 1. We then have 
1 

H1(z) = 1 

1 1 
= 1 =     

1  a (k) z 
k 1 a1 (1) z A1 (z) 

k  1 

Note that we have also awarded a subscript to the system function H, that is, H(z) is written H1(z) 
just to remind ourselves that we are only dealing with a first order system. The difference 
equation can be written down from 

H1(z) =  Y (z) 1 = 1 
1 

X (z) 
1  a (k) z 

k 1 a1 (1) z 

k  1 

y(n) = x(n) – a1(1) y(n–1) or x(n) = y(n) + a1(1) y(n–1) 
 

This difference equation is implemented by the following structure (which can be visually 
verified). Concerning the labeling of the diagram note that a1(1) is not a signal but a multiplier 

that multiplies the signal coming out of the delay element and before it reaches the adder (we 
have previously used a triangular symbol for the multiplier). 

 

 

An embellished version of the above structure is shown below and is used as a building block in 

the lattice structure. This being a first order filter the relationship between the direct form 
coefficient a1(1) and the lattice coefficient K1 is obvious, that is, a1(1) = K1. The implementation 
equations, in terms of the lattice coefficient, are 

 
f0(n) = f1(n) – K1 g0(n–1) [which amounts to y(n) = x(n) – a1(1) y(n–1)] 
g1(n) = K1 f0(n) + g0(n–1) [which amounts to g1(n) = K1 y(n) + y(n–1)] 

 

At this point the need for the additional symbols f(.) and g(.) and the equation for g1(n) is not 
obvious, but they become more useful as we increase the order of the filter and the relationship 
between the coefficients of the two structures becomes more involved. 

 

x(n) = f1(n) 


y(n) = f0(n) 

 

a1(1) = K1 
 

 
 


g1(n) 

–a1(1) = –K1 
 

 

 
g0(n) = y(n) 

x(n) y(n) 


–a1(1) 

z–1 

z–1 

N 



N 



 

 

 

Consider the second order (all-pole) filter (N = 2) whose transfer function is 

H  (z) = Y (z) 1 1 = 1 
2   = 2  =  1 2     

X (z) 
1 a2 

k  1 

(k ) z k 1  a2 (1)z  a2 (2)z A2 (z) 

y(n) = x(n) – a2(1) y(n–1) – a2(2) y(n–2) 
 

The corresponding lattice structure is obtained by adding a second stage at the left end of the 

previous first order structure: 
 

 

x(n) = f2(n) f1(n) 
 

a2(2) = K2 

y(n) = f0(n) 
 

K1 
 

 
 


g2(n) 

–a2(2) = –K2  

 


g1(n) 

–K1 
 

 

 
g0(n) = y(n) 

 

 

We can write an equation for y(n) in terms of the lattice coefficients K1 and K2 and the signal 
values x(n), y(n–1) and y(n–2): 

 

y(n) = x(n) – K1 (1+K2) y(n–1) – K2 y(n–2) 
 

Comparing this equation with the direct form equation for y(n) given above we have the 

relationship between the direct form and lattice coefficients 

 

a2(1) = K1 (1 + K2) and a2(2) = K2 a2(0) = 1 
 

Note that we have thrown in a freebie in the form of a2(0) = 1 for future (actually it corresponds 
to the leading term in the denominator polynomial, A2(z)). 

z–1 z–1 
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II. Discrete Fourier series 

Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete 

Fourier transforms, Properties of DFT, Linear convolution of sequences using DFT, 

Computation of DFT, Relation between z-transform and DFS. 
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Properties of discrete Fourier series 

The discrete Fourier transform (DFT) 

Properties of DFT 

Filtering through DFT/FFT 

Picket-fence effect 



 

 





Fourier analysis - Recapitulation 
 

(1) The Fourier series (FS) of a continuous-time periodic signal, x(t), with fundamental period 
T0, is given by the synthesis equation 



x(t) =  Xk e j 2 k F0 t 

k  

The Fourier coefficients, Xk, are given by the analysis equation 

Xk =  x(t) e
 j 2 kF0 t dt 

T0 T0 

The fundamental frequency, F0 (Hz), and the period, T0 (seconds), are related by F0 = 1/T0. 
 

(2) The Fourier transform (FT) of a continuous-time aperiodic signal, x(t), is given by the 

analysis equation 


X(F) = x(t) e
 j 2 F t 

dt 
 



or X(Ω) = x(t) e
 j t 

dt 


Here Ω and F are analog frequencies, with Ω = 2πF. The inverse Fourier transform is given by 

the synthesis equation 


x(t) = X (F ) e 
j 2 F t 

dF 


or x(t) = 
1 

2



X () e 
jt 

d




(3) The Fourier series (DTFS/DFS) for a discrete-time periodic signal (periodic sequence), 

x(n), with fundamental period N is given by the synthesis equation 
N 1 

x(n) =  Xk e j 2 k n / N  , 0  n  N–1 
k  0 

The Fourier coefficient Xk are given by the analysis equation 
N 1 

Xk =  1 x(n) e j 2 k n/ N  , 0  k  N–1 
N n  0 

This is called the discrete-time Fourier series (DTFS) or just discrete Fourier series (DFS) for 

short. The sequence of coefficients, Xk, also is periodic with period N. 
These two equations are derived below. 
(Note that if the factor (1/N) is associated with x(n) rather than with Xk the two DFS 

equations are identical to the two DFT equations which are derived below in their standard 
form.) 

 

(4) The Fourier transform (DTFT) of a finite energy discrete-time aperiodic signal 
(aperiodic sequence), x(n), is given by the analysis equation (some write X(e

jω
) instead of X(ω)) 



X(ω) =  x(n) e
 j n 

n 

Certain convergence conditions apply to this analysis equation concerning the type of signal x(n). 

We shall call this the discrete-time Fourier transform (DTFT). Physically X(ω) represents the 

frequency content of the signal x(n). X(ω) is periodic with period 2π. 

The inverse discrete-time Fourier transform is given by the synthesis equation 

x(n) =   
1 
  

 



2 
2
X ( ) e j n d 

1 



k 

 





The basic difference between the Fourier transform of a continuous-time signal and the 

Fourier transform of a discrete-time signal is this: For continuous time signals the Fourier 

transform, and hence the spectrum of the signal, have a frequency range (–, ); in contrast, for 

a discrete-time signal the frequency range of the DTFT is unique over the interval of (–π, π) or, 

equivalently, (0, 2π). 

Since X(ω) is a periodic function of the frequency variable ω, it has a Fourier series 

expansion; in fact, the Fourier coefficients are the x(n) values. 

 

 

Discrete Fourier series 
 

Let x(n) be a real periodic discrete-time sequence of period N. If x(n) can be expressed as a 

weighted sum of complex exponentials, the response of a linear system to x(n) is easily 

determined by superposition. By analogy with the Fourier series representation of a periodic 

continuous-time signal, we can expect that we can obtain a similar representation for the periodic 

discrete-time sequence x(n). That is, we seek a representation for x(n) of the form 

x(n) =  X e 
j k0 n

 for all n 
k 

Here Xk are the Fourier coefficients and ω0 = 2π/N is the fundamental (digital) frequency (as Ω0 

 2 
= 2π/T0 = 2πF0 is in the case of continuous-time Fourier series). With kω0 = ωk = k

 N 
above is also written 

 , the 


 Xk  e 
j k 2 n / N 

k k 

The function e 
j k 2 n / N 

is periodic in k with a periodicity of N and there are only N distinct 
functions in the set e 

j k 2 n / N 
corresponding to k = 0, 1, 2, ..., N–1. Thus the representation for 

x(n) contains only N terms (as opposed to infinitely many terms in the continuous-time case) 

x(n) =  Xk 

k N 

e j k 2 n / N 

The summation can be done over any N consecutive values of k, indicated by the summation 

index k = <N>. For the most part, however, we shall consider the range 0 ≤ k ≤ N–1, and the 

representation for x(n) is then written as 
N 1 

x(n) =  Xk e j k 2 n / N for all n 
k  0 

This equation is the discrete-time Fourier series (DTFS) or just discrete Fourier series (DFS) 

of the periodic sequence x(n) with coefficients Xk. 
The coefficients Xk or X(k) are given by (we skip the algebra – S&S) 

N   1 

Xk = 1 x(n) e j 2 k n/ N , 0  k  N–1 ‹ (B) 
N n  0 

Note that the sequence of Fourier coefficients {Xk} is periodic with period = N. That is, Xk = 
Xk+N. The coefficients can be interpreted to be a sequence of finite length, given by Eq. (B) for k 

= 0, 1, 2, …, N–1 only and zero otherwise, or as a periodic sequence defined for all k by Eq. (B). 

Clearly both of these interpretations are equivalent. 

Because the Fourier series for discrete-time periodic signals is a finite sum defined 

entirely by the values of the signal over one period, the series always converges. The Fourier 

series provides an exact alternative representation of the time signal, and issues such as 

convergence or the Gibbs phenomena do not arise. 

k 





N 

N 



The periodic sequence X(k) has a convenient interpretation as samples on the unit circle, 
equally spaced in angle, of the z-transform of one period of x(n). Let x1(n) represent one period 
of x(n). That is, 

 

x1(n) = x(n), 0  n  N–1 
0, otherwise 

 1 N 1    1 

Then X1(z) = x (n) z 
n  

= x (n) z 
n 

, and X(k) = 
n    n  0 

X
1
(z) z  e j 2 k / N 

. This then corresponds to 

sampling the z-transform X1(z) at N points equally spaced in angle around the unit circle, with the 

first such sample occurring at z = 1. (Note that the periodic sequence x(n) cannot be represented 
by its z-transform since there is no value of z for which the z-transform will converge. However, 
x1(n) does have a z-transform.) 

 
 

Properties of discrete Fourier series 
 

Properties of discrete Fourier series (DFS) for periodic sequences The following notation is 

used: 

p = periodic; e = even; o = odd 

WN = e j 2 / N 

Re [.] = Real part of 
Im [.] = Imaginary part of 
|.| = Magnitude of 

Arg (.) = Argument of 

 

The following properties should be noted. 

 

Sequence DFS Sequence DFS 

  
 

Example 2.3.1 Show that DFS {xp(n+m)} = W 
k m 

Xp(k). 

Solution We have  

N  1 

DFS { xp(n+m)} =  xp 

n  0 

(n  m)W 
kn

 

Set n+m = λ so that n = λ–m and the limits n = 0 to N–1 become  = m to N–1+m. Then the RHS 

becomes 
= N   1 m k km 

 
  m 

xp () WN WN 

Since xp(λ) is periodic with period N the summation can be done over any interval of length N. 

Thus 
N  1 

DFS { xp(n+m)} = x
p

 
  0 

 
N 

() W k


N 

W km = W 

N 
 

k m 

N 1 

x 
  0 

p N 

() W 
k


= k m 

WN Xp(k) QED 

4 Re [xp(n)] Xpe(k) 

5 j Im [xp(n)] Xpo(k) 

 

1 xp(n+m) W 
k m 

Xp(k) 
N 

2 x
* 
(n) 

p 
X 

* 
(k) 

p 

3 x
* 
(n) 

p 
X 

* 
(k) 

p 

 



* 









Example 2.3.2 Show that DFS { x
* 
(n)} = X 

* 
(k). 

p p 

Solution We have  
 

N 1 

 
 

* 

 N   1 x* (n)W k n   DFS { x
* 
(n)} = x

* 
(n) W 

k n    = 
   

p p 
n  0 

N  p 

 
n  0 

N 
  

N  1 x n WN 

*
= X (k) = X p (k) QED 

=   
p 

( ) 
n  0 

k n * * 
p 



Based on the properties above we can show that for a real periodic sequence xp(n), the 
following symmetry properties of the discrete Fourier series hold: 

 
1. Re [Xp(k)] = Re [Xp(–k)] 3. |Xp(k)| = |Xp(–k)| 
2. Im [Xp(k)] = –Im [Xp(–k)] 4. arg Xp(k) = – arg Xp(–k) 

 

The discrete Fourier transform (DFT) 
 

(Omit) The discrete Fourier transform (DFT) derived from the Fourier series The exponential 
Fourier series of a continuous time periodic signal x(t) with fundamental period T0 is given by 
the synthesis equation 



x(t) =  Xk 

k  

e j2 k F0 t ‹ (1)
 

where the Fourier coefficients Xk are given by the analysis equation 
1 

Xk = T 
 x(t) e j 2 kF0 t dt 

‹ (2) 
0 T 

0 

with the fundamental frequency F0 and the period T0 related by F0 (Hz) = 1/T0 (sec). 
To obtain finite-sum approximations for the above two equations, consider the analog 

periodic signal x(t) shown in Figure and its sampled version xs(nT). Using xs(nT), we can 
approximate the integral for Xk by the sum 

Xk = 
1  N 1 




xs (nT )e 
j 2k F0 nT

T , k = 0, 1, …, N–1 

T0 n  0 

= 1 

 
N 1 

x(n) e
 j 2 k n / N  

, k = 0, 1, …, N–1 
N n  0 

where we used the relation F0T = 1/N, and approximated dt (or t) by T, and have used the 
shorthand notation x(n) = xs(nT). (This procedure is similar to that used in a typical introduction 
to integral calculus). 



t 
0 T0 2T0 

j 2 k n / N 



 j 2 k n / N 

A finite series approximation for x(t) is obtained by truncating the series for x(t) in 
equation (1) to N terms and substituting t = nT and F0 = 1/TN. This will necessarily give the 
discrete sequence x(n) instead of the continuous function x(t): 

x(n) or xn =  N1 Xk  e ,   n = 0, 1, …, N–1 

k  0 

 

x(t) 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

t 

 

 
N samples at n = 0, 1, …, N–1 

Δt or dt = T = T0/N 

The above two equations define the discrete Fourier transform (DFT) pair. A slight 

adjustment of the (1/N) factor is needed so as to conform to standard usage. The adjustment 

consists of moving the (1/N) factor from one equation to the other. Then the direct DFT of the 

time series x0, x1, …, xN-1 is defined as 
N 1 

Xk =  xn e , k = 0, 1, …, N–1 ‹ (3) 
n  0 

And the inverse DFT is defined as 
N 1 

xn =  1 Xk e j 2 k n / N  , n = 0, 1, …, N–1 ‹ (4) 
N k  0 

It can be shown that substituting equation (3) into equation (4) produces an identity, so that the 

two equations are indeed mutually inverse operations and therefore constitute a valid transform 

pair. 

(End of Omit) 

 

The discrete Fourier transform as a discretized (sampled) version of the DTFT A finite- 

duration sequence x(n) of length N (the length N may have been achieved by zero-padding a 

sequence of shorter length) has a Fourier transform denoted X(ω) or X(e
jω

), 
N 1 

X(ω) =  x(n) e
 j n 

, 0  ω < 2π 
n  0 

x(t) xs(nT) 

T0 = NT 

0 T 2T (N–1)T 





  N    

X(ω) is a continuous function of ω and has a period of 2π. If we take N samples of X(ω) 

at equally spaced frequencies {ωk = 2πk/N, k = 0, 1, ..., N–1}, along the interval [0, 2π), 

the resulting samples are (Figure) 
 2   k  N 1 

X(k)   X 	 =  x(n) e j 2 k n / N , 
n 0 

Since these frequency samples are obtained by evaluating the Fourier transform X(ω) at N 

equally spaced discrete frequencies, the above relation is called the discrete Fourier transform 

(DFT) of x(n). In other words, X(k) are discrete samples of the continuous X(ω). 
 

 

 

 

 

 

 

 

 
 

 

 
0 2 /N 

0 1 

ω 

2 

N–1 N 
 
 

N samples of ↓(ω) 

The corresponding inverse discrete Fourier transform (IDFT) is given by 
1 

N 1 

x(n) =  X (k) e 
j 2 k n / N 

, n = 0, 1, …, N–1 
N k  0 

 

Example 2.4.1 Find the DFT of the unit sample x(n) = {1, 0, 0, 0}. (Aside. What is the DTFT of 

x(n) = {1, 0, 0, 0}?) 

 

 

 

1 

 

 

 

 

n 

 

 

 
 

Sequence 

 
Solution The number of samples is N = 4. The DFT is given by 

N 1 

X(k) =  x(n) e
 j k 2 n / N  

, 0  k  N–1 
n  0 

X(ω) 

x(n) = {1, 0, 0, 0} 

0 1 2 3 
N–1 

4 
N 



41 

=  x(n) e
 j k 2 n / 4 

, 0  k  3 
n  0 

3 

=  x(n) e
 j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

 

3 

 x(n) e
 j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

 

k = 0 3 3 3 

X(0) =  x(n) e
 j 0.2 n / 4 

=  x(n).1 = x(n) 
n  0 n  0 n  0 

= x(0) + x(1) + x(2) + x(3) = 1 + 0 + 0 + 0 = 1 

k = 1 
3 3 

X(1) =  x(n) e
 j1 . 2 n / 4 

=  x(n) e
 j  n / 2 

= x(0) e
–j
 
0
 = 1 . 1 = 1 

n  0 n  0 

k = 2 
3 3 

X(2) =  x(n) e
 j 2 . 2 n / 4 

= x(n) e
 j  n 

= x(0) e
–j

 
0
 = 1 . 1 = 1 

n  0 n  0 

k = 3 3 3 

X(3) =  x(n) e
 j 3 . 2 n / 4 

=  x(n) e
 j 3  n / 2 

= x(0) e
–j
 
0
 = 1 . 1 = 1 

n  0 n  0 

 

The DFT is X(k) = {1, 1, 1, 1} and contains all (four) frequency components. In this example 

X(k) is real-valued. 

In MATLAB use fft(x) for the DFT. The magnitude and phase plots of X(k) and the 

program segment follow. 
 
 

4-point DFT of {1, 0, 0, 0} 
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x= [1, 0, 0, 0]; X= fft(x); 

Mag = abs(X); Phase = angle(X); 
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N 

4 

4 

=  2  

4 

4 

4 4 4 

k=0:3; 

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1 

xlabel ('k'), ylabel('Magnitude'); 

title ('4-point DFT of \{1, 0, 0, 0\}') 

grid; 

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2 

xlabel ('k'), ylabel('Phase'); 

 

Matrix formulation To facilitate computation the DFT equations may be arranged as a matrix- 

vector multiplication. We define the twiddle factor W = e  j 2 / N , which for N = 4 becomes 

W = e 
 j 2 / 4 

. The equations are rewritten using the twiddle factor 
3 3 

X(k) =  x(n) e j k 2 n / 4 =  x(n)W 
k n  

, k = 0, 1, 2, 3 
n  0 n  0 

There are a total of 4 values of X(.) ranging from X(0) to X(3): 
 

X (0)= x(0)W 
0 
+ x(1)W 

0 
+ x(2)W 

0 
+ x(3)W 

0
 

4 4 4 4 

X (1) =  x(0)W 
0 
+ x(1)W 

1 
+ x(2)W 

2 
+ x(3)W 

3
 

4 4 4 4 

X (2)=  x(0)W 
0 
+ x(1)W 

2 
+ x(2)W 

4 
+ x(3)W 

6
 

4 4 4 4 

X (3) = x(0)W 
0 
+ x(1)W 

3 
+ x(2)W 

6 
+ x(3)W 

9
 

4 4 4 4 
 

These equations can be put in matrix from: 
 

 X (0) 1 1 1 1   x(0)
   1 2 3    
X (1) 
 X (2) 1 W4 W4 W4  x(1) 1 W W 4 W 6  x(2) 

   4 4 4     


 X (3)  1
 W43 W46 W 9  x(3) 

This last form is perhaps the most convenient to perform the actual computations by plugging in 

the twiddle factors W 
m 

and the signal values x(.). Note that 
 

W k ( N / 2) = –W k and W mN k  = W k 
N N N N 

and 
 

W 
1 
= e j 2 / 4 = –j, W 

2 
= ( j)

2 
= –1, W 

3 
= ( j)

3 
= j, etc. 

 
The above matrix form then can be written, 

 


 X (0)

 
1 1 1 1

  
1
 

1



 X (1)  1  j  1 
j 
  

0
 =  

1


 X (2) = 1  1 1   1   0 1
         

 X (3) 1 j  1   j  0 1

Example 2.4.2 Find the DFT of the “dc” sequence x(n) = {1, 1, 1, 1}. (Aside. What is the DTFT 

of x(n) = {1, 1, 1, 1}? Give 4 samples of X(ω) at intervals of 2π/4 starting at ω = 0.) (Compare 

Proakis, 3
rd

 Ed., Ex. 5.1.2) 



 

 

1 
 

 

 

 

 

n 
 

 

 

 

Sequence 

 
Solution The number of samples is N = 4. The DFT is given by 

N 1 

X(k) =  x(n) e
 j k 2 n / N  

, 0  k  N–1 
n  0 

3 

=  x(n) e
 j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

 

3 

X(k) ==  x(n) e
  j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

k = 0 3 3 3 

X(0) =  x(n) e
 j 0 .2 n / 4 

=  x(n) . 1=  x(n) 
n  0 n  0 n  0 

= x(0) + x(1) + x(2) + x(3) = 1 + 1 + 1 + 1 = 4 

k = 1 
3 3 3 3 

X(1) =  x(n) e
 j 1 . 2 n / 4  

=  x(n) e
 j n / 2  

=  1.(e
 j / 2 

)
n  

=  ( j)
n 

n  0 n  0 n  0 n  0 

= 1 – j + (–j)
2
 + (–j)

3
 = 1 – j + j

2
 – j

3
 = 1 – j – 1 + j = 0 

k = 2 
3 3 

X(2) =  x(n) e
 j 2 . 2 n / 4  

=  1.(e
 j  

)
n  

= 1 – 1 + 1 – 1 = 0 
n  0 n  0 

k = 3 3 3 

X(3) =  x(n) e
 j 3 . 2 n / 4  

=  1.e
 j 3  n / 2  

= 1+ j – 1 – j = 0 
n  0 n  0 

 

The DFT is X(k) = {4, 0, 0, 0} and contains only the ―dc‖ component and no other. Here again 

X(k) is real-valued. 

x(n) = {1, 1, 1, 1} 

0 1 2 3 
N–1 

4 
N 



Example 2.4.3 Find the DFT of the sequence x(n) = {1, 0, 0, 1} 

 

 

 

1 
 

 

 

 

 

n 
 

 

 

 

Sequence 

Solution The number of samples is N = 4. The DFT is given by 
N 1 

X(k) =  x(n) e
 j k 2 n / N  

, 0  k  N–1 
n  0 

3 

=  x(n) e
 j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

 

3 

X(k) =  x(n) e
  j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

 

k = 0 
3 3 3 

X(0) =  x(n) e
 j 0. 2 n / 4 

=  x(n).1=  x(n) 
n  0 n  0 n  0 

= x(0) + x(1) + x(2) + x(3) = 1 + 0 + 0 + 1 = 2 

k = 1 
3 3 3 3 

X(1) =  x(n) e
 j 1. 2 n / 4 

=   x(n) e
 j  n / 2 

=  x(n)(e
 j  / 2 

)
n 
=  x(n)( j)

n
 

n  0 n  0 n  0 n  0 

= 1 . 1 + 0 + 0 + 1 . (–j)
3
 = 1 + j = 2 e

j
 
 / 4 

= 2 / 4 

k = 2 
3 3 

X(2) =  x(n) e
 j 2. 2 n / 4 

=  x(n) e
 j  n 

= x(0) e
–j
 
0
 + x(3) e

–jπ3
 

n  0 n  0 

= 1 . 1 + 1 . (–1) = 0 

k = 3 
3 3 

X(3) =  x(n) e
 j 3. 2 n / 4 

= x(n) e
 j 3 n / 2 

= x(0) e
–j

 
0
 + x(3) e

–j
 
3π3

 
/
 
2
 

n  0 n  0 

= 1 . 1 + 1 . (–j) = 1 – j = 2 e
–j

 
 / 4 

= 2  /4 

 

The DFT is X(k) = {2, 2e 
j / 4 

, 0, 

magnitude and a phase. See figure. 
2e

 j / 4 
}. In general X(k) is complex-valued and has a 

In MATLAB use fft(x) for the DFT and ifft(X) for the IDFT. The magnitude and phase 

plots and the program segment follow. 

 

x = [1, 0, 0, 1]; X = fft(x); Mag = abs(X); Phase = angle(X); 

k = 0:3; 

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1 

x(n) = {1, 0, 0, 1} 

0 1 2 3 
N–1 

4 
N 



xlabel ('k'), ylabel('Magnitude'); 

title ('4-point DFT of \{1, 0, 0, 1\}') 

grid; 

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2 

xlabel ('k'), ylabel('Phase'); 
 

 

 

 
2 

 
1.5 

 
1 

 
0.5 

 
4- point DFT of {1, 0, 0, 1} 
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|X(k)| DFT of x(n) = {1, 0, 0, 1} 

2 2 

X(k) 

 

 

2 
 

 

 

 

 

 
0 1 2 

k 

3 4 

N–1 N 
 
 

 

 

 

 

 
 

 

 

                      k 

4 

N 
 

 

One period. Corresponds to: 

1. ω = 0 to 2π radians, or 

2. Ω = 0 to Ωs rad/sec, or 

3. F = 0 to Fs Hz, or 
4. A sequence length of N (= 4) 

 
The frequency components {X(k), k = 0, 1, 2, 3} are ―harmonics‖. The spacing between 

successive components, denoted by F0, is the resolution of the DFT and is given by F0 = Fs /N: 
it is the sampling interval in the frequency domain. It is determined by the sampling frequency Fs 
or sampling interval T in the time domain (Fs = 1/T) and the number of samples, N. Note that N 
is the number of time domain samples as well as the number of frequency domain samples. 

π/4   π/4 

   3 

 

–π/4 

0 1 2 

–π/4 

 



Record length, sampling time and frequency resolution of the DFT We shall use Example 3 

above to illustrate. Suppose that the sampling frequency is 8000 Hz, then the sampling time is T 

= (1/8000) sec = 125 μsec. The time domain samples x(n) are spaced 125 μsec apart. In the 

frequency domain the DFT values, X(k), are spaced (8000/4) = 2000 Hz apart. The DFT 

spectrum is re-plotted below with these parameters. 

 

 
x(n) 

 

 

1 
 

 

 
 

 
 

0 1 2 3 4 = N n 

      

0 125 250 375 500 Time, μsec 
 

 

The terms introduced in this example and their interrelationships are summarized below: 

 
Record length (one period) = T0 seconds = N samples 
Sampling interval = T seconds = 1/Fs 
Sampling interval = T sec = (T0/N) seconds 

 

Sampling frequency (one period) = Fs Hz 
Frequency resolution of the DFT = F0 Hz = 1/T0 
Frequency resolution of the DFT = F0 Hz = (Fs/N) Hz 

One complete period = T0 = 500 μsec 

1 

T = 125 μsec 



The situation in the frequency domain is shown below. 
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Example 2.4.4 Find the inverse discrete Fourier transform of X(k) = {3, (2+j), 1, (2–j)}. 
Solution The number of samples is N = 4. The IDFT is given by the synthesis equation 

1 
N 1 

x(n) =  X (k) e 
j 2 k n / N  

, n = 0, 1, … , N–1 
N k  0 

3 

= 
1 
 X (k) e j 2 k n / 4 , 

1 
3 

=   X (k) e 
j k n / 2 

, 0  n  3 
4 k  0 

The calculations for {x(n), n = 0 to 3} are shown in table below. 
 

3 

x(n) =  1  
 X (k) e j k n / 2 

4 k  0 
 

n = 0 1 3 1 3 

x(0) =   X (k) e 
j k 0 / 2   

=  X (k ) 
4 k  0 4 k  0 

= (1/4) {X(0) + X(1) + X(2) + X(3)} = (1/4) {3 + 2+j + 1 + 2–j} = 2 

n = 1 
3 3 3 

x(1) = (1/4)   X (k) e 
j k 1  / 2   

= (1/4)   X (k) e 
j / 2 k    

= (1/4)   X (k )  jk
 

k  0 k  0 k  0 

= (1/4) {X(0) (j)
0
 + X(1) (j)

1
 + X(2) (j)

2
 + X(3) (j)

3
} 

= (1/4) {3 . 1 + (2+j) . j + 1 . (–1) + (2–j) . (–j)} = 0 

n = 2 3 3 3 

x(2) = (1/4)   X (k ) e 
j k  2  / 2    

= (1/4)   X (k ) e 
j k     

= (1/4)   X (k )  1k
 

 k  0 k  0 k  0 

 = (1/4) {X(0) (1) + X(1) (–1) + X(2) (1) + X(3) (–1)} 
 = (1/4) {X(0) – X(1) + X(2) – X(3)} 
 = (1/4) {3 – (2+j) + 1 . (–1) – (2–j)} = 0 

n = 3 
3 3 3 

x(3) = (1/4)   X (k ) e 
j k 3  / 2    

= (1/4)   X (k ) e 
j 3 / 2 k    

= (1/4)   X (k) ( j)
k 

k  0 k  0 k  0 

= (1/4) {3 . 1 + (2+j). (–j) + 1 . (–1) + (2–j). j} 

= (1/4) {3 –j2 + 1 –1 + j2 + 1} = 1 

 

Thus x(n) = {2, 0, 0, 1}. 

In MATLAB use ifft(X) for the IDFT. The magnitude and phase plots of x(n) and the 

program segment follow. 

 

X = [3, (2+j), 1, (2-j)]; x = ifft(X); Mag = abs(x); Phase = angle(x); 

n = 0:3; 

subplot(2, 1, 1), stem(n, Mag, 'bo'); %Two rows, one column, #1 

xlabel ('n'), ylabel('Magnitude'); 

title ('4-point IDFT of \{3, (2+j), 1, (2-j)\}') 

grid; 

subplot(2, 1, 2), stem(n, Phase, 'bo'); %Two rows, one column, #2 

xlabel ('n'), ylabel('Phase'); 
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Matrix formulation Here again to facilitate computation the IDFT equations may be arranged 

as a matrix-vector multiplication. 
x(n) = 1  

3

 
j k 2 n / 4 1 3

 
X (k) e = * kn 

4 n  0 
X (k) W4   , n = 0, 1, 2, 3 

n  0 

There are a total of 4 values of x(.) ranging from x(0) to x(3): 
 

x(0)  
1 

 
1

 
1 1 

  X (0)

x(1)  =
 1 1 

 

W  W  W  
1 2 

3 

  
 



x(2) 4 1 W 
*

 
W 

*
 

4 
W 

* 6  X (2)

 
x(3)    * 3 

*46  *49   X (3)

1 W4 W4 
W4 

This last form is perhaps the most convenient to perform the actual computations by plugging in 

the twiddle factors  W 
* m 

and the values X(.). The above matrix form then can be written, 
 

x(0) 

1 1

 1 1  3 
x(1) 1 1 W  W  W   2  j 

 
 

 

  = 

 3 

1 2 





x(2) 4 1 W 
*

 
W 

*
 

4 
W * 6 

   1 

 
x(3)    * 3 

*46  *49  2  j 

1 W4 W4 
W4 

4 

4 

4 
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Example 2.4.5 [N not an integral power of 2] Using MATLAB find the 5-point DFT of 
 

x(n) = {1, 0, 0, 0, 0} 

Solution 
 

x = [1, 0, 0, 0, 0]; X = fft(x), 

Mag = abs(X); Phase = angle(X); 

k = 0:4; 

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1 

xlabel ('k'), ylabel('Magnitude'); 

title ('5-point DFT of \{1, 0, 0, 0, 0\}') 

grid; 

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2 

xlabel ('k'), ylabel('Phase'); 
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Example 2.4.6 [N not an integral power of 2] Using MATLAB find the 6-point IDFT of 
 

X(k) = {6, 0, 0, 0, 0, 0} 

Solution 
 

X = [6, 0, 0, 0, 0, 0]; x = ifft(X); Mag = abs(x); Phase = angle(x); 

n = 0:5; 

subplot(2, 1, 1), stem(n, Mag, 'bo'); %Two rows, one column, #1 

xlabel ('n'), ylabel('Magnitude'); 

title ('6-point IDFT of \{6, 0, 0, 0, 0, 0\}') 

grid; 

subplot(2, 1, 2), stem(n, Phase, 'bo'); %Two rows, one column, #2 

xlabel ('n'), ylabel('Phase'); 
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Example 2.4.7 Consider a sequence x(n) = {2, –1, 1, 1} and the sampling time T = 

0.5 sec. Compute its DFT and compare it with its DTFT. 

Solution The record length of the sequence is T0 = 4T = 2 sec. 
The DFT is a sequence of 4 values given by 

3 

X(k) =  x(n) e
 j k 2 n / 4 

, k = 0, 1, 2, 3 
n  0 

The periodicity of X(k) is 4. The frequency resolution of the DFT is 1/T0 = 0.5 Hz. 
The DTFT, X(ω), is a continuous function of ω 

 3 

X(ω) =    x(n) e
 j n  

=   x(n) e
 j n  

= 2 e 
j 0 

– 1 e
 j 

+1 e
 j 2 

+1 e
 j3  

n   n  0 

= 2– e j + e j 2 + e j3

The periodicity of X(ω), in terms of ω, is 2. In terms of the Hertz frequency the periodicity is 

the sampling frequency = Fs = 1/T = 2 Hz. 
The DFT is a sampled version of the DTFT, sampled at 4 points along the frequency axis 

spaced 0.5 Hz apart. 

You should evaluate completely both X(k) (a set of 4 numbers) and X(ω) (magnitude and 

phase). Note that X(ω) may be evaluated directly at  = 0, /2, , and 3/2 by plugging in the  
values into the expression given above; these are then the DFT numbers as well. The MATLAB 
solutions are given below. 



In MATLAB: The magnitude and phase plots of the DFT can be generated by the following 

segment: 

 

x = [2, -1, 1, 1]; X = fft(x); Mag = abs(X); Phase = angle(X); 

k = 0:3; 

subplot(2, 1, 1), stem(k, Mag, 'bo'); %Two rows, one column, #1 

xlabel ('k'), ylabel('Magnitude'); 

title ('4-point DFT of \{2, -1, 1, 1\}') 

grid; 

subplot(2, 1, 2), stem(k, Phase, 'bo'); %Two rows, one column, #2 

xlabel ('k'), ylabel('Phase'); 

 

The MATLAB solution: 

X = 3, (1 + j2), 3, (1 - j2) 

Mag = 3, 2.2361, 3, 2.2361 

Phase = 0, 1.1071, 0, -1.1071 
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The magnitude and phase plots of the DTFT can be generated by the following segment: 

 

b = [2, -1, 1, 1]; %Numerator coefficients 

a = [1]; %Denominator coefficient 

w = 0: pi/256: 2*pi; %A total of 512 points 

[h] = freqz(b, a, w); 

subplot(2, 1, 1), plot(w/pi, abs(h)); 

xlabel('Frequency, Hz'), ylabel('Magnitude'); grid 

title ('4-point DTFT of \{2, –1, 1, 1\}') 

subplot(2, 1, 2), plot(w/pi, angle(h)); 

xlabel('Frequency, Hz'), ylabel('Phase - Radians'); grid 
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Example 2.4.8 Compute the discrete Fourier transform of the following finite length sequences 

considered to be of length N. 
1) x(n) = δ(n+n0), 0 < n0 < N 
2) x(n) = a

n
, 0 < a < 1 

Solution See Ramesh Babu 3.16. 

Note that x(n) = δ(n+n0) would be zero everywhere except at n = –n0 which is not in the 
range [0, N). So make it δ(n–n0). 

 

Example 2.4.9 [2008] Compute the N-point DFT X(k) of the sequence 

x(n) = cos (2n/N), 0 ≤ n ≤ N–1 

for 0 ≤ k ≤ N–1. 

Solution Express cos (2n/N) as (e 
j 2 n / N 

 e
 j 2 n / N 

) / 2 . 

 
Example 2.4.10 Obtain the 7-point DFT of the sequence x(n) = {1, 2, 3, 4, 3, 2, 1} by taking 7 

samples of its DTFT uniformly spaced over the interval 0 ≤ ω ≤ 2π. 
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Solution The sampling interval in the frequency domain is 2π/7. From Example 4 we have 

X (e 
j 

) or X(ω) = 1+ 2e
 j1 

+ 3e
 j 2 

+ 4e
 j3 

+ 3e
 j 4 

+ 2e
 j5 

+1e
 j 6

 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The DFT, X (k) , is given by replacing ω with k(2π/7) where k is an index ranging from 0 to 6: 

DFT = X () = X (2k /7) , k = 0 to 6 
 2    k / 7 

This is denoted XkfromDTFT in the MATLAB segment below. 
 

MATLAB:  
w = 0: 2*pi/7: 2*pi-0.001 

XkfromDTFT = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w) 
 

MATLAB solution: 

 

XkfromDTFT = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i), 

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 

 

This is the 7-point DFT obtained by sampling the DTFT at 7 points uniformly spaced in (0, 2π). 

It should be the same as the DFT directly obtained, for instance, by using the fft function in 

MATLAB: 
 

MATLAB:  
xn = [1 2 3 4 3 2 1] 

Xkusingfft = fft(xn) 
 

MATLAB solution: 

 

Xkusingfft = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i), 

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 

 

It can be seen that ―↓kfromDTFT‖ = ―↓kusingfft‖. 

 

Example 2.4.11 Obtain the 7-point inverse DTFT x(n) by finding the 7-point inverse DFT of 

X(k): 
 

X (2k / 7) = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i), 

(-0.1431 + 0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 
 

MATLAB: 
 

Xk = [16, (-4.5489 - 2.1906i), (0.1920 + 0.2408i), (-0.1431 - 0.6270i),(-0.1431 + 

0.6270i), (0.1920 - 0.2408i), (-4.5489 + 2.1906i)] 

xn = ifft(Xk) 

MATLAB solution: 

xn = [1.0000 2.0000 3.0000 4.0000 3.0000 2.0000 1.0000] 

 

This is the original sequence we started with in Example 4. 



Example 2.4.12 What will be the resulting time sequence if the DTFT of the 7-point sequence is 

sampled at 6 (or fewer) uniformly spaced points in (0, 2π) and its inverse DFT is obtained? 

Solution The sampling interval in the frequency domain now is 2π/6. From Example 4 we have 

 

X (e 
j 

) or X(ω) = 1+ 2e
 j1 

+ 3e
 j 2 

+ 4e
 j3 

+ 3e
 j 4 

+ 2e
 j5 

+1e
 j 6

 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The DFT then is given by 
 

DFT = X () = X (2k / 6), k = 0 to 5 
  2 k / 6 

 
This is denoted Xk6point in the MATLAB segment below. 

 

MATLAB:  
w = 0: 2*pi/6: 2*pi-0.001 

Xk6point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w) 
 

MATLAB solution: 

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), 

(-3.0000 - 0.0000i)] 
 

This is the 6-point DFT obtained by sampling the DTFT at 6 points uniformly spaced in (0, 2π). 

 

Example 2.4.13 Obtain the 6-point inverse DTFT x(n) by finding the 6-point inverse DFT of 

Xk6point: 
 

X (2k / 6) = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), 

(-3.0000 - 0.0000i)] 
 

MATLAB: 
 

Xk6point = [16, (-3.0000 - 0.0000i), (1.0000 + 0.0000i), 0, (1.0000 + 0.0000i), (- 

3.0000 - 0.0000i)] 

xn = ifft(Xk6point) 

MATLAB solution: 

xn = [2 2 3 4 3 2] 

 

Comparing with the original 7-point sequence, xn = [1 2 3 4 3 2 1], we see the 
consequence of under-sampling the continuous-ω function X(ω): the corresponding time domain 

sequence x(n) is said to suffer time-domain aliasing. This is similar to the situation that occurs 

when a continuous-time function x(t) is under-sampled: the corresponding frequency domain 

function Xs () contains frequency-domain aliasing. 

Example 2.4.14 What will be the resulting time sequence if the DTFT of the 7-point sequence is 

sampled at 8 (or more) uniformly spaced points in (0, 2π) and its inverse DFT is obtained? 

Solution The sampling interval in the frequency domain now is 2π/8. From Example 4 we have 



X (e 
j 

) or X(ω) = 1+ 2e
 j1 

+ 3e
 j 2 

+ 4e
 j3 

+ 3e
 j 4 

+ 2e
 j5 

+1e
 j 6

 

= (2 cos 3 +4 cos 2 +6 cos +4) e
 j3



The DFT then is given by 
 

DFT = X () = X (2k /8) , k = 0 to 7 
  2 k / 8 

 
This is denoted Xk8point in the MATLAB segment below. 

 

MATLAB:  
w = 0: 2*pi/8: 2*pi-0.001 

Xk8point = (4+6*cos(w)+4*cos(2*w)+2*cos(3*w)) .* exp(-j*3*w) 
 

MATLAB solution: 

 

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0, 

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)] 

 

This is the 8-point DFT obtained by sampling the DTFT at 8 points uniformly spaced in (0, 2π). 

 
Example 2.4.15 Obtain the 8-point inverse DTFT x(n) by finding the 8-point inverse DFT of 

Xk8point: 
 

X (2k / 8) = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0, 

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)] 
 

MATLAB: 
 

Xk8point = [16, (-4.8284 - 4.8284i), (0.0000 - 0.0000i), (0.8284 - 0.8284i), 0, 

(0.8284 + 0.8284i), (0.0000 - 0.0000i), (-4.8284 + 4.8284i)] 

xn = ifft(Xk8point) 

MATLAB solution: 

xn = [1 2 3 4 3 2 1 0] 

 

We see that the original 7-point sequence has been preserved with an appended zero. The 

original sequence and the zero-padded sequence (with any number of zeros) have the same 

DTFT. This is a case of over-sampling the continuous-ω function X(ω): there is no time-domain 

aliasing. This is similar to the situation that occurs when a continuous-time function x(t) is over- 

sampled: the corresponding frequency domain function Xs () is free from frequency-domain 

aliasing. 

 

%Sketch of sequences 

n = 0:1:6; xn = [1, 2, 3, 4, 3, 2, 1]; 
subplot (3, 1, 1), stem(n, xn) 

xlabel('n'), ylabel('x(n)-7point'); grid 

% 

n = 0:1:5; xn = [2 2 3 4 3 2]; 



subplot (3, 1, 2), stem(n, xn) 

xlabel('n'), ylabel('x(n)-6point'); grid 

% 

n = 0:1:7; xn = [1, 2, 3, 4, 3, 2, 1, 0]; 

subplot (3, 1, 3), stem(n, xn) 

xlabel('n'), ylabel('x(n)-8point'); grid 
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Properties of DFT 
 

The properties of the DFT (for finite duration sequences) are essentially similar to those of the 

DFS for periodic sequences and result from the implied periodicity in the DFT representation. 

 

(1) Periodicity If x(n) and X(k) are an N-point DFT pair, then X(k) (and x(n)) is periodic with a 

periodicity of N. That is 

 

X(k+N) = X(k) for all k 

 

This can be proved by replacing k by k+N in the defining equation for X(k). 

 

(2) Linearity For two sequences x1(n) and x2(n) defined on [0, N–1], if x3(n) = a x1(n) + b x2(n) 
then 

 

DFT {x3(n)} = DFT {a x1(n) + b x2(n)} = a DFT {x1(n)} + b DFT {x2(n)} 
 

If one of the two sequences x1(n) and x2(n) is shorter than the other then the shorter one must be 
padded with zeros to make both sequences of the same length. 

 
(3) Circular shift or circular translation of a sequence (The sequence wraps around). The 

circular shift, by an amount n0 to the right, of the sequence x(n) defined on [0, N–1] is denoted by 
x((n–n0)mod N) or x((n–n0))N. For example, if x(n) is 

 

x(n) = {x(0), x(1), x(2), …, x(N–3), x(N–2), x(N–1)} 

 

then x((n–2))N is given by 
 

x((n–2))N = {x(N–2), x(N–1), x(0), x(1), x(2), …, x(N–3)} 
 

The operation can be thought of as wrapping the part that falls outside the region of interest 

around to the front of the sequence, or equivalently, just a straight (linear) translation of its 

periodic extension. 

 

 

Example 2.5.1 Given x(n) = {1, 2, 2, 0}. Here N = 4. The circular shift of x(n) by one unit to the 

right is x((n–1))4, and is given by 
 

x((n–1))4 = {0, 1, 2, 2} 
 

where the 0 has been wrapped around to the start and the other values are shifted one unit to the 

right. 

Alternatively, we can view this as a straight translation of the periodic extension outside 

the range [0, 3] of the given sequence. The periodic extension xp(n) is shown below: 
 

xp(n) = {… 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, …} 



n=0 
 

The periodic extension, when shifted to the right by one unit, appears as below; and the 

circularly shifted version x((n–1))4 is the shaded part defined over 0  n  3 only: 



x((n–1))4 
0, 1, 2, 2, 



n=0 

 

xp(n –1) = {… 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, …} 
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Example 2.5.2 Given x(n) = {1, 2, 2, 0}, sketch x((n–k))4 where k is the independent variable. 
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DFT of circularly-shifted sequence Given that DFT {x(n)} = X(k), then 

DFT {x((n–m))N} = W 
k m 

X(k) 

Conversely, if the X(k) is circularly shifted, the resulting inverse transform will be the 

multiplication of the inverse of X(k) by a complex exponential: that is, if DFT {x(n)} = X(k), then 

DFT {W 
l n 

x(n)} = X((k–l))N 

Note from the above property that a shift in the frequency domain values X(k) generally results in 

a complex-valued inverse sequence x(n) even though the original sequence in the time domain 

could have been real-valued. 

 
Circular convolution The N-point circular convolution of two sequences x1(n) and x2(n) denoted 
by x1(n) ©N x2(n) is defined as follows: 

 

N 1 

x1(n) ©N x2(n) ≡  x1 (k) x2 ((n  k))N 

k  0 

N 1 

=  x1 ((n  k))N x2 (k) 
k  0 

x((1–k ))4 = circular shift of 

x(–k) to the right by 1 unit 

2 2 2 2 

1 1 1    

0 0 0 k 

x((0–k ))4 = circular shift of 
x(–k) to the right by 0 units 



where x1((n–k))N is the reflected and circularly translated version of x1(n). Note that k is the 
independent variable, so that x1(–k) is the reflected version and x1(–(k–n))N is simply the 
reflected version shifted right by n units; the ―mod N‖ makes it a circular shift instead of a linear 
shift. 

If X1(k) and X2(k) represent the N-point DFTs of x1(n) and x2(n) respectively, i.e., 
 

X1(k) = DFTN{x1(n)}  and X2(k) = DFTN{x2(n)} 
Then 

 

IDFTN{X1(k) X2(k)} = x1(n) ©N x2(n), or DFTN{x1(n) ©N x2(n)} = X1(k) X2(k) 
 

This property is used to perform circular convolution of two sequences by first obtaining their 

DFTs, multiplying the two DFTs, then taking the inverse DFT of the product. 

 
Example 2.5.3 [Circular convolution] For the two sequences x1(n) = {1, 2, 2, 0} and x2(n) = {0, 
1, 2, 3} find y(n) = x1(n) ©4 x2(n). 

3 

Solution We use the form y(n) = x1(n) ©N x2(n) =  x1 ((n  k))4 x2 (k) which uses the circularly 
k  0 

shifted version x1((n–k))4. The values of the sequence x1(k) = {1, 2, 2, 0} are arranged on a circle 
in counterclockwise direction starting at point A. The sequence x1((–k))4 is then read off in the 
clockwise direction starting at A. Thus x1((–k))4 = {1, 0, 2, 2}. See figure below. 

 
2 

 

 
2 1 A 

 

 
0 

 

As an alternative we may also obtain the sequence x1((–k))4 by periodically extending x1(k)4, 
reflecting it about k = 0, and truncating it outside the range 0 ≤ k ≤ 3. 

The value 
3 

y(0) =  x1 ((0  k))4 x2 (k) 
k  0 

is obtained by lining up x1((–k))4 below x2(k), multiplying and adding: 
 

x2(k) 0 1 2 3 
x1((–k))4 1 0 2 2 

 

Thus y(0) = (0) (1) +(1) (0) +(2) (2) +(3) (2) = 10. 

For n = 1 the value 
3 

y(1) = x1 ((1  k))4 x2 (k) 
k  0 

is obtained as follows: the sequence x1((1–k))4 is obtained from x1((–k))4 by shifting the latter to 
the right by 1 with wrap around; we then line up x1((1–k))4 below x2(k), multiply and add to get 
y(1): 



x2(k) 0 1 2 3 
x1((1–k))4 2 1 0 2 

 

The result is y(1) = (0) (2) +(1) (1) +(2) (0) +(3) (2) = 7. 

The procedure is continued for successive values of n, at each step using the circularly- 

shifted-by-1 version of the previous x1((n–k))4. 
 

Circular convolution – Matrix method The circular convolution of the two sequences x1(n) 
and x2(n) is given by: 

 
N 1 

x1(n) ©N x2(n) ≡  x1 ((n  k))N x2 (k) 
k  0 

 

 Step 1. By zero-padding make sure the two sequences are of the same length, say, N. 

 Step 2. Arrange the various circularly shifted versions of x1(.) as a matrix and x2(.) as a 
vector; then multiply to get the vector x3(.) which is the desired result. 

 

The matrix formed by the shifted versions of x1(.) is shown below. It displays somewhat 
more terms than is possible to show in the complete multiplication equation shown farther down 
below. 

x1(3) 

x1(2) 
 

x1(1) 
 

 
x1(0)  ›Start 

 
 

x1(N–1) 

 
 

x1(N–3) 
x1(N–2) 

x1 (0) 


x1 (1) 
x1 (2) 


x1 (N 1) 

x1 (0) 

x1 (1) 

x1 (N  2) . 

x1(N 1) . 

x1(0) . 

x1 (3) 

x1 (4) 

x1 (5) 

x1 (2) 

x1 (3) 

x1 (4) 

x1(1) 


x1(2) 
x1(3) 




. . . . . . . 
x (N  2) x (N  3) x (N  4) . x (1) x (0) x (N 1)

 1 1 1 1 1 1 
x1 (N 1) x1 (N  2) x1 (N  3) . x1 (2) x1 (1) x1(0) 



The complete multiplication step is shown below: 
 

x2(3) 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

x1 (0) x1 (N 1) . x1 (3) x1 (2) x1 (1)  x2 (0)  x3 (0) 
 

x (0) . x (4) x (3) x (2)     

x1 (1) 1 

. . 


. . 

1 1 1 

. . . . 

. . . . 

 x2 (1) 
 . 
 
 . 

 x3 (1) 
 . 
 =  
 . 

x (N  2) x (N  3) . x (1) x (0) x (N 1) x   (N  2) x (N  2)

 1 1 1 1 1   
2 

   
3 



x1 (N 1) x1 (N  2) . x1 (2) x1 (1) x1 (0)  x2 (N  1)  x3 (N 1) 


As an example the element x3(0) is given by 
 

x3(0) = x1(0) x2(0) + x1(N–1) x2(1) + … + x1(2) x2(N–2) + x1(1) x2(N–1) 

x2(2) 

x2(1) 

Start‹ x20) 

x2(N–1) 

x2(N–3) 
x2(N–2) 



Carrying out circular convolution to obtain linear convolution If both signals x1(n) and x2(n) 
are of finite lengths N1 and N2 respectively, and defined on [0, N1–1] and [0, N2–1], respectively, 
as shown below, the value of N needed so that circular and linear convolution are the same on [0, 
N–1] can be shown to be N ≥ N1 + N2 – 1. 

 

 

 

 

 

 

 

 
 

0 N1–1 

n 

N–1 0 N2–1 

n 

N–1 
 

 
 

Example 2.5.4 [Circular and linear convolution] (a) Determine the 4-point circular 

convolution of the sequences 

 

x1(n) = [1, 2, 3, 1] and x2(n) = [4, 3, 2, 1] 
 

(b) Evaluate the linear convolution of the above sequences. 

(c) Evaluate the linear convolution of the above sequences using circular convolution. 

Solution 

(a) The 4-point circular convolution is given by 
 

y(n) = x1(n) ©4 x2(n) = {15, 16, 21, 18} 
 

(b) The linear convolution was done in Unit I: 

 

y(n) = x1(n) * x2(n) = {4, 11, 20, 18, 11, 5, 1} 
 

(c) Length of sequence x1(n) = N1 = 4; length of sequence x2(n) = N2 = 4. Let N = N1+ N2 – 1 = 4 

+ 4 – 1 = 7 be the length of each of the zero-padded sequences 
N 1 

x1(n) ©N x2(n) ≡  x1 ((n  k))N x2 (k) 
k  0 

x1(.) and x2 (.) . 

 

Example 2.5.5 [2007] Compute the circular convolution of the sequences x1(n) = {1, 2, 0, 1} and 
x2(n) = {2, 2, 1, 1} using the DFT approach. 
Solution The sequences are of the same length, so no zero padding is needed. The length of 

{x1(n) ©N x2(n)} is 4 (= N). Use the property that if x1(n)  X1(k) and x2(n)  X2(k) and x3(n) = 

x1(n) ©N x2(n), then x3(n)  X3(k) = X1(k) X2(k): 

x3(n) = x1(n) ©N x2(n) = IDFT{X3(k)} = IDFTN{X1(k) X2(k)}with N = 4 
 

where X1(k) and X2(k) are the N-point DFTs of x1(n) and x2(n), respectively. The following steps 
are involved in computing x1(n) ©N x2(n): 

 

1. Find X1(k) = DFT4{ x1(n)} and X2(k) = DFT4{ x2(n)} 

2. Compute the product X1(k) X2(k) 

x1(n) 

Zero 

padding 

x2(n) 

Zero 
padding 



3. Compute x1(n) ©N x2(n) = IDFT{X1(k) X2(k)} 
 

Example 2.5.6 Compute the linear convolution of the sequences x(n) = {1, 2, 0, 1} and y(n) = 

{2, 2, 1, 1} using the DFT approach. 

Solution The length of x(n)*y(n) is 7 (= 4+4–1). We zero-pad the sequences to a length of 7 each 

and perform circular convolution of the 7-point sequences; the result will be the same as the 

linear convolution of the original 4-point sequences. The following steps are involved in 

computing x(n)*y(n): 

 
1. Augment the sequences x(.) and y(.) by zero-padding: xa(n) = {1, 2, 0, 1, 0, 0, 0} 

and ya(n) = {2, 2, 1, 1, 0, 0, 0} 
2. Find Xa(k) = DFT7{xa(n)} and Ya(k) = DFT7{ya(n)}. 
3. Compute the product Xa(k) Ya(k) 
4. Compute x(n)*y(n) = x(n) ©7 y(n) = IDFT{X(k) Y(k)} 

 

Example 2.5.7 Compute the linear convolution of the sequences x(n) = {1, 2} and y(n) = {2, 2, 

1} using the DFT approach. 

Solution The length of x(n)*y(n) is 4 (= 2+3–1). We zero-pad the sequences to a length of 4 each 

and perform circular convolution of the 4-point sequences; the result will be the same as the 

linear convolution of the original 2- and 3-point sequences. The following steps are involved in 

computing x(n)*y(n): 

 
1. Augment the sequences x(.) and y(.) by zero-padding: xa(n) = {1, 2, 0, 0} and 

ya(n) = {2, 2, 1, 0} 
2. Find Xa(k) = DFT4{xa(n)} and Ya(k) = DFT4{ya(n)}. 
3. Compute the product Xa(k) Ya(k) 
4. Compute x(n)*y(n) = xa(n) ©4 ya(n) = IDFT{Xa(k) Ya(k)} 




h(n) 

Convolution – Overlap-and-add The response, y(n), of a LTI system, h(n), can be obtained by 

linear convolution 

 

y(n) = h(n)  x(n) 

 
Let the impulse response {h(n), n = 0 to M–1} be of finite length M. The input sequence {x(n), n 

= 0 to S–1} is long but of finite length S. Recall that 

 

Length {y(n)} = Length {h(n)}+ Length {x(n)} – 1 = M + S – 1, 

 
Further, let h(n) be defined to be zero everywhere except over the interval [N1, N2]. Similarly, let 

x(n) be defined to be non-zero over [N3, N4]. Then y(n) is non-zero over [(N1+ N3), (N2+ N4)]. 

x(n) y(n) = h(n)  x(n) 

 
One way to perform the convolution in pseudo real time (i.e., real time with a finite 

delay) is by sectionalizing the input. We divide x(n) into K sections of length M each, where K 

= S M : 
 

x1(n) = x(n), 
0, 

0 ≤ n ≤ M –1 
elsewhere 

…   

xi(n) = x(n), (i–1)M ≤ n ≤ iM –1 

 

… 
0, elsewhere 

xK(n) = x(n), (K–1)M ≤ n ≤ KM –1 
 0, elsewhere 

In the K
th
 section (the last section) zeros may have to be appended. If, for instance, x(n) = {3, –1, 

0, 1, 3, 2, 0, 1, 2, 1} with S = 10 and h(n) = {1, 1, 1} with M = 3, we have K = 10 3 = 4, with 

the 4
th

 section containing two appended zeros, and the sections are 

 
x1(n) = {3, –1, 0} 
x2(n) = {1, 3, 2} 
x3(n) = {0, 1, 2} 
x4(n) = {1,0, 0} 

 

In general, then, x(n) can be written as the sum of all the sections 
K 

x(n) =  xi (n) 
i  1 

and the output y(n) becomes 
 K 

y(n) = h(n)  x(n) = h(n)   xi (n)
i  1 



Using the linearity property this becomes 
K K 

y(n) =  xi (n)  h(n) =  yi (n) 
i  1 i  1 

where 

have 

yi (n) = xi (n)  h(n) are the output sections. Let us examine y1(n) and y2(n). For i = 1 we 

 

y1 (n)  x1 (n)  h(n) 
 

Since x1(n) and h(n) are of lengths M each and they are defined to be non-zero over [0, M–1] and 
[0, M–1] respectively, the result y1(n) will be non-zero over [0, 2M–2] and of length (2M–1). 
Similarly, for i = 2, x2(n) is defined over [M, 2M–1] while h(n) remains unchanged. The resulting 

y2 (n) then is non-zero from (0+M) to (M–1 + 2M–1), i.e., over [M, 3M–2] with a length of (2M– 

1). Comparing y1 (n) and y2 (n) it is seen that they overlap in the interval M ≤ n ≤ (2M–2), over a 

range of (2M–2) – M +1 = M–1 points. Consequently the two must be added in this range (see 

figure). This amounts to adding (M–1) pairs of data. 

 
y1(n): (2M –1) points 

0 M 2M–2 
 

 

M 2M –2 3M–2 
 

y2(n): (2M –1) points 

 

 

 

In a similar fashion x3(n) is defined over 2M ≤ n ≤ (3M–1), so that y3 (n) is non-zero over 

[2M, (4M–2)]. Comparing y2 (n) and y3 (n) it is seen that they overlap in the interval 2M ≤ n ≤ 

(3M–2), consequently the two must be added in this range. This amounts to adding ((3M–2) – 

2M +1) or (M–1) pairs of data. 
 

0 … M–1 M … 2M–2 2M … 3M–2 3M … n 

 

 
The overlap interval of y1 (n) and y2 (n) is disjoint from that of y2 (n) and y3 (n) . In 

general, the overlap intervals of successive pairs of yi (n) are mutually exclusive. Thus we 

calculate successive yi (n) for i = 0 to K and add each successive yi (n) to the previous yi (n) in 

Overlap (Add) 

(M–1) points 

Overlap of 
y3 and y4 

(M–1) points 

Overlap of 
y2 and y3 

(M–1) points 

Overlap of 
y1 and y2 

(M–1) points 



the overlap region. Hence the procedure is called the overlap-and-add method. Each convolution 

could be obtained by using the DFT of size (2M–1) or greater so that the resulting circular 

convolution would be a linear convolution. In principle rather than using the DFT we could zero- 

pad h(n) and each of the xi (n) ‘s to a length of (2M–1) and perform circular convolution to 

generate the yi (n) ‘s which are then overlapped and added. 

 

Input divided into sections of length L In the above development we divided x(n) into K sections 

of length M each, where K = S M . This need not be the case. We could divide x(n) into (some 

number of) sections of length L each. The situation now looks as below and the overlap occurs 

over a range of (M–1) points – the same as before. 

 

y1(n): (L+M –1) points 

0 L L+M–2 
 

 

L L+M –2 2L+M–2 
 

y2(n): (L+M –1) points 

 

 

 
Once again each new section xi (n) and h(n) are zero-padded to a length of (L+M –1) and circular 

convolution performed to generate the new 

y(n). 

yi (n) ‘s which are overlapped and added to generate 

 

Note A little reflection shows that the input sequence x(n) need not be of finite length. As the 

stream of input samples arrives we could sectionalize it into blocks of size L and proceed as 

discussed above to generate the stream of blocks of y(n) as a continuous process. 

 

Example 2.5.7 [Ramesh Babu’s Example 3.14] Find the output y(n) of a filter with impulse 

response h(n) = {1, 1, 1} and input x(n) = {3, –1, 0, 1, 3, 2, 0, 1, 2, 1}. 

 
Symmetry properties of the DFT Notation: RN(n) = 1 in [0, N–1], and 0 elsewhere. Thus 
x((n+m))N RN(n) means the circularly shifted version of the finite length sequence x(n) defined 
over [0, N–1]. Sometimes the RN(n) is omitted. 

The following properties should be noted. 
 

Sequence DFT Sequence DFT 

  

4 Re [x(n)] Xep(k) 

5 j Im [x(n)] Xop(k) 

 

1 x((n+m))N RN(n) W 
k m 

X(k) 
N 

2 x*(n) X*((–k))N RN(k) 

3 x*((–n))N RN(n) X*(k) 

 

Overlap (Add) 

(M–1) points 



N 

W W 

W N 


Example 2.5.8 Show that DFT{x((n+m))N} =W 
k m 

X(k). 

Solution By definition  
N  1 DFT {x((n+m))N} =  x((n  m)) W 

k n 

N N 
n  0 

Set n+m = λ so that n = λ–m and the limits n = 0 to N–1 become λ = m to N–1+m. Then the RHS 

becomes 
N  1 m 

=  x(())N 
k km 

N N 

  m 

The limits on λ will be changed to 0 to N–1 resulting in 

= 
N  1

x(()) 
N 

  0 

 

k km 
N N 

=W k m X(k) 

 

Based on the properties above, we can show that for a real sequence the following 

symmetry properties of the DFT hold: 

 
1. Re [X(k)] = Re [X((–k))N] RN(k) 3. |X(k)| = |X((–k))N| RN(k) 
2. Im [X(k)] = –Im [X((–k))N] RN(k) 4. arg [X(k)] = – arg [X((–k))N] RN(k) 

 

Example 2.5.9 [2009] Given that the real-valued sequence x(n) defined over 0 ≤ n ≤ N–1 has the 

DFT X(k) = XR (k)+ jX I (k) , 0  k  N–1 show that XR (k) is an even function and XI (k) is an odd 

function of k. 
Solution By definition we have 

N 1 

X(k) =  x(n) e
 j k 2 n / N  

, 0  k  N–1 
n  0 

N 1 

=  x(n)cos(2kn/ N )  j sin(2kn/ N ), 0  k  N–1 
n  0 

N 1 N 1 

=  x(n) cos(2kn / N ) – j  x(n) sin(2kn / N ) , 0  k  N–1 
n  0 n  0 

N 1 N 1 

With XR (k)   x(n) cos(2kn / N ) and X I (k)   x(n) sin(2kn / N ) the above DFT may be 
n  0 n  0 

written  

X(k) = XR  (k)+ jX I (k) , 0  k  N–1 
 

Since cos(2kn/ N) is an even function of k, that is, cos(2 (k)n / N) = cos(2kn/ N) for all k, it 

follows that XR (k) is an even function of k, that is, XR (k)= XR (k) for all k. 

Similarly, since sin(2kn/ N) is an odd function of k, it follows that XI (k) is an odd 

function of k. 

Do the above results depend on whether x(n) is real-valued or not? 

 

 

Filtering through DFT/FFT 
 

Filtering of a sequence x(n) may be done in the discrete time domain using the difference 

equation. Alternatively, we may work in the frequency domain: Given x(n) we first find its DFT, 

X(k) and then set selected components of X(k) = 0 (this is done so as to preserve the symmetry 

W 



2 

properties of X(k) about the mid point of the sequence k = N/2). The resulting DFT is denoted 
Xf(k). We then find the IDFT of Xf(k) which we shall denote as xf(n), which should be a filtered 
version of x(n). Thus x(n) has been filtered entirely in the discrete frequency domain. 

We illustrate with a signal consisting of two frequency components, a 2 Hz and a 4 Hz. 
Given the signals x1(t) = cos 2π2t and x2(t) = cos 2π4t, the signal x(t) = x1(t) + x2(t) is sampled at 
16 Hz. We construct below the discrete-time sequence x(n) and find its 8-point DFT, i.e., the 
X(k) values. We then filter the signal in the frequency domain, i.e., work on the DFT values 
instead of on the x(n) values and denote the ―filtered‖ DFT values by Xf(k). We then take the 
IDFT of Xf(k) resulting in the sequence xf(n). 

 

x(t) = cos 2π2t + cos 2π4t 

x(nT) = x(n) = cos 2π2nT + cos 2π4nT = cos 2π2n(1/16) + cos 2π4n(1/16) 

= cos (πn/4) + cos (πn/2) 

The cos 2π2t component has an analog frequency of 2 Hz. When sampled at 16 Hz its digital 

frequency is 1/8 cycles/sample. Similarly, the 4 Hz component, cos 2π4t, sampled at 16 sps, has 

a digital frequency of 1/4 cycles/sample. 

 
Example 2.6.1 (a) Find the frequency and period of (i) x1(n) = cos (πn/4) and (ii) x2(n) = cos 

(πn/2). Sketch the sequences x1(n), x2(n), and x(n) = x1(n) + x2(n) for 0  n  7. 
Solution Arrange cos (πn/4) in the format cos (2π f n). Thus, cos (πn/4) = cos (2π(1/8)n), from 

which the digital frequency is identified as f = 1/8 cycle/sample or  = π/4 rad/sample. The 
sequence values are: 

 1 1 1 1 
x1(n) =  1,    , 0, –  , –1, –  , 0, 

 2 2 2 2 
x2(n) = {1, 0, –1, 0, 1, 0, –1, 0} 

 1 1 1 1 
x(n) = x1(n) + x2(n) = 2, , –1, –    , 0, –  , –1, 

 2 2 2 



The sequences x1(n), x2(n) and x(n) are sketched below. 
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1/ 

 

n 

 

1/ 

x1(n) = cos (πn/4) 

1 
1/ 2 

1 7 8 

2 

–1 

x(n) = x1(n) + x2(n) 

2 

2 

1 7 8 

2 

–1     

x2(n) = cos (πn/2) 

1 

1 7 8 

–1 



In MATLAB the following segment plots the three functions x1(t), x2(t) and x(t). 
 

t = 0:1/160:0.5; x1t = cos(2*pi*2*t); x2t = cos(2*pi*4*t); 

xt = x1t + x2t; 

% 

subplot(3,1,1), plot(t,x1t); xlabel('t'), ylabel('x1(t)'); 

title('x1(t) = cos 2\pi2t'); 

% 

subplot(3,1,2), plot(t,x2t); xlabel('t'), ylabel('x2(t)'); 

title('x2(t) = cos 2\pi4t'); 

% 

subplot(3,1,3), plot(t,xt); xlabel('t'), ylabel('x(t)'); 

title('x(t) = cos 2\pi2t + cos 2\pi4t'); 
 

 

 

x1(t) = cos 22t 

1 

 
0 

 
-1 
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x2(t) = cos 24t 
1 
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x(t) = cos 22t  + cos 24t 
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-2 
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In MATLAB the following segment plots the two functions x1(n), x2(n) and x(n). 
 

%t = 0:1/160:0.5; x1t = cos(2*pi*2*t); x2t = cos(2*pi*4*t); 

%xt = x1t + x2t; 

% 

n = 0:8; x1n = cos(pi*n/4); x2n = cos(pi*n/2); 

xn = x1n + x2n, 

% 

subplot(3,1,1), stem(n,x1n); xlabel('n'), ylabel('x1(n)'); 

title('x1(n) = cos(\pi n/4)'); 

% 

x
(t

) 
x
2
(t

) 
x
1
(t

) 



subplot(3,1,2), stem(n,x2n); xlabel('n'), ylabel('x2(n)'); 

title('x2(n) = cos(\pi n/2)'); 

% 

subplot(3,1,3), stem(n,xn); xlabel('n'), ylabel('x(n)'); 

title('x(n) = cos(\pi n/4)+ cos(\pi n/2)'); 

 

The sequence is x(n) = {2, 0.707, -1, -0.707, 0, -0.707, -1, 0.707} 
 

 

x1(n) = cos( n/4) 

1 

 
0 

 
-1 

0 1 2 3 4 5 6 7 8 

n 

x2(n) = cos( n/2) 

1 

 
0 

 
-1 

0 1 2 3 4 5 6 7 8 

n 

x(n) = cos( n/4)+ cos( n/2) 

2 

 
0 

 
-2 

0 1 2 3 4 5 6 7 8 

n 

 
 

Example 2.6.1 (b) Find the 8-point DFT (8-point FFT using either DIT or DIF, or use the direct 

calculation) of x1(n) = cos (πn/4), for 0  n  7. Sketch the sequence X1(k). 
In MATLAB the following segment plots the magnitude and phase angle of X1(k): 

 

n = 0:7; x1n = cos(pi*n/4), X1k = fft(x1n), 

% 

% MX1k = magnitude of X1k, AX1k = phase angle of X1k 

MX1k = abs(X1k); AX1k = angle(X1k); 

% 

subplot(2,1,1), stem(n, abs(X1k)); xlabel('k'), ylabel('|X1(k)|'); 

title ('Magnitude of X1(k)'); 

% 
subplot(2,1,2), stem(n, angle(X1k)); xlabel('k'), ylabel('<X1(k)'); 

title ('Phase of X1(k)'); 

 

The sequence and DFT values are: 

 
x1(n) = {1 0.707 0 -0.707 -1 -0.707 -0 0.707} 

X1(k) = {-0 (4 - 0i) 0 (-0 - 0i) 0 (-0 + 0i) 0 (4 + 0i)} 

x
(n

) 
x
2
(n

) 
x
1
(n

) 



X1 (k) = {0 4 0 0 0 0 0 4} 

X1 (k) = {3.1416   -0.0000   0   -2.9873   0   2.9873   0 0.0000} 

 

!!! Note that all phase angle values should be zeros, that is, X1 (k) = 0 for all k. 

The MATLAB plots for magnitude and phase angle are shown below. The 2 Hz component is 

indicated by X1(1) = 4 (and, from symmetry considerations, X1(7) = 4). 
With regard to the phase angle, strictly speaking, the phase of X1(k) = 0 for all k since 

X1(k) is real valued for all k. Check out why!!!: When the input is listed explicitly as 

x1n = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)] 

the program gives the correct phase angle calculations, but not when it is specified implicitly as 

n = 0:7; x1n = cos(pi*n/4) 

 

Magnitude of X1(k) 

4 

 
3 

 
2 

 
1 

 
0 

0 1 2 3 4 5 6 7 

k 

Phase of X1(k) 
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-4 
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Example 2.6.1 (c) Find the 8-point DFT of x(n) = cos (πn/4) + cos (πn/2), for 0  n  7. Sketch 

the sequence X(k). 

Solution Consider the 8-point sequence x(n) for n = 0 to 7 obtained by sampling x(t) at 16 Hz. 

The length of the sequence is N = 8. The sequence values are 
 1 1 1 1 

x(n) =  2, , –1, –    , 0, – , –1, 
 2 2 2 2 

The corresponding DFT is given by 
N 1 

X(k) = x(n) e
 j 2 k n / N  

, k = 0 to (N–1) 
n  0 

<
X

1
(k

) 
|X

1
(k

)|
 



and may be obtained using either the DIT or the DIF form of FFT: 

 

X(k) = {0, 4, 4, 0, 0, 0, 4, 4} 



k=0 
 

The DFT is sketched below: there is a component at 2 Hz. (k = 1) and another at 4 Hz. (k = 2) as 

would be expected. 
 

 

X(k) 
 

Line of Symmetry 
4 

 

 

 

 
 

k 

–3 –2 –1 0 1 2 3 4 5 6 7 8 

 

F0 = 2 Hz 

‡Fs = 16 Hz 

 

 

Note that the DFT sequence shows a component at 2 Hz and another at 4 Hz, corresponding to k 

= 1 and 2 respectively. 

In MATLAB the following segment plots the magnitude and phase angle of X(k). Note 

that x(n) is specified by an explicit list. 

 

%n = 0:7; xn = cos(pi*n/4) + cos(pi*n/2), 

xn = [2, 1/sqrt(2), -1, -1/sqrt(2), 0, -1/sqrt(2), -1, 1/sqrt(2)], Xk = fft(xn), 

% 

% MXk = magnitude of Xk, AXk = phase angle of Xk 

MXk = abs(Xk), AXk = angle(Xk), 

% 

k = 0:7; 

subplot(2,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|'); 

title ('Magnitude of X(k)'); 

% 

subplot(2,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)'); 

title ('Phase of X(k)'); 

 

The sequence and DFT values are: 

 

x(n) = {2, 0.707, -1, -0.707, 0, -0.707, -1, 0.707} 

X 

 

(k) = {0 4 4 0 0 0 4 4} 

X (k) = {0 4 4 0 0 0 4 4}  

X (k) = {0 0 0 0 0 0 0 0} 

 




f 

The MATLAB plots for magnitude and phase angle are shown below. The 2 Hz component is 

indicated by X(1) = 4 (and, from symmetry considerations, X(7) = 4). Similarly, the 4 Hz 

component is indicated by X(2) = X(6) = 4. 
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Example 2.6.1 (d) [Filtering] Next we would like to filter the sequence x(n) = cos (πn/4) + cos 

(πn/2) so that the 4 Hz component is removed. 

 

Solution In terms of the DFT sequence X(k) this means setting X(2) and X(6) to zero. In order to 

preserve the symmetry properties of the DFT we should set both X(2) and X(6) = 0, not just X(2). 

The resulting DFT sequence is denoted Xf(k) and is given by 
 

Xf(k) = {0, 4, 0, 0, 0, 0, 0, 4} 


k=0 

 
We next find the inverse DFT of the above Xf(k) by using either the DIT or the DIF form of the 
FFT. The result is denoted by xf(n). Using the IDFT formula we have 

1 
xf(n) = 

N 

N 1 

 X f 

k  0 

1  
7 

k e 
j 2 k n / N 

, n = 0, 1, … , N–1 

=  X ke j 2 k n / 8  , n = 0 to 7 
8 k  0 

 

It will be seen that xf(n) is equal to the original x1(n) component (= cos πn/4, from the 2 Hz. 
component; see plot of x1(n) earlier); that is 

    

 

<
X

(k
) 

|X
(k

)|
 



 1 1 1 1 
xf(n) = x1(n) =  1,    , 0, –  –1, –  , 0, 

 2 2 2 2 

This is low pass filtering where we have selectively removed the 4 Hz component. 

In MATLAB the following segment finds the inverse DFT, xf(n), from the given Xf(k). 
 

Xfk = [0, 4, 0, 0, 0, 0, 0, 4], 

n = 0:7; xfn = ifft(Xfk), 

stem(n, xfn); xlabel('n'), ylabel('xf(n)'); 

title ('Filtered signal xf(n)'); 

 

The filtered version is xf(n) = {1 0.707 0 -0.707 -1 -0.707 0 0.707} 

Filtered signal xf(n) 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 
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-0.4 

 
-0.6 

 
-0.8 

 

-1 
0 1 2 3 4 5 6 7 

n 

 
 
 

To remove all frequency components above 2 Hz (in this example the 4, 6 and 8 Hz 

components), we set X(2) = X(6) = 0 for the 4 Hz, X(3) = X(5) = 0 for the 6 Hz, and X(4) = 0 for 

the 8 Hz, once again preserving symmetry. In this example, of course, there are no 6 or 8 Hz 

components. 

Similarly high pass filtering is done by deleting X(1) and X(7) – set them to zero – 

preserving symmetry once again. In this case XfHP(k) = {0, 0, 4, 0, 0, 0, 4, 0}. 
 
 

Picket-fence effect 
 

Example 2.7.1 The signal x(t) = cos 2π2t is sampled at 16 Hz. 

(a) What frequency components do you expect to see in its DFT? 

(b) Take 8 samples and calculate the 8-point DFT. 

Solution (b) Using x(n) = cos 2π2n(1/16) = cos (πn/4), the sequence values are 

x
f(

n
) 



x(n) = {1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)} 

 

Note that the average value of the sequence (the dc component) is zero. The MATLAB program 

follows: 

 

xn = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)]; Xk = fft(xn), 

% 

% MXk = magnitude of Xk, AXk = phase angle of Xk 

MXk = abs(Xk); AXk = angle(Xk); 

% 

k = 0:7; 

subplot(2,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|'); 

title ('Magnitude of X(k)'); 

% 

subplot(2,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)'); 

title ('Phase of X(k)'); 

 

The DFT values are: 

 

X(k) = {0 4 0 0 0 0 0 4} 

X (k) = {0 4 0 0 0 0 0 4} 

X (k) = {0 0 0 0 0 0 0 0} 

 
The frequency resolution is Fs/N = 16/8 = 2 Hz. The table below shows that the 8-point 

DFT contains a component at 2 Hz, corresponding to k = 1. The DFT values are all real numbers 
symmetrically disposed about k = 4, the center of symmetry. 

 
 k=0 

$ 
 

X(k) = {0, 4, 0, 0, 0, 0, 0, 4} 
Hz‹ 0 2 4 6 8 10 12 14 

(Fs/2) 
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Example 2.7.2 [Zero-padding] The first 8 sample values of a 2-Hz cosine, x(t) = cos 2π2t, 

obtained at a sampling rate of 16 samples/second are given below: 

x(n) = {1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)} 

Find the 16-point DFT using zero padding. 

Solution The zero-padded sequence is given by 
 

x(n) = {1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2), 0, 0, 0, 0, 0, 0, 0, 0} 

 

Note that when zero padded the average value of the sequence is no longer zero. The frequency 

resolution of the DFT is 

Frequency resolution = 
Sampling Frequency 

= 
Fs = 

16 Hz 
= 1 Hz. 

Number of  po int s N 16 

The 2 Hz component corresponds to X(k) with k = 2. 

 

In MATLAB: 

 
xn = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)], 

Xk = fft(xn, 16), %x(n) is zero-padded to a length of 16 

% 

% MXk = magnitude of Xk, AXk = phase angle of Xk 

MXk = abs(Xk), AXk = angle(Xk), 

% 

k = 0:15; 

subplot(3,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|'); 

title ('Magnitude of X(k)'); 

<
X

(k
) 

|X
(k

)|
 



% 

subplot(3,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)'); 

title ('Phase of X(k)'); 

% 

xn16 = ifft(Xk), 

n = 0:15; 

subplot(3,1,3), stem(n, xn16); xlabel('n'), ylabel('x(n)'); 

title ('Zero-padded sequence xn16'); 

 

The DFT (reproduced from the MATLAB output) is 

 

X(k) = {0, (1+1.7654i), 4, (1-2.8478i), 0, (1-0.8478i), 0, (1-0.2346i), 

0, {1+0.2346i), 0, (1+0.8478i), 0, (1+2.8478i), 4, (1-1.7654i)} 
 

Magnitude of X(k) 

4 

 
2 

 
0 

0 5 10 15 

k 

Phase of X(k) 
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Zero-padded sequence xn16 
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Example 2.7.3 [Without zero-padding] Given all 16 sample values of a 2-Hz cosine, x(t) = cos 

2π2t, obtained at a sampling rate of 16 samples/second find its 16-point DFT. 
Solution The frequency resolution of the DFT is 

Frequency resolution = 
Sampling Frequency 

= 
Fs = 

16 Hz 
= 1 Hz. 

Number of  po int s N 16 

The 2 Hz component corresponds to X(k) with k = 2. 
 

t = 0: 1/16: 15/16; xn = cos (2*pi*2*t), Xk = fft(xn), 

% 

% MXk = magnitude of Xk, AXk = phase angle of Xk 

MXk = abs(Xk), AXk = angle(Xk), 

% 

k = 0:15; 

subplot(3,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|'); 

x
(n

) 
<

X
(k

) 
|X

(k
)|

 

   

    

 



title ('Magnitude of X(k)'); 

% 

subplot(3,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)'); 

title ('Phase of X(k)'); 

% 

n = 0:15; 

subplot(3,1,3), stem(n, xn); xlabel('n'), ylabel('x(n)'); 

title ('Sequence x(n)'); 

 

The DFT (reproduced from the MATLAB output) is 

 

X(k) = {0, (-0+0i), (8-0i), (0-0i), (0-0i), (0-0i), (0-0i), (0+0i), 

-0, (0-0i), (0+0i), (0+0i), (0+0i), (0+0i), (8+0i), (-0-0i)} 
 

Magnitude of X(k) 
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Specifying the sequence values explicitly as below produces correct phase values (rather 

than implicitly by n = 0: 1 : 15; x = cos (pi*n/4), X = fft(x)) 

 

%Listing the sequence values explicitly 

xn1 = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)], 

xn2 = [1, 1/sqrt(2), 0, -1/sqrt(2), -1, -1/sqrt(2), 0, 1/sqrt(2)], 

xn = [xn1,xn2], Xk = fft(xn), 

% 

% MXk = magnitude of Xk, AXk = phase angle of Xk 

MXk = abs(Xk), AXk = angle(Xk), 

% 

k = 0:15 

subplot(3,1,1), stem(k, abs(Xk)); xlabel('k'), ylabel('|X(k)|'); 

title ('Magnitude of X(k)'); 

% 

|X
(k

)|
 

x
(n

) 
<

X
(k

) 

     

       

 



subplot(3,1,2), stem(k, angle(Xk)); xlabel('k'), ylabel('<X(k)'); 

title ('Phase of X(k)'); 

% 

n = 0:15; 

subplot(3,1,3), stem(n, xn); xlabel('n'), ylabel('x(n)'); 

title ('16-point sequence xn'); 
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The 16-point DFT is X(k) = {0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0}. The DFT contains a 

component at 2 Hz. The DFT values are all real numbers symmetrically disposed about k = 8, the 

center of symmetry. 

 
k‹ 0  2      8       15 

X(k) {0 0 8 0 0 0 0 0 0 0 0 0 0 0 8 0} 

Hz‹   2      8        

 
 

Example 2.7.4 The signal x(t) = cos 2π2t is sampled at 12 Hz (still satisfies the sampling 

theorem). Calculate (1) the 6-point DFT and (2) the 8-point DFT. Compare the results. 

Solution The resulting sequence is x(n) = cos 2π2n(1/12) = cos (πn/3). 
(1) 6-point DFT. 

 

n = 0: 1 : 5; x = cos (pi*n/3), X = fft(x) 
 

The samples are  
   1 1 1 1 

x(n) = 1, , – , –1, – , 

   2 2 2 2 

|X
(k

)|
 

x
(n

) 
<

X
(k

) 

     

       

 



The average value of the sequence (the dc component) is zero. The frequency resolution is Fs/N 
= 12/6 = 2 Hz. The DFT is 

 

X(k) = {0, 3, 0, 0, 0, 3} 

 

which does show a component at 2 Hz. 

 

(2) 8-point DFT. 

 

n = 0: 1 : 7; x = cos (pi*n/3), X = fft(x) 
 

The samples are  
   1 1 1 1 1 

x(n) = 1, , – 
   2 2 

, –1, –  , 
2 

, 1, 
2 2 

Note that the average value of the sequence (the dc component) is not zero. The frequency 

resolution is Fs/N = 12/8 = 1.5 Hz. The DFT is 
 

X(k) = {1.5, (2.5607 + j2.5607), -j1.5, (0.4393 - j0.4393), 

0.5, (0.4393 + j0.4393), j1.5, (2.5607 - j2.5607)} 

 

It is not possible to know that there is a component at 2 Hz. 

 

Example 2.7.5 For the signal x(t) = cos 2π2t + cos 2π4t choose a sampling frequency of 12Hz 

(still satisfies sampling theorem). Find the N-point DFT for (a) N = 6, (b) N = 8, and (c) N = 12. 

 

(a) For N = 6 

 

x(n) = cos (2π2n/12) + cos (2π4n/12) = cos (πn/3) + cos (2πn/3) 

n = 0: 1 : 5; x = cos (pi*n/3) + cos (2*pi*n/3), X = fft(x) 

The samples are 

 

x(n) = {2, 0, -1, 0, -1, 0} 

 

The dc component is zero. The frequency resolution is Fs/N = 12/6 = 2 Hz. The DFT is 
 

X(k) = {0, 3, 3, 0, 3, 3} 

 

Both the 2 Hz and the 4 Hz components show up. 

 
k‹ 0   3  5 

X(k) {0 3 3 0 3 3 

Hz‹ 0 2 4 6 8 10 

 

(b) For N = 8 

 

x(n) = cos (2π2n/12) + cos (2π4n/12) = cos (πn/3) + cos (2πn/3) 

n = 0: 1 : 7; x = cos (pi*n/3) + cos (2*pi*n/3), X = fft(x) 



The samples are 

 

x(n) = {2, 0, –1, 0, –1, 0, 2, 0} 

 
This particular set has a nonzero dc component. The frequency resolution is Fs/N = 12/8 = 1.5 
Hz. The DFT is 

 

X(k) = {2, (3 + j3), 0, (3 - j3), 2, (3 + j3), 0, (3 - j3)} 

 

Neither the 2 Hz nor the 4 Hz component can show up. 

 
k‹ 0    4   7 

X(k) {2 3+j3 0 3–j3 2 3+j3 0 3–j3 

Hz‹ 0 1.5 3 4.5 6 7.5 9 10.5 
 

 

 

 

 

 

 

k 
0 1 2 8 

1.5 Hz 3 Hz 12 Hz 
 

 

Example 2.7.6 For the signal x(t) = cos 2π2t + cos 2π3t + cos 2π4t choose a sampling frequency 

of 12Hz (still satisfies sampling theorem). Find the N-point DFT for (a) N = 6, (b) N = 8. 

 

(a) For N = 6 

 

x(n) = cos (2π2n/12) + cos (2π3n/12) + cos (2π4n/12) 

= cos (πn/3) + cos (πn/2) + cos (2πn/3) 

 

n = 0: 1 : 5; x = cos (pi*n/3) + cos (πn/2) + cos (2*pi*n/3), X = fft(x) 

 

The samples are 

 

x(n) = {3, 0, -2, 0, 0, 0} 

 

The dc component is not zero. The frequency resolution is Fs/N = 12/6 = 2 Hz. The DFT is 
 

X(k) = {1, (4 + j1.732), (4 - j1.732), 1, (4 + j1.732), (4 - j1.732)} 

 

Both the 2 Hz and the 4 Hz components show up, but the 3 Hz component is missing. 

 
k‹ 0   3  5 

X(k) {1 4 + j1.732 4 - j1.732 1 4 + j1.732 4 - j1.732 

Hz‹ 0 2 4 6 8 10 

X(k) 

2 Hz 4 Hz 



Digital Signal Processing – 2(B) 
 

II(B). Fast Fourier transform 

Fast Fourier Transform (FFT) – Radix-2 decimation in time and decimation in frequency FFT 

Algorithms, Inverse FFT, and FFT for composite N. 

 

Contents: 

Introduction 

Radix-2 decimation-in-time FFT (Cooley-Tukey) 

Radix-2 decimation-in-frequency FFT (Sande-Tukey) 

Inverse DFT using the FFT algorithm 

*Decimation-in-time algorithm for N = 4 (Cooley-Tukey formulation) 

*Decimation-in-frequency algorithm for N = 4 (Sande-Tukey formulation) 

FFT with general radix 
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N 

N 

N N 

N 

Introduction 
 

For a finite-duration sequence x(n) of length N, the DFT sum may be written as 
N 1 

X(k) = 
n  0 

x(n)W 
k n 

, k = 0, 1, …, N–1 

where W = e  j 2 / N . There are a total of N values of X(.) ranging from X(0) to X(N–1). The 

calculation of X(0) involves no multiplications at all since every product term involves W 
0 
= 

e
 j 0 

= 1. Further, the first term in the sum always involves W 
0 
or e

 j 0 
= 1 and therefore does 

not require a multiplication. Each X(.) calculation other than X(0) thus involves (N–1) complex 

multiplications. And each X(.) involves (N–1) complex additions. Since there are N values of X(.) 

the overall DFT requires (N 1)2 complex multiplications and N(N–1) complex additions. For 

large N we may round these off to N 
2 
complex multiplications and the same number of complex 

additions. 

Each complex multiplication is of the form 

 

(A + jB) (C + jD) = (AC – BD) + j(BC + AD) 

 

and therefore requires four real multiplications and two real additions. Each complex addition is 

of the form 

 

(A + jB) + (C + jD) = (A + C) + j(B + D) 

 

and requires two real additions. Thus the computation of all N values of the DFT requires 4N
2
 

real multiplications and 4 N 
2 
(= 2 N 

2 
+ 2 N 

2 
) real additions. 

Efficient algorithms which reduce the number of multiply-and-add operations are known 
by the name of fast Fourier transform (FFT). The Cooley-Tukey and Sande-Tukey FFT 

algorithms exploit the following properties of the twiddle factor (phase factor), WN = e
 j 2 / N

 

(the factor e 
j 2 / N 

is called the N
th

 principal root of 1): 
k  

N
 

k 

1. Symmetry property WN 
2 = –WN 

2. Periodicity property W 
k  N 

= W 
k
 

 
To illustrate, for the case of N = 8, these properties result in the following relations: 

1  j 
W 

0   
= – W 

4  
= 1 W 

1 
= – W 

5 
=    

8 8 8 8 
2
 

1  j
W 

2   
= – W 

6  
= –j W 

3 
= – W 

7 
=     

8 8 8 8 

2 

 
N 

log 
2 

2 

The use of these properties reduces the number of complex multiplications from N
2
 to 

N (actually the number of multiplications is less than this because several of the 

multiplications by W 
r 
are really multiplications by ±1 or ±j and don‘t count); and the number of 

complex additions are reduced from N 
2 
to N log2 N . Thus, with each complex multiplication 

requiring four real multiplications and two real additions and each complex addition requiring 

two real additions, the computation of all N values of the DFT requires 



 N 
Number of real multiplications = 4  2 log2 N  = 2N log2 N 

 
 N 

Number of real additions = 2N log2 N + 2 
 2 

log2 N  = 3N log2 N 


We can get a rough comparison of the speed advantage of an FFT over a DFT by 

computing the number of multiplications for each since these are usually more time consuming 

than additions. For instance, for N = 8 the DFT, using the above formula, would need 8
2
 = 64 

complex multiplications, but the radix-2 FFT requires only 12 (= 
8 

log 8 = 4 x 3). 

2 
2 

Number of multiplications: DFT vs. FFT 

No. of points 

N 

No. of complex multiplications No. of real multiplications 

DFT FFT DFT FFT 

32 1024 80 4096 320 

128 16384 448 65536 1792 

1024 1048576 5120 4194304 20480 

 
 

We consider first the case where the length N of the sequence is an integral power of 2, 

that is, N = 2
ν
 where ν is an integer. These are called radix-2 algorithms of which the 

decimation-in-time (DIT) version is also known as the Cooley-Tukey algorithm and the 

decimation-in-frequency (DIF) version is also known as the Sande-Tukey algorithm. We 

show first how the algorithms work; their derivation is given later. 

For a radix of (r = 2), the elementary computation (EC) known as the butterfly consists 

of a single complex multiplication and two complex additions. 

If the number of points, N, can be expressed as N = r
m 

, and if the computation algorithm 

is carried out by means of a succession of r-point transforms, the resultant FFT is called a radix- 

r algorithm. In a radix-r FFT, an elementary computation consists of an r-point DFT followed 

by the multiplication of the r results by the appropriate twiddle factor. The number of ECs 

required is 

Cr = 
N 

 
 

log r N 

which decreases as r 
r
increases. Of course, the complexity of an EC increases with increasing r. 

For r = 4, the EC requires three complex multiplications and several complex additions. 

Suppose that we desire an N-point DFT where N is a composite number that can be 

factored into the product of integers 

 

N = N1 N2 … Nm 
 

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64- 

point transform can be viewed as a three-dimensional 4 x 4 x 4 transform. 

If N is a prime number so that factorization of N is not possible, the original signal can be 

zero-padded and the resulting new composite number of points can be factored. 



WNk 

N 

N 

Radix-2 decimation-in-time FFT (Cooley-Tukey) 
 

Procedure and important points 
 

1. The number of input samples is N = 2
ν
 where ν is an integer. 

2. The input sequence is shuffled through bit-reversal. The index n of the sequence x(n) is 

expressed in binary and then reversed. 

3. The number of stages in the flow graph is given by ν = log2 N . 

4. Each stage consists of N/2 butterflies. 

5. Inputs/outputs for each butterfly are separated as follows: 

Separation = 2
m–1

 samples where m = stage index, stages being numbered from 

left to right (that is, m = 1 for stage 1, m = 2 for stage 2 etc.). 

This amounts to separation increasing from left to right in the order 1, 2, 4, …, N/2. 

 

 
Stage 1 Stage 2 Stage 3 

 

 
Separation of 1 

 

 

 

 

 

 

 

 

 

 

 
 

6. The number of complex additions = N log2 N and the number of complex multiplications 
N 

is log N . 

2 
2 

7. The elementary computation block in the flow graph, called the butterfly, is shown here. 
This is an in-place calculation in that the outputs (A + BW 

k 
) and (A – BW 

k 
) can be 

N N 

computed and stored in the same locations as A and B. 

 
 

A A + BW 
k
 

 

 

 
B A – BW 

k
 

Separation of 2 

Separation of 4 



W80 

 
$ order 

N 

N 

Example 2.2.1 Radix-2, 8-point, decimation-in-time FFT for the sequence 

 
n‹ 0 1 2 3 4 5 6 7 

x(n) = {1, 2 3 4 –4 –3 –2 –1} 

 
Solution The twiddle factors are 

0 1  j 2 / 8  j  / 4 1 1 
W8  = 1 W8  = e = e =     – j    

2  j 2 / 8 2  j  / 2 3  j 2 / 8 3 2  j 3 / 4 12 1 

W  = e  = e = – j W  = e  = e = – – j    
8 8 

2 2 
 

One of the elementary computations is shown below: 

 

A 

= 1 

 

 
 

B 

= – 4 
= 1

 

 

 

A + BW 
k
 

= 1 – 4 = – 3 

 

 

A – BW 
k
 

= 1 + 4 = 5 

 

The signal flow graph follows: 
 
 

Bit-reversed 

order $ 

 

Stage 1 $ 

  

Stage 2 $ 

  

Stage 3 $ 
Natural 

000 000 x(0) = 1      X(0) = 0 

001 100 x(4) = –4 W8
0 

     

X(1) = 

010 

 

011 

010 

 

110 

x(2) = 3 

 

x(6) = –2 

 

 

W8
0 

W8
0 

 
W8

2 

   
X(2) = 

 

X(3) = 

100 001 x(1) = 2 
 

W8
0 X(4) = 

101 101 x(5) = –3 
W8

0 W8
1 X(5) = 

110 011 x(3) = 4 W8
0 W8

2 X(6) = 

 

111 
 

111 x(7) = –1 
W80 W8

2 W8
3 X(7) = 



8-point FFT using DIT 

Results of the first stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

1 1 + (–4) . 1 = –3   

– 4 1 – (–4) . 1 = 5   

3 3 + (–2) . 1 = 1   

– 2 3 – (–2) . 1 = 5   

2 2 + (–3) . 1 = –1   

– 3 2 – (–3) . 1 = 5   

4 4 + (–1) . 1 = 3   

– 1 4 – (–1) . 1 = 5   

 

Results of the second stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

1 

– 4 

–3 –3 + 1 . 1 = –2  

5 5 + 5 . (–j) = 5 2e
 j / 4

  

3 1 –3 – 1 . 1 = –4  

– 2 5 5 – 5 . (–j) = 5 2e 
j / 4

  

2 –1 –1 + 3 . 1 = 2  

– 3 5 5 + 5 . (–j) = 5 2e
 j / 4

  

4 3 –1 – 3 . 1 = –4  

– 1 5 5 – 5 . (–j) = 5 2e 
j / 4

  

 

Results of the third stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

1 

– 4 

–3 –2 –2 + 2 . 1 = 0 

5 5 2e j / 4 5 2e
 j / 4 

+ 5 2e
 j / 4 

. e
 j  / 4 

= 5 – j12.07 

3 1 –4 –4 + (–4) . (–j) = –4 + j4 = 4 2e 
j3 / 4

 

– 2 5 e j / 4 5 2e 
j / 4 

+ 5 2e 
j / 4 

. e
 j 3 / 4 

= 5 – j 2.07 

2 –1 2 –2 – 2 . 1 = –4 

– 3 5 5 2e j / 4 5 2e
 j / 4 

– 5 2e
 j / 4 

. e
 j  / 4 

= 5 + j2.07 

4 3 –4 –4 – (–4) . (–j) = –4 – j4 = 4 2e
 j3 / 4

 

– 1 5 e j / 4 5 2e 
j / 4 

– 5 2e 
j / 4 

. e
 j 3 / 4 

= 5 + j12.07 
 

The DFT is X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)} 

 

The MATLAB program: 

 

x = [1, 2, 3, 4, -4, -3, -2, -1], X = fft(x) 
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Radix-2 decimation-in-frequency FFT (Sande-Tukey) 
 

Procedure and important points 
 

1. The number of input samples is N = 2
ν
 where ν is an integer. 

2. The input sequence is in natural order; the output is in bit-reversed order. 

3. The number of stages in the flow graph is given by ν = log2 N . 

4. Each stage consists of N/2 butterflies. 

5. Inputs/outputs for each butterfly are separated in the reverse order from that of the DIT. 

The separation decreases from left to right in the order N/2, … , 4, 2, 1. 

6. The number of complex additions = N log2 N and the number of complex multiplications 

is 
N 

log N . 

2 
2 

7. The basic computation block in the flow graph of the DIF FFT is the butterfly shown 

here. This is an in-place calculation in that the two outputs (A + B) and (A – B) W 
k can 

be computed and stored in the same locations as A and B. 

 
 

A A + B 

 

 

 
B (A – B)W 

k
 



W80 W8 
0 

W8 
0 

W81 W82 

W82 W80 

W83 

W80 
W80 

W82 

W 0 

8 

N 

2 

Example 2.3.1 Radix-2, 8-point, decimation-in-frequency FFT for the sequence 

 

n‹ 0 1 2 3 4 5 6 7 

x(n) = {1, 2 3 4 –4 –3 –2 –1} 

 

Solution The twiddle factors are the same as in the DIT FFT done earlier (both being 8-point 

DFTs): 
0 1  j 2 / 8 1 1 

W8  = 1 W8  = e =    – j    
2  j 2 / 8 2  j  / 2 

2 3  j 2 / 8 3  j 3 / 4 1 1 

W  = e  = e = – j W  = e  = e = – – j    
8 8 

2 2 
One of the elementary computations is shown below: 

 
 

A 

= 1 

 

 

 

B 

= –4 

 

A + B 

= 1 – 4 = –3 

 

 
 

(A – B)W 
k
 

= (1 + 4) 1 = 5 
 

 

The signal flow graph follows: 
 

 

 

x(0) = 1 

 

Stage 1 $ Stage 2 $ Stage 3 $ 
 

 

X(0) = 
 

 

x(1) = 2 

 

x(2) = 3 

 

x(3) = 4 

 

x(4) = –4 

 
x(5) = –3 

 
x(6) = –2 

 

X(4) = 

 

X(2) = 

 

X(6) = 

 

X(1) = 

 

X(5) = 

 

X(3) = 

 

x(7) = –1 X(7) = 

W80 = 1 

Bit-reversed 

$ order 

Natural 

order $ 



8-point FFT using DIF 

Results of the first stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

1 1 + (–4) = –3   

2 2 + (–3) = –1   

3 3 + (–2) = 1   

4 4 + (–1) = 3   

– 4 (1 – (–4)) 1 = 5   

– 3 (2 – (–3)) e
 j / 4 

= 5 e
 j / 4

   

– 2 (3 – (–2)) (–j) = –j5   

– 1 (4 – (–1)) e j3 / 4 = 5 e j3 / 4   

 

Results of the second stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

1 

2 

–3 –3 + 1 = –2  

–1 –1 + 3 = 2  

3 1 (–3 –1) 1 = –4  

4 3 (–1 –3) (–j) = j4  

– 4 5 5 + (–j5) = 5 2e
 j / 4

  

– 3 5 e j / 4 
5 e j / 4 + 5 e j3 / 4 = –j5 2  

– 2 –j5 (5 – (–j5)) 1 = 5 2e 
j / 4

  

– 1 5 e j3 / 4 
(5 e

 j / 4 
– 5 e

 j3 / 4 
) (–j) = –j5 2  

 

Results of the third stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

1 

2 

–3 –2 –2 + 2 = 0 

–1 2 (–2 –2) 1 = –4 

3 1 –4 –4 + j4 = –4 + j4 = 4 2e 
j3 / 4

 

4 3 j4 (–4 – j4) 1 = –4 – j4 = 4 2e
 j3 / 4

 

– 4 5 5 2e j / 4 5   2e
 j / 4 

+ (–j5 2 ) = 5 – j12.07 

– 3 5 e j / 4 –j5 2 (5 2e
 j / 4 

– (–j5 2 )) 1 = 5 + j2.07 

– 2 –j5 5 2e j / 4 5   2e 
j / 4 

+ (–j5 2 ) = 5 – j2.07 

– 1 5 e j3 / 4 –j5 2 (5 2e 
j / 4 

– (–j5 2 )) 1 = 5 + j12.07 
 
 

The DFT is X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)} 
 

The MATLAB progarm is the same as shown in Example 1. 
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(DIT Template) 

The elementary computation (Butterfly): 

 

A A + BW 
k
 

 

 

 
B A – BW 

k
 

 

 

 

The signal flow graph: 
 

 

 
 



WNk 

N 

(DIF Template) 

The elementary computation (Butterfly): 

 

A A + B 

 

 

 
B (A – B)W 

k
 

 

 

 
The signal flow graph: 

 
 

 
 



16- point DIF FFT 
 

 
 

 

 

 



N 

Inverse DFT using the FFT algorithm 
 

The inverse DFT of an N-point sequence {X(k), k = 1, 2, … , (N–1)} is defined as 

x(n) = 

N 1 

 X (k)W 
N k  0 

k n  
, n = 0, 1, … , N–1 

N 

where WN = e
 j 2 / N 

. Take the complex conjugate of x(n) and multiply by N to get 
N 1 

N x
*
(n) = 

k  0 

X 
* 
(k)W 

k n
 

The right hand side of the above equation is simply the DFT of the sequence X
*
(k) and can be 

computed by using any FFT algorithm. The desired output sequence is then found by taking the 

conjugate of the result and dividing by N 

x(n) =  
1   





N 1

X 
* 
(k)W 

k n 
*

 

 N 
k  0 

1  

N 
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Example 2.4.1 Given the DFT sequence X(k) = {0, (–1–j), j, (2+j), 0, (2–j), –j, (–1+j)} obtain the 

IDFT x(n) using the DIF FFT algorithm. 
Solution This is an 8-point IDFT. The 8-point twiddle factors are, as calculated earlier, 

0 1  j 2 / 8 1 1 
W8  = 1 W8  = e =    – j    

2  j 2 / 8 2  j  / 2 
2 3  j 2 / 8 3  j 3 / 4 1 1 

W  = e  = e = – j W  = e  = e = – – j    
8 8 

2 2 
 

The elementary computation (Butterfly) is shown below: 

 
A A + B 

 

 

 
B (A – B)W 

k
 

 

The signal flow graph follows: 

Stage 1 $ Stage 2 $ Stage 3 $ 

W80 
X

*
(0) = 0 

Natural 

order $ 

X
*
(7) = 

X
*
(6) = j 

X
*
(5) = 

X
*
(4) = 0 

X
*
(3) = 

X
*
(2) =–j 

X
*
(1) = 

8 x
*
(0) = 

Bit-reversed 

$ order 

8 x
*
(7) = 

8 x
*
(3) = 

8 x
*
(5) = 

8 x
*
(1) = 

8 x
*
(6) = 

8 x
*
(2) = 

8 x
*
(4) = 



8x (n)

8-point IDFT using DIF FFT 

Results of the first stage 

Input 

X
*
(k) 

Stage 1 Stage 2 Stage 3 (Output) 

0 0 + 0 = 0   

–1+j –1+j + 2+j = 1+j2   

–j –j + j = 0   

2–j 2–j + (–1–j) = 1–j2   

0 (0 – 0) 1 = 0   

2+j (–1+j – (2+j)) e
 j / 4 

= –3 e
 j / 4

   

j (–j – j) (–j) = –2   

–1–j (2–j – (–1–j)) e
 j3 / 4 

= 3 e
 j3 / 4

   

 

Results of the second stage 

Input Stage 1 Stage 2 Stage 3 (Output) 

0 0 0 + 0 = 0  

–1+j 1+j2 1+j2 + 1–j2 = 2  

–j 0 (0 – 0) 1 = 0  

2–j 1–j2 (1+j2 – (1–j2)) (–j) = 4  

0 0 0 + (–2) = –2  

2+j –3 e j / 4 
–3 e j / 4 + 3 e j3 / 4 = –3 2  

j –2 (0 – (–2)) 1 = 2  

–1–j 3 e j3 / 4 
(–3 e

 j / 4 
– 3 e

 j3 / 4 
) (–j) = 3 2  

 

Results of the third stage 

Input Stage 1 Stage 2 Stage 3 (Output)  

0 0 0 0 + 2 = 2 ← 8 x
*
(0) 

–1+j 1+j2 2 (0 – 2) 1 = – 2 ← 8 x
*
(4) 

–j 0 0 0 + 4 = 4 ← 8 x
*
(2) 

2–j 1–j2 4 (0 – 4) 1 = – 4 ← 8 x
*
(6) 

0 0 –2 –2 + (–3 2 ) = – 6.24 ← 8 x
*
(1) 

2+j –3 e j / 4 
–3 2 (–2 – (–3 2 )) 1 = 2.24 ← 8 x

*
(5) 

j –2 2 2 + 3 2 = 6.24 ← 8 x
*
(3) 

–1–j 3 e j3 / 4 
3 2 (2 – 3 2 ) 1 = – 2.24 ← 8 x

*
(7) 

The output at stage 3 gives us the values 8 x
* 
(n)in bit-reversed order: 

 

* 

bit rev order 
= {2, –2, 4, –4, –6.24, 2.24, 6.24, –2.24} 

 

The IDFT is given by arranging the data in normal order, taking the complex conjugate of the 

sequence and dividing by 8: 

8 x
* 

normalorder = {2, –6.24, 4, 6.24, –2, 2.24, –4, –2.24} 



x(n) = 
1 

,  6.24 
 

  

1 6.24 , – 
1 

, 2.24 , – 
1 

, 
 2.24 



 , ,         

 4 8 2 8 4 8 2 8 
x(n) = {0.25, –0.78, 0.5, 0.78, –0.25, 0.28, –0.5, –0.28} 

 

Note Because of the conjugate symmetry of {X(k)}, we should expect the sequence {x(n)} to be 

real-valued. 

The MATLAB program: 

 

X = [0, (-1-j), j, (2+j), 0, (2-j), -j, (-1+j)], x = ifft(X) 

 

Example 2.4.2 Given the DFT sequence X(k) = {0, (1–j), j, (2+j), 0, (2–j), (–1+j), –j} obtain 

the IDFT x(n) using the DIF FFT algorithm. 

Solution There is no conjugate symmetry in {X(k)}. Using MATLAB 
 

 

 
The IDFT is 

X = [0, 1-1j, 1j, 2+1j, 0, 2-1j, -1+1j, -1j] 

x = ifft(X) 

 

 

x(n) = {0.5, (-0.44 + 0.037i), (0.375 - 0.125i), (0.088 + 0.14i), (-0.75 + 0.5i), 

(0.44 + 0.21i), (-0.125 - 0.375i), (-0.088 - 0.39i)} 



 FFT with general radix 
 

As mentioned in the introduction, if the number of points, N, can be expressed as N = r
m 

, and if 

the computation algorithm is carried out by means of a succession of r-point transforms, the 

resultant FFT is called a radix-r algorithm. In a radix-r FFT, an elementary computation (EC) 

consists of an r-point DFT followed by the multiplication of the r results by the appropriate 

twiddle factor. The number of ECs required is 
N 

Cr = 
r 

logr N 

which decreases as r increases. 
Of course, the complexity of an EC increases with increasing r. For r = 2, the EC (the 

butterfly) consists of a single complex multiplication and two complex additions; for r = 4, the 

EC requires three complex multiplications and several complex additions. 

Suppose that we desire an N-point DFT where N is a composite number that can be 

factored into the product of integers 

 

N = N1 N2 … Nm 
 

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64- 

point transform can be viewed as a three-dimensional 4 x 4 x 4 transform. 

If N is a prime number so that factorization of N is not possible, the original signal can be 

zero-padded and the resulting new composite number of points can be factored. 

We illustrate in the table below the situation for N = 64. Since 64 = 2
6
, we can have a 

radix-2 FFT; alternatively, since 64 = 4
3
, we can also have a radix-4 FFT. 

 

N = 64 = 2
6
 = 4

3
 = 8

2
 

 Radix-2 Radix-4 Radix-8 

No. of stages log2 64 = 6 log4 64 = 3 log8 64 = 2 

No. of ECs per stage 64/2 = 32 64/4 = 16 64/8 = 8 



Digital Signal Processing – 3 
 

III. IIR Digital Filters 

Analog filter approximations – Butterworth and Chebyshev, Design of IIR digital filters from 

analog filters, Bilinear transformation method, Step and Impulse invariance techniques, Spectral 

transformations, Design examples: Analog-Digital transformations 

 

Contents: 

Introduction 
The normalized analog, low pass, Butterworth filter 

Time domain invariance 

Bilinear transformation 

Nonlinear relationship of frequencies in bilinear transformation 

Digital filter design – The Butterworth filter 

Analog design using digital filters 

Frequency transformation 

The Chebyshev filter 

The Elliptic filter 



H(z) = 
i  0

 

Introduction 
 

Nomenclature With a0 = 1 in the linear constant coefficient difference equation, 
a0 y(n) + a1 y(n–1) + … + aN y(n–N) 

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0  0 
we have,  

M 

biz i 

N 

1   ai z 
i

 

i 1 

This represents an IIR filter if at least one of a1 through aN is nonzero, and all the roots of the 
denominator are not canceled exactly by the roots of the numerator. In general, there are M finite 
zeros and N finite poles. There is no restriction that M should be less than or greater than or equal 
to N. In most cases, especially digital filters derived from analog designs, M ≤ N. Systems of this 

type are called N
th

 order systems. This is the case with IIR filter design in this Unit. 

When M > N, the order of the system is no longer unambiguous. In this case, H(z) may be 

taken to be an N
th

 order system in cascade with an FIR filter of order (M – N). 

When N = 0, as in the case of an FIR filter, according to our convention the order is 0. 

However, it is more meaningful in such a case to focus on M and call the filter an FIR filter of M 
stages or (M+1) coefficients. 

 

Example The system H(z) = (1 z
8 

) (1 z
1 

) is not an IIR filter. Why (verify)? 

 
IIR filter design An analog filter specified by the Laplace transfer function, Ha(s), may be 
designed to either frequency domain or time domain specifications. Similarly, a digital filter, 
H(z), may be required to have either (1) a given frequency response, or (2) a specific time 
domain response to an impulse, step, or ramp, etc. 

 

Analog design using digital filters, ωi = ΩiT Another possibility is that a digital filter may be 

required to simulate a continuous-time (analog) system. To simulate an analog filter the discrete- 

time filter is used in the A/D – H(z) – D/A structure shown below. The A/D converter can be 

thought of roughly as a sampler and coder, while the D/A converter, in many cases, represents a 

decoder and holder followed by a low pass filter (smoothing filter). The A/D converter may be 

preceded by a low pass filter, also called an anti-aliasing filter or pre-filter. 
 
 

 

We will usually be given a set of analog requirements with critical frequencies Ω1, Ω2,…, 
ΩN in radians/sec., and the corresponding frequency response magnitudes K1, K2, …, KN in dB. 
The sampling rate 1/T of the A/D converter will be specified or can be determined from the input 
signals under consideration. 

Equivalent Analog Filter 

xa(t) x(n) y(n) ya(t) 

xa(nT) ya(nT) 

(1/T) samples/sec (1/T) samples/sec 

D/A H(z) A/D 



The general approach for the design is to first convert the analog requirements to digital 

requirements and then design the digital filter using the bilinear transformation. The conversion 

of the analog specifications to digital specifications is through the formula ωi = ΩiT. To show 

that this is true, suppose that the input to the equivalent analog filter is xa(t) = sin it . The output 

of the A/D converter with sampling rate 1/T becomes 
 

x(n) = xa(nT) = sini nT = sin (iT )n = sin i n 

Thus, the magnitude of the discrete-time sinusoidal signal is the same as the continuous time 

sinusoid, while the digital frequency ωi is given in terms of the analog frequency Ωi by ωi = ΩiT. 
Thus, the specifications for the digital filter become ω1, ω2, …, ωN with the 

corresponding frequency response magnitudes K1, K2, …, KN. The digital frequency, ω, is in 
units of radians. The procedure is conceptually shown in figure below. 

 
 

 
 

There are various techniques for designing H(z): 

 

1. Numerical approximation (numerical solution) to the derivative operation or the 

integration operation (this latter results in the bilinear transformation aka 

bilinear z-transformation – BZT). 

2. Time domain invariance, e.g., impulse invariance and step-invariance methods. 

 

The focus is on the low pass analog filter because once designed it can be transformed 

into an equivalent quality high pass, band pass or band stop filter by frequency transformation. 

The Butterworth, Chebyshev and elliptic filters are used as a starting point in designing digital 

filters. We approximate the magnitude part of the frequency response, not the phase. Butterworth 

and Chebyshev filters are actually special cases of the more difficult elliptic filter. 

Because a constant divided by an N
th

 order polynomial in Ω falls off as Ω
N
 it will be an 

approximate low pass function as Ω varies from 0 to ∞. Therefore, an all-pole analog filter H(s) 

= 1/D(s) is a good and simple choice for a low pass filter form and is used in both the 

Butterworth and the type I Chebyshev filters. Moreover, for a given denominator order, having 

the numerator constant (order zero) gives (for a given number of filter coefficients) the 

maximum attenuation as Ω → ∞. 

Equivalent 
Analog Specs 

Ω1, Ω2, …, ΩN 

K1, K2, …, KN 

Digital Filter 
Specs 

i  iT 
 1,  2, …,  N 

H(z) 

K1, K2, …, KN 

K = K i i 

Digital 
Design 

(Perhaps 

Bilinear) 



 

The normalized analog, low pass, Butterworth filter 
 

As a lead-in to digital filter design we look at a simple analog low pass filter – an RC filter, and 

its frequency response. 

 
Example 3.2.1 Find the transfer function, Ha(s), impulse response, ha(t), and frequency response, 
Ha(jΩ), of the following system. 

 
R = 10kΩ 

+ + 

Input = x(t) 
C = 20μF 

Output = y(t) 

– – 

 
 

Solution This is a voltage divider. The transfer function is given by 

H (s) = Y(s)   1 sC  =  1 RC  = 
5 

 
 

a 

X (s) 
=

 R 1 sC s1RC s  5 

Taking the inverse Laplace transform gives the impulse response, 

ha(t) = 5 e
5t

u(t) 

The frequency response is 

Ha(jΩ) = Ha (s) = 
s   j 

5 = 

j5 
e j tan1 ( / 5) 

 

The cut-off frequency is Ωc = 5 rad/sec. The gain at Ω = 0 is 1. 

 
|Ha(jΩ)| 

 

 

 

 

 

 

 
 

Ω, rad./sec. 

 
 

The MATLAB plots of frequency response of Ha(jΩ) = 5 ( j  5) are shown below. We 

use the function fplot. The analog frequency, Omega (Ω), extends from 0 to ∞; however, the 

plots cover the range 0 to 6π rad/sec. 
 

subplot(2, 1, 1), fplot('abs(5/(5+j*Omega))', [-6*pi, 6*pi], 'k'); 

xlabel ('Omega, rad/sec'), ylabel('|H(Omega)|'); grid; title ('Magnitude') 

% 

subplot(2, 1, 2), fplot('angle(5/(5+j*Omega))', [-6*pi, 6*pi], 'k'); 

xlabel ('Omega, rad/sec'), ylabel('Phase of H(Omega)'); grid; title ('Phase') 
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s 1 

If we adjust the values of the components R and C so that 1 RC = 1, we would have Ha(s) 

which is a normalized filter with cut-off frequency Ωc = 1 rad/sec and gain of 1 at Ω = 0. 

Such a normalized LP filter could be transformed to another LP filter with a different cut-off 

frequency of, say, Ωc = 10 rad/sec by the low pass to low pass transformation s →s /10. The 

transfer function then becomes 
1 10 

Ha(s) = = 
 

s 1 s ( s /10) s  10 

which still has a dc gain of 1. The gain of this filter could be scaled by a multiplier, say, K, so 

that 

Ha(s) = K 
10

 
s 10 

which has a dc gain of K and a cut-off frequency of Ωc = 10 rad/sec. 

The frequency response of the normalized filter Ha(s) = 1/(s 1) is Ha(jΩ) = 1 ( j 1). The 

corresponding MATLAB plots are shown below using the function plot. Omega is a vector, 

consequently we use ―./‖ instead of ―/‖ etc. 
 

Omega = -6*pi: pi/256: 6*pi; H = 1./(1.+ j .*Omega); 

subplot(2, 1, 1), plot(Omega, abs(H), 'k'); 

xlabel ('Omega, rad/sec'), ylabel('|H(Omega)|'); grid; title ('Magnitude') 

subplot(2, 1, 2), plot(Omega, angle(H), 'k'); 

xlabel ('Omega, rad/sec'), ylabel('Phase of H(Omega)'); grid; title ('Phase') 
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Butterworth filter The filter Ha(s) = 5/(s  5) is a first order Butterworth filter with cut-off 

frequency Ωc = 5 rad/sec. Its magnitude response is given by 

|H(jΩ)| =
  1 

 

1   / 52
 

Omega = 0: pi/256: 15; H1 = 1./sqrt(1.+ (Omega/5) .^2); 

plot(Omega, H1, 'k'); legend ('1
st
 Order, Cut-off = 5 rad/sec'); 

xlabel ('Omega, rad/sec'), ylabel('|H(Omega)|'); grid; title ('Magnitude') 
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Frequency response analysis The frequency response analysis in the analog frequency (Ω) 

domain is given by the following equations which may be used to illustrate, qualitatively, the 

effect of LP, HP or BP analog filters on a signal. 

 

Y(s) = H(s) X(s) 

Y(jΩ) = H(jΩ) X(jΩ) = H( j) ejH( j) X( j) ejX ( j)= H( j) X( j)ejH ( j)X ( j


Y() =  H()  X ()  and Y () = H () + X () 

 

X(s) Y(s) 

 

 

 
Similarly, if we have a digital filter H(z) the frequency response analysis in the digital 

frequency (ω) domain is given by the following equations which may be used to illustrate, 

qualitatively, the effect of LP, HP or BP digital filters on a signal. 

 

Y(z) = H(z) X(z) 

Y(jω) = H(jω) X(jω) = H(j) ejH( j) X( j) ejX ( j) = H( j) X( j)ej H ( j)X ( j


Y () =  H() X () and Y () = H () + X () 

 
X(z) Y(z) 
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The N
th

 order Butterworth filter In general the magnitude response of the N
th

 order 

Butterworth filter with cut-off frequency Ωc is given by 

|H(jΩ)| = 
1
 

With the normalized frequency variable defined as r =  / c , the MATLAB segment below 

plots the magnitude response for 1
st
, 3

rd
, and 10

th
 order filters, that is, N = 1, 3, and 10, 

respectively. Note that as the filter order increases the response becomes flatter on either side of 

the cut-off; and the transition (cut-off) becomes sharper. 

 

r = 0: 0.1: 3; 

H1 = 1./sqrt(1.+ r .^2); 

H3 = 1./sqrt(1.+ r .^6); 

H10 = 1./sqrt(1.+ r .^20); 
plot (r, H1, r, H3, 'r', r, H10, 'k'); 

legend ('1
st
 Order', '3

rd
 Order', '10

th
 Order'); 

xlabel ('Normalized frequency, r'), ylabel('|H(r)|'); grid; title ('Magnitude') 
 
 

Magnitude 
1 

 
0.9 

 
0.8 

 
0.7 

 
0.6 

 
0.5 

 
0.4 

 
0.3 

 
0.2 

 
0.1 

 
0 

0 0.5 1 1.5 2 2.5 3 

Normalized frequency, r 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

|H
(r

)|
 

     
   

1st Order 

3rd Order 

10th 

 

      

      

      

      

      

      

      

      

      

 



1 /  2 N 
c 

  1  

0.707 

Direction of 
increasing 

order of filter 

Ωc = 1 

Writing down the N
th

 order filter transfer function H(s) from the pole locations Let us look 
at some analog Butterworth filter theory. 

(1) |H(jΩ)| = 
1 

decreases monotonically with Ω. No ripples. 

(2) Poles lie on the unit circle in the s-plane (for the Chebyshev filter, in contrast, 

they lie on an ellipse). 

(3) The transition band is wider (than in the case of the Chebyshev filter). 

(4) For the same specifications the Butterworth filter has more poles (or, is of higher 

order) than the Chebyshev filter. This means that the Butterworth filter needs 

more components to build. 
 

|H(jΩ)| 

 

 

 

 

 

 

 
Ω, rad./sec. 

 

 

 
The normalized analog Butterworth filter has a gain of |H(jΩ)| = 1 at Ω = 0, and a cut-off 

frequency of Ωc = 1 rad/sec. Given the order, N, of the filter we want to be able to write down its 

transfer function from the pole locations on the Butterworth circle. 
 

Example 3.2.2 Given the order N of the filter, divide the unit circle into 2N equal parts and place 

poles on the unit circle at (360
0
/2N) apart. The H(s) will be made up of the N poles in the left half 

plane only. Remember complex valued poles must occur as complex conjugate pairs. There will 

 
jΩ 

 

s-plane 
 

 

ζ 
–1 1 

Radius = Ωc = 1 

 

 

 
be no poles on the imaginary axis. Since the N poles must lie on the left half semicircle, when N 
is odd the odd pole must be at s = –1. Thus, for N = 1, there is one pole, s1 = –1, and H(s) is 
given by 



2 

2 2 2 2 

 


2 2 2 2 

H(s) = 
1
 

s  s1 

= 
1 

= 

s  (1) 

1 
 

 

s  1 
 

Example 3.2.3 Filter order N = 2 so that 2N = 4 and 360
0
/4 = 90

0
. The pole plot is shown above. 

The poles are at 
 1 1    1 1 

s1 =      j  and s2 =     j  , 

 2  2 2 

jΩ 
 

s-plane 

 
Radius = Ωc = 1 

ζ 
–1 1 

 

 

 

 

so that  

H(s) = 

 
(s  s1 

 
1)(s  s2 ) =  


1  
  j	

1
 

1 
1  
  j  

1 


Denominator is 
   1 

2

  1 2 


s        

 
s        




         

2 1 1 2  1 2    

Dr. =  s     –  j   = s      2  s  j = s  2s 1 



So 

H(s) = 

2   2 
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2 2 2 

 
 

Example 3.2.4 Filter order N = 3, so that 2N = 6 and 360
0
/6 = 60

0
. Poles are at 

 1  3   1  3  1 

s1, 2, 3 = – 1,    j  , and    j 
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2  
+ 2 s +1 
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 2s 1 

jΩ 
s-plane 

s2 –s3 

s1 ζ 

1 

s3 

= s
*
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H(s) = 
1
 

 1 3  1 3 
(s 1)s      j   s   j 

Denominator is 




 1 

2 2 




2 3 


2 2  


2 

Dr. = s  1 s    j  = s  1  s  1
 2 

So 

H(s) = 
1
 

s  1s 2  
 s  1

4  s 

Example 3.2.5 Filter order N = 4, so that 2N = 8 and 360
0
/8 = 45

0
. Poles are at 

s = (–cos 22.5
0
  j sin 22.5

0
) = (–cos   j sin ) (– 

cos 67.5
0
  j sin 67.5

0
) = (–cos   j sin ) 

Wrong 

placement 

jΩ 

 lane 
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H(s) = 
(s  cos )2 

 j 
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sin 

2  (s  cos  )2 
 j 

2 
sin 

2  
1 

H(s) =  
s2  

 1.848 s  1s 2  
 0.765 s  1

jΩ Correct 


s-plane 

ζ 
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Determining the order and transfer function from the specifications A typical magnitude 
response specification is sketched below. The magnitudes at the critical frequencies Ω1 and Ω2 

are A and B, respectively. Typically Ω1 is in the pass band or is the edge of the pass band and Ω2 

is in the stop band or is the edge of the stop band. For illustrative purposes we have arbitrarily 
 

 

|H(jΩ)| 

Transition 

band 

 

 

 

 

A 

 

 

Ω1 Ω2 

 

Stop 
band 

 
 

 

 

 

 

Ω, rad./sec. 

taken A = 0.707 (thus Ω1 is the cut-off frequency, but this need not be the case) and B = 0.25. 
The log-magnitude specification is diagrammed below. Note that (20 log A) = K1 dB and 

(20 log B) = K2 dB. Thus the analog filter specifications are 
 

0  20log10 H( j) 

20log10 H ( j) 

 K1 for all Ω  Ω1 

 K2 for all Ω  Ω2 

 

dB (= 20 log10 |H(jΩ)|) 

 
 

Ω 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

With the magnitude |H(jΩ)| given by the Butterworth function, 

|H(jΩ)| = 
1
 

and using the equality condition at the critical frequencies in the above specifications the order, 

N, of the filter is given by 

0 

K1 

Ω1 Ω2 

K2 

Pass 
band 

 

= 0.707 

 
B = 0.25 

 

 

  

 



c 



 

log10 	  10         10       

2 

  10
 K1 /10 

 1 
log10 10 

K 
2
/10  1

 


	 

N = 
 

    

 2 log
10 




1  


 

→ (3.16, Ludeman) 

  2   
The result is rounded to the next larger integer. For example, if N = 3.2 by the above calculation 

then it is rounded up to 4, and the order of the required filter is N = 4. In such a case the resulting 

filter would exceed the specification at both Ω1 and Ω2. The cut-off frequency Ωc is determined 

from one of the two equations below. 

Ωc = or Ω  = 
2 

2 N 

/10  1 
10K2 → (3.17 Ludeman) 

The equation on the left will result in the specification being met exactly at Ω1 while the 
specification is exceeded at Ω2. The equation on the right results in the specification being met 
exactly at Ω2 and exceeded at Ω1. 

Note that the design equation for N may be written in the alternative form 
 10

 K2 /10 
1

log10  10
K1 /10  

1 
  



  

N = 

	     2 log10 


2  

 
  1  



Example 3.2.6 What is the order and transfer function of the analog Butterworth filter that 

satisfies the following specification? 
 

1 = 200 rad/sec K1 = – 1 dB 

2 = 600 rad/sec K2 = – 30 dB 

Solution The order N is given by 
  10

 K
1 

/10 
 1    10(1) /10 1    10

0.1 
1

log10 10 
K 

2
/10 
 1

 log10  (30) /10  
1 

 log10 10 3 1 
 

	 	 

  
=  10  =   




N =  2 log 
       200 


  	 200  

   1      2log10     2 log10   

 
10   


   

 
 600     600  

 
1.2589 1


 log   

 
0.2589


 log   


 0.2589 




= 	  
1000 1   = 	  

999  = 	  
999  

2 log10  200    2 log10200   2 log10200 
 600 

 
 600 600 

       
log 0.00025918 	 3.586 

=  10 
2log 0.3333333  =  2 (0.47712)  = 3.76 = 4 

 10   



Now, as in an earlier example, locate 8 poles uniformly on the unit circle, making sure to satisfy 

all the requirements … and write down the transfer function, H (s) , of the normalized 

Butterworth filter (with a cut-off frequency of 1 rad/sec), 
1 

H (s) =  
s 2  

 1.848 s  1s2  
 0.765 s  1

1  

2 N 10 K1 /10 1 



2 N 10 K1 /10 1 

1   2  /  2 N 
1 

Next, determine the cutoff frequency c that corresponds to the given specifications and 

the order N = 4 determined above 

  = 
1 

= 200 200 
= 

200 
= = 236.8 rad/sec 

c       

2(4) 
10(1) /10 1 0.8446 

Finally, we make the substitution s  (s / 236.8) in H (s) and thereby move the cutoff frequency 

from 1 rad/sec to 236.8 rad/sec resulting in the transfer function Ha (s) 

 

 
s( s / 236.8) 

1 
=

(s / 236.8)
2 
 1.848(s / 236.8) 1(s / 236.8)

2 
 0.765(s / 236.8)  1 

(236.8)
4
 

= 
s2  

 1.848(236.8) s  236.8
2 s 2  

 0.765(2326.8) s  236.8
2 

= … 

 

(Aside) The more general N
th

 order Butterworth filter has the magnitude response given by 

H (j) = 
1
 

The parameter ‹ has to do with pass band attenuation and 1 is the pass band edge frequency 

(not necessarily the same as the 3 dB cut-off frequency c). MATLAB takes ‹ = 1 in which case 
1 = c. See DSP-HW. [See Cavicchi, Ramesh Babu]. 

(End of Aside) 

 

 

Time domain invariance 
 

Given an analog filter‘s response to a specific input we require that the response of the digital 

filter (to be designed) to the digital version of the analog input should be the same as the analog 

response at sampling instants. If the input is an impulse function the corresponding design is 

called an impulse invariant design, if the input is a step function the corresponding design is 

called a step invariant design. 

 
Impulse-invariant design If ha(t) represents the response of an analog filter Ha(s) to a unit 
impulse 6(t), then the unit sample response of a discrete-time filter used in an A/D – H(z) – D/A 
structure is selected to be the sampled version of ha(t). That is, we are preserving the response to 
an impulse. Therefore the discrete-time filter is characterized by the system function, H(z), given 
by 

H(z) = ʓ{h(n)} = ʓ ha(t )



t  nT 

 

If we are given an analog filter with system function Ha(s) the corresponding impulse-invariant 
digital filter, H(z), is seen from above to be 

H(z) = ʓ L1Ha (s)
t    nT 

, where L
–1

 means Laplace inverse 

Note that at this point we have not specified how Ha(s) was obtained, but rather we have 
shown how to obtain the digital filter H(z) from any given Ha(s) using impulse invariance. 

8 1.26 1 
   

1 

s  1.848 s  1s  0.765 s  1





 

Ha(s) = 	k 
 

	k 
 

k 

1 

Example 5.3.1 [Low pass filter] For the analog filter Ha(s) = 
A

 

s  
find the H(z) corresponding 

to the impulse invariant design using a sample rate of 1/T samples/sec. 
Solution The analog system‘s impulse response is h (t)= ℒ –1 

 A  
=Ae  t u(t). The 

  
a 


corresponding h(n) is then given by 

 s   

h(n) = h (t) = Ae
 nT

u(nT )=  Ae  T n 

u(n) = Aa 
n
u(n) 

a t  nT 

where, as previously, we have set e
 T 

= a. The discrete-time filter, then, is given by the z- 
transform of h(n) 

H(z) = ʓ{h(n)} = ʓ Ae T n 

u(n) =  
    Az  

=  
  Az 

 

z  e T z  a 

=
  A 

= 
A  





1  e T z 1 1  az 
1
 

which has a pole at z = e
 T 

= a. In effect, the pole at s = –α in the s-plane is mapped to a pole at 

z = e T 
= a in the z-plane. (HW What is the difference equation?) 

Y (z) 
 

X (z) 

A 
= → 

1  az 
1

 

Y(z)(1az
1

) = A X (z) 

→ y(n)a y(n1) = Ax(n) → y(n) =Ax(n)ay(n1) 

 
Relationship between the s-plane and the z-plane ( z  e

s T 
) We can extend the above procedure 

to the case where Ha(s) is given as a sum of N terms with distinct poles as 
N A 

k  1 s  k 

For this case the impulse invariant design, H(z), is given by   N A  
 N A z N A 

  1 
H(z) = ʓ 

 
L  s  

 k 

 = z  e
k T

 = 	k  

1  ek T z 1 

 
k  1 

k   t  nT  
k   1 k  1 

where L
–1

 means Laplace inverse. We observe that a pole at s = – in the s-plane gives rise to a 

pole at z =  e
kT  

in the z-plane and the coefficients in the partial fraction expansion of Ha(s) and 

H(z) are equal. If the analog filter is stable, corresponding to – k 
being in the left half plane, 

then the magnitude of  e
kT   

will be less than unity, so that the corresponding pole of the digital 

filter is inside the unit circle, and as a result the digital filter also is stable. 

While the poles in the s-plane ―map‖ to poles in the z-plane according to the relationship 

z = e 
s T 

, it is important to recognize that the impulse invariance design procedure does not 

correspond to a mapping (transformation) of the s-plane to the z-plane by that relationship or in 

fact by any relationship. (An example of a transformation is where we actually make a 
2 1 z 

1 

substitution, say, s = 

1 z 
 which, of course, is the bilinear transformation). For example, 


the zeros of Ha(s) do not map to zeros of H(z) according to this relation. See also matched z- 
transform later. 

We can explore the relationship z  e
s T 

keeping in mind that it only applies to poles and 

that it is not a transformation. Set s = ζ + jΩ and z = r e 
j 

in z = e
s T 

to get r e 
j 

= e
(  j) T 

= 

eT ejT 
so that r = e

T 
and ω = ΩT. 



T 



The above relations can be used to show that poles in the left half of the primary strip in 

the s-plane map into poles within the unit circle in the z-plane as shown in the figure for s = s1. 
 

Mapping of poles, z = e
s T

 

s-plane pole 

s = ζ + jΩ 

z-plane pole 

z = e
s T 

= r e 
j


r ω 

0 1 1 0 
jΩs/2 –1 1 π 

–∞ + jΩs/2 –0 0 π 
–∞ – jΩs/2 –0 0 π 

–jΩs/2 –1 1 π 

 

For s1 = ζ1  + jΩ1  we have r = e
1 T   

and ω = Ω1T. However, poles at s2 and s3 (which are a 

distance Ωs from s1) also will be mapped to the same pole that s1 is mapped to. In fact, an infinite 
number of s-plane poles will be mapped to the same z-plane pole in a many-to-one relationship. 

These frequencies differ by Ωs = 2πFs = 2π/T (Fs is the sampling frequency in Hertz). This is 
called aliasing (of the poles) and is a drawback of the impulse-invariant design. The analog 

system poles will not be aliased in this manner if, in the first place, they are confined to the 

―primary strip‖ of width Ωs = 2πFs = 2π/T in the s-plane. 
In a similar fashion poles located in the right half of the primary strip in the s-plane will 

be mapped to the outside of the unit circle in the z-plane. Here again the mapping of the s-plane 

poles to the z-plane poles is many-to-one. 
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Owing to the aliasing, the impulse invariant design is suitable for the design of low pass 

and band pass filters but not for high pass filters. 

 

(Omit) Matched z-transform In this method we apply the mapping z = e
s T 

not only to the poles 

but also to the zeros of Ha(s). As a result the observations made above are valid for the matched 
ransform method of filter design. 

ζ 



 
2 
  

2
 

1  e
2T 

 2e
T 

cos T 

s   

a 

eq 

Frequency response of the equivalent analog filter Going back to the impulse invariant design 

of the first order filter, how does the frequency response of the A/D – H(z) – D/A structure using 

this H(z) compare to the frequency response of the original system specified by Ha(s)? 
 

 
X(s) 

x(t) 

Ha(j) 

 

 
Y(s) 

 

 

y(t) 

Heq(j) 

 

 

Note Ha(s) = 
A

 
s  

and H(z) = 
Az

 

z e T 
=  

Az 

z  a 
with a = e

T 
. For the analog filter we have 

A   A A  j tan1( / ) 

Ha(jΩ) =  = 
s  j

= e 
j  

|H (jΩ)| = 
A 

, – ∞ < Ω < ∞ 

For future reference note that |Ha(j0)| = A /  . 
To obtain the equivalent frequency response of the A/D – H(z) – D/A structure one must 

first find the frequency response of the discrete-time filter specified by H(z). This is given by 
Ae j

H(e
j

) = H (z) j = 
e j  eT 

, – π < ω < π (because periodic) 

The analog frequency response of the equivalent analog filter is then determined by replacing ω 

by ΩT. Note, however, that since the digital frequency, ω, is restricted to (–π, π), the analog 

frequency, Ω, is correspondingly is restricted to (–π/T, π/T). We get 

Heq (jΩ) =  H (e 
j 

) = Ae jT 

e jT eT 
=

  A , ΩT < π or Ω < π/T 

1 eT e jT 

Denominator =1  e
T 

e
 jT 

=1 e
T 

(cosT  j sin T ) = (1 e
T 

cosT )  je
T 

sinT 

So Heq(jΩ) = 
A 

 
 

(1  e
T 

cos T )  je
T 

sin T 

, Ω < π/T 

|H  (jΩ)| = 
A 

, Ω < π/T 
 

A 
Note that |H (j0)| = eq 

= 
A 

. 
 

 

1  e T 1  a 

We can plot |Heq(jΩ)| and |Ha(jΩ)| for, say,  = 1 and different values of T say T = 0.1 
and T = 1, remembering that |Heq(jΩ)| is periodic, the basic period going from –π/T < Ω < π/T. 
Ideally the two plots should be very close (in shape, over the range of frequencies of interest) but 
it will be found that the smaller the value of T, the closer the two plots are. Thus T = 0.1 will 
result in a closer match than T = 1. Therefore, using the impulse invariant design, good results 
are obtained provided the time between samples (T) is selected small enough. What is small 
enough may be difficult to assess when the Ha(s) has several poles; and when it is found, it may 
be so small that implementation may be costly. In general, other transformational methods such 
as the bilinear allow designs with sample rates that are less than those required by the impulse 
invariant method and also allow flexibility with respect to selection of sample rate size. 

 
2 
  

2
 

X(s) 

x(t) 

Y(s) 

y(t) 

D/A H(z) A/D Ha(s) 

z  e 

 T 



 2
2
 

|Ha(jΩ) 
 

 

 

 

π 10π 
Ω

 
 

|Heq(jΩ)|  
For T = 1, valid for Ω < π/1 

 
For T = 0.1, valid for Ω < 10π 

Ω 
π 10π 

 

Example 3.3.2 [Impulse invariant design of 2
nd

 order Butterworth filter] Obtain the impulse 
4 

invariant digital filter corresponding to the 2
nd

 order Butterworth filter Ha(s) =    
s

2 
 2 2s  4 

with sampling time T = 1 sec. 

Solution Note that we are using T = 1 sec. simply for the purpose of comparing with the bilinear 

design done later with T = 1 sec. It is important to remember that in bilinear design calculations 

the value of T is immaterial since it gets cancelled in the design process; but in impulse invariant 

design there is no such cancellation, so the value of T is critical (the smaller, the better). 
H (s) = 

4 
= 

4         
 

a 
s

2 
 2 2s  4 s

2 
 2 2s   2 2  

  2 2 

= 42      2 


  
  2  = 2 

 

2     
	 

s  2  2  s  2  2 

The expression in braces is in familiar form and can be converted to its impulse invariant digital 

filter equivalent. See 3(c) in HW. 

 
 

Step invariant design Here the response of the digital filter to the unit step sequence, u(n), is 

chosen to be samples of the analog step response. In this way, if the analog filter has good step 

response characteristics, such as small rise-time and low peak over-shoot, these characteristics 

would be preserved in the digital filter. Clearly this idea of waveform invariance can be extended 

to the preservation of the output wave shape for a variety of inputs. 

 
pa(t) 

 

 

 

 
t 

 

(Omit) Problem Given the analog system Ha(s), let ha(t) be its impulse response and let pa(t) be 
its step response. The system Ha(s) is given to be continuous-time linear time-invariant. Let also 









s 
= 1 + 2 

h(n) be the unit sample response, 

p(n) be the step response, and, 

H(z) be the system function, 

 

of a discrete-time linear shift-invariant filter. Then, 
n 

(a) If h(n) = ha(nT), does p(n) =  ha (kT) ? 
k  

(b) If p(n) = pa(nT), does h(n) = ha(nT)? 
n 

Solution (a) If h(n) = ha(nT), does p(n) =  ha (kT) ? We know that 
k  

n 

u(n) =  (k) 
k  

This is seen to be true by writing it out in full as 
 

u(n) = 6(–  ) + 6(–  +1) + …+ 6(–1) + 6(0) + 6(1) +…+ 6(n) 
 

where n is implicitly some positive integer. Take, for instance, n = 3; then, from the above 

equation u(3) = 6(0) = 1, all the other terms being zero. In other words u(n) is a linear 

combination of unit sample functions. And, since the response to 6(k) is h(k), therefore, the 

response to u(n) is a linear combination of the unit sample responses h(k). That is, 
n n 

p(n) =  h(k) =  ha (kT) 
k   k  

Therefore, the answer to the above question is, Yes. 

 
(b) If p(n) = pa(nT), does h(n) = ha(nT)? Since 6(n) = u(n) – u(n–1), the response of the 

digital system, H(z), to the input 6(n) is 
 

h(n) = p(n) – p(n–1) = pa(nT) – pa(nT–T)  ha(nT) 

Therefore, the answer to the above question is, No. 

 
Example 3.3.3 [LP filter] [Step Invariance] Consider the continuous- 

A 
time system Ha(s) = with unit step response pa(t). Determine the system function, H(z), i.e., 

s 
the z-transform of the unit sample response h(n) of a discrete-time system designed from this 

system on the basis of step-invariance, such that p(n) = pa(nT), where 
n 

p(n) =  h(k) 
k  

t 

Solution Since pa(t) = ha ( ) d


t 

and pa(t) = ha ( ) d




we have 

ℒ [pa(t)] = Pa(s) = 
Ha (s) 

= 
  A  K 

s (s  ) s 

K 

s  

where K1 and K2 are the coefficients of the partial fraction expansion, given by 



 2 
 

2
 

= 



z 

 

 
 

Therefore, 

 

K1 = 
   A 

s 
A 

s 0 



and K2 
A 

= 
s s  

= – 
A

 



A /  A/ A 0 t A  t 

Pa(s) = –  ↔ 
 

    u(t) – e u(t) 

s s   pa (t) = 
 

e 

from which we write p(n) = pa (nT ) and hence P(z) etc. Equivalently, we may reason as follows. 

The correspondence between s-plane poles and z-plane poles is 

   1  

s  
Thus we get P(z) as below (A / ) 

1 
 

 

1  e T z 1 

(A /) A z  z  

 
A  zz  e  z(z 1)

P(z) = – = 
 

  
= = 


  T 

1  e0 T z 1 1e T z1   z 1 z  e T 


   (z 1)ze
 T  

= 
A 1 e

 T 


z 
 

 

(z 1)(z e
 T 

) 

However, what we need is H(z). Since 6(n) = u(n) – u(n–1), and we know the response to u(n), 

therefore, the response to u(n) – u(n–1) is given by h(n) = p(n) – p(n–1), and taking the z- 

transform of this last equation, 
H(z)=P(z)– z

1
P(z) =(1 z

1
)P(z) = 

z 1
P(z) 

 

 

 z 1 A 
   z 



=          1e
 T 

 z  




(z 1)(z  e
 T 

) 

= 
A 1 e

 T 


1 
 

 

(z e
 T 

) 

Alternatively, we may also obtain the transfer function as the ratio of output and input 

transforms, H(z) = P(z)/U(z). 

 
Frequency-response analysis As we did in the case of the impulse-invariant design, here also 

A 

we can compare |Ha (j)| with |Heq(j)|. For the system Ha(s)= 

A 
s 

the frequency response is 

already evaluated as |Ha(jΩ)| = . We need the frequency response, |Heq(j)|, of the 

equivalent analog filter when the above H(z) is used in a A/D – H(z) – D/A structure. Start with 

the above H(z) and set z = e 
j 

to get A  1  A 	1 H (e 
j 

) = H (z)  =     
 

 

T       =  T        

 
z  e 

1e 


 
(z  e 

 
T 

)z   e j
 
1e 

(e j  e T ) 

For the equivalent analog filter we get Heq(jΩ) by setting ω = ΩT in H (e 
j 

) . 

 

Bilinear transformation 
 

One approach to the numerical solution of an ordinary linear constant-coefficient differential 

equation is based on the application of the trapezoidal rule to the first order approximation of an 

integral (or integration). Consider the following equivalent pair of equations 

j 

↔ 






1 

s 



dy  
= x(t) 

dt 
 dy =  x(t)dt 

Here dy = area shown shaded and is given by 
 x(n)  x(n  1) 

y(n) – y(n–1) =   T 
 2 

where we have used the trapezoidal rule to compute the area under a curve. 
 

 
 

 

 

 

 

 

 

 

 

t 
(n–1)T nT 

Taking the z transform of the above we get 

Y(z) – z
1 

Y(z) = 
T 

X (z)(1 z
1 

) 
2 

Rearranging terms gives 1  z 
1 	1 

 Y (z) = 
T 	        =  

X (z) 2 
 1  z 

1 

 2  1  z 

1 
T 

  
1  z 

1 




Thus the continuous time system y(t) =  x(t)dt 



represented by the following block diagrams 

x(t) y(t) X(s) Y(s) 
  

 

 
is replaced in the discrete-time domain by the following block. 

H(z) 

In other words, given the Laplace transfer function Ha(s), the corresponding digital filter is given 
2(1  z

1 
) 

by replacing s with  , or 
T (1  z 

1 
) 

H(z) = H (s) 2(1z1 ) 

a s 

T (1z1 ) 

This is called bilinear transformation (both numerator and denominator are first order 
polynomials), also known as bilinear z-transformation (BZT). 

x(n) y(n) 

X(z) Y(z) 



1 


T 1 z 

1 

2  1 z 1 

x(t) 

x((n–1)T) 
x(nT) 





 

Here again, note that at this point we have not specified how Ha(s) was obtained, but 
rather we are showing how to obtain the digital filter H(z) from any given Ha(s) using bilinear 
transformation. 

 
Example 3.4.1 [LP filter] [Bilinear] Design a digital filter based on the analog system Ha(s) 

= 
A 

, using the bilinear transformation. Give the difference equation. Use T = 2 sec. 

s  
Solution  H(z) = H (s) 2(1z1 ) 

A 
=  = A 

1 a s T (1z1)  21  z   (1)(1)z
1

 

T 1 z 
1 

Example 2 [Ludeman, p. 178] Apply bilinear transformation to the 2
nd

 order Butterworth filter 
4 

Ha(s) =  with T = 1 sec. Obtain (1) H(z), (2) the difference equation and 
s

2 
 2 

(3) H (e 
j 

) . 

Solution 

2s  4  

 
1  z 

1  2(1 z
1 

) 

1. With T = 1 second, s =
 2  

	 becomes s =  , and 

T 

H(z) = H (s) 2(1z1 ) 

 1  z 
1 


= 

1 z
1

 

4 
a s  

1(1 z1) 

 


2(1  z 

1 
)
2  
 2    

2(1  z 
1 

)

 4 

 

(1  z 
1 

) 2 (1  z 
1 

) 
   

1  2z 
1 
 z 

2
 

=  3.4142135  0.5857865 z 
2

 

 
2. The difference equation is obtained from 

H(z) = Y (z) 
=

 

X (z) 

1  2z 
1  z 2

 
 

 

3.4142135  0.5857865 z 
2

 

Cross-multiply and take inverse z-transform to get 
 

3.4142135 y(n) + 0.5857865 y(n–2) = x(n) + 2x(n–1) + x(n–2) 

 

By rearranging and scaling y(n) can be realized as 

 

y(n) = 0.2928932 [x(n) + 2 x(n–1) + (n–2)] – 0.1715729 y(n–2) 
 

3. Frequency response 
1  2e j   e j 2 N () 

H (z) j    
=  =     

z  e 
3.4142135  0.5857865e

 j 2 
D() 

Numerator = N() = 1 2e
 j 

 e
 j 2 

= e
 j 

(e 
j 
 2  e

 j 
) = e

 j 
(2  2cos ) 

= 2(1  cos ) e
 j



Denominator = D() = 3.4142135 + 0.5857865 e
 j 2



= (A + B cos 2) – j B sin 2ω 

= A + B e
 j 2







      B sin 2 
   j tan 1

	

= (A  B cos 2)
2 
 (B sin 2)

2 
e  AB cos2 

H (e 
j 

) = 2(1  cos ) j 

tan1 

 
 B sin 2 

   e 



 AB cos2 
 

( A  B cos 2)
2 
 (B sin 2)

2 

The magnitude of the frequency response is 

| H (e 
j


2(1  cos ) 
) | =     

( A  B cos 2)
2 
 (B sin 2)

2
 

Plot 20 log10| H (e 
j 

) | vs ω for ω = 0 to π. 

Relationship between the s- and z-planes The bilinear transformation is 
1 

s = 
2(1  z

  

) 
or z = 

1  (sT / 2) 
 

T (1  z  
1 
) 1  (sT / 2) 

We can map a couple of points on the jΩ axis by setting s = jΩ, so that 

1  ( jT / 2) 

1  ( jT / 2) 

Thus Ω = 0 maps to z = 1 and Ω = 2/T maps to z = j1 = 1 e 
j / 2 

as shown in figure below. The 

transformation has the following properties: 

1. The entire j axis of the s-plane goes on to the unit circle of the z-plane. 
2. The entire left half of the s-plane is mapped into the inside of the unit circle of the 

z-plane. (In contrast, in impulse invariant design the poles in the left halves of 

infinitely many strips of width s in the s-plane are mapped into the inside of the 
unit circle in the z-plane.) 

 
So a stable analog filter, with all of its poles in the left half plane, would be transformed 

into a stable digital filter with all of its poles in the unit circle. The frequency response is 

evaluated on the j axis in the s-plane and on the unit circle in the z-plane. While the frequency 

responses of the analog filter and digital filter have the same amplitudes there is a nonlinear 
relationship between corresponding digital and analog frequencies. 

 

 

jΩ 
 

s-plane, 
s = ζ+jΩ 

 

Im 

Unit circle 

 

z-plane 

 

j2/T 

j0
+
 

 
j0

–
 

 

 

 

 
ζ 

 
 

(Ω = +∞) 

j1 (for Ω = 2/T) 

 
+ 

(Ω = 0 ) 

Re 

(Ω = 0
–
) 

–j2/T (Ω = –∞)  
–j1 (for Ω = –2/T) 

Left half plane 

z = 



T  1  z 

=     

 
 

 

Nonlinear relationship of frequencies in bilinear transformation 
 

In the bilinear transformati

on 


the a1n

alog and digital frequencies are non-linearly related. Setting 

jΩ j 2  
 
1 z 




s = and z = e in s =   , we get 
1 

          
 j     j / 2 j / 2     j / 2 2 j / 2   j / 2 ) / 2

jΩ = 
2 

1 e 

  = 2 e (e e ) 
2 (

 e e j 

T  1  e
 j 



j 

T  e j / 2 (e j / 2   e j / 2 ) T 2(e j / 2  e j / 2 ) / 2or 
Ω =  

2  
sin  / 2 

2 
tan 




  =     
  or ω = 2 tan  

T 


  1  

T  cos  / 2 T  2     2 

First we sketchΩ (the analog frequency) as a function of ω (the digital frequency) as 

given by Ω =  
2 

tan  to show qualitatively the distortion of the frequency scale that occurs 
T  2 

due to the nonlinear nature of the relationship. 
 
 

Unequal 

 

Equally spaced pass bands A are pushed together or warped on the higher frequency end 

of the digital frequency scale. This effect is normally compensated for by pre-warping the analog 

filter before applying bilinear transformation. 

Ω = 
2 

tan( / 2) 

T 

A 

A 

ω 



ω 

2π 
ω 

ω = 2 tan
1 T / 2

π (Periodic) 
π 

ω2 

0 
Ω 

ω1 

K2 K1 

–π 

|H(Ω)| 

K1 
(Nonperiodic) 

K2 
Ω 

c 

c 

c = 

Because of warping the relationship between Ω1 and Ω2 on the one hand and ω1 and ω2 on 
the other is not linear. The digital frequencies ω1 and ω2 are pushed in towards the origin (ω = 0). 

In this process Ω =  is transformed to ω =. 

 

 

 
 

 

 
 

 

 
 

|H(ω)| 

 

 

 

 

 

 

 

 

 

 

 

 

Ω1 Ω2 

 
 

If the bilinear transformation is applied to the system Ha(s) with critical frequency c, the 

digital filter will have a critical frequency ωc = 2 tan
1  T / 2. If the resulting H(z) is used in an 

A/D–H(z)–D/A structure, the equivalent critical frequency (of the equivalent analog filter) is 
obtained by replacing ωc with ceqT: 

1  cT  2 1  cT 
ωc   Ωceq T = 2tan   

   2  
or Ωceq = 

T 
tan   

   2  

If (cT/2) is so small that tan
1  T / 2  cT/2, then we have 

ceq = 
2   T 
	 c 

T  2 
If this condition is not satisfied, then the warping of the critical frequency (in the bilinear 

design) is compensated for by pre-warping. 

 

 

Digital filter design – The Butterworth filter 



1 /  2 N 
c 

Before taking up design we reproduce below some of the material relating filter specifications to 

the filter order and the cut-off frequency. 

A typical magnitude response specification is sketched below. The magnitudes at the 

critical frequencies Ω1 and Ω2 are A and B, respectively. For illustrative purposes we have 
 

 

|H(jΩ)| 

Transition 

band 

 

 

 

 

A 

 

 

Ω1 Ω2 

 

Stop 
band 

 
 

 

 

 

 

Ω, rad./sec. 

arbitrarily taken A = 0.707 (thus Ω1 is the cut-off frequency, but this need not be the case) and B 

= 0.25. 

The log-magnitude specification is diagrammed below. Note that (20 log A) = K1 and (20 
log B) = K2. Thus the analog filter specifications are 

 

0  20log10 H( j) 

20log10 H ( j) 

 K1 for all Ω  Ω1 

 K2 for all Ω  Ω2 

 

dB (= 20 log10 |H(jΩ)|) 

 
 

Ω 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

With the magnitude |H(jΩ)| given by the Butterworth function, 

|H(jΩ)| = 
1
 

and using the equality condition at the critical frequencies in the above specifications the order, 

N, of the filter is given by 

0 

K1 

Ω1 Ω2 

K2 

Pass 
band 

 

= 0.707 

 
B = 0.25 

 

 

  

 



c 

  10
 K1 /10 

 1 
log10 10 

K 
2
/10  1

 


	 

N = 
 

    

 2 log
10 




1  


 

→ (3.16, Ludeman) 

  2   
The result is rounded to the next larger integer. For example, if N = 3.2 by the above calculation 

then it is rounded up to 4, and the order of the required filter is N = 4. In such a case the resulting 

filter would exceed the specification at both Ω1 and Ω2. The cut-off frequency Ωc is determined 

from one of the two equations below. 

Ωc = or Ω  = 
2 

2 N 

/10  1 
10K2 → (3.17 Ludeman) 

The equation on the left will result in the specification being met exactly at Ω1 while the 
specification is exceeded at Ω2. The equation on the right results in the specification being met 
exactly at Ω2 and exceeded at Ω1. 

 

Example 3.6.1 Design and realize a digital low pass filter using the bilinear transformation 

method to satisfy the following characteristics: 
 

(a) A monotonic pass band and stop band 

(b) –3.01 dB cut off frequency of 0.5 rad. 

(c) Magnitude down at least 15 dB at 0.75 rad. 

dB (= 20 log10 |H(jω)|) 

 

ω 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Note that the given frequencies are digital frequencies. The required frequency response 

is shown. We use bilinear transformation on an analog prototype. 

 

Step 1 Pre-warp the critical digital frequencies 1 = 0.5 and 2 = 0.75 using T = 1 sec. That 

is, we find the analog frequencies  1 and  2 that correspond to 1  and 2: 
2  1  0.5

1  = 
T 

tan


 = 2 
2 

tan  = 2.0 rad / sec 
2 

2  2  0.75
2    = 

T 
tan


 = 2 

2 

tan   = 4.8284 rad / sec 
2 

1  

2 N 10 K1 /10 1 

0 

–3.01 

π/2 3π/4 π 

–15 



2 





Step 2 Design LP analog filter with critical frequencies  1  and  2   that satisfy 

 

0  20 log |Ha(j 1 )|  –3.01 dB = K1, and 

20 log |Ha(j 2  )|  –15 dB = K2 

The Butterworth filter satisfies the monotonic property and has an order N and critical 

frequency Ωc determined by Eq. 3.16 and 3.17 of Ludeman 
  10

 K1 /10 
 1 

log10 10
K 

2
/10  1

        
   1 

N =      and Ωc = 
2 N

  
 K /10 

 2 log10  1    10   1 1 

  2  
Plugging in numerical values, 

  103.01/10  1 log
 

 
 


 2 1 




log10  10
15/10   

 1 
  10  31.62 1 	1.486 

 
N = 


  2  




 
2 0.3827 

 
=  

2 
= 1.941 = 2 

(0.3827) 

 2 log10      
 


2.0 

 4.828    
2 

Ωc =  =  = 2 rad / sec 

4 103.01/10  1 
Note in this case that Ωc = Ω1. 

4 2  1 

Therefore, the required pre-warped, normalized, unit bandwidth, analog filter of order 2 

using the Butterworth Table 3.1b (or the Butterworth circle) is 
1 

Ha(s) =  (with a cut off frequency = 1 rad / sec) 
s

2  
 2 s  1 

Since we need a cut-off frequency of Ωc = 2 rad/sec, we next use the low pass to low pass 

transformation s → s/2 in order to move the cut-off frequency from 1 to 2 rad/sec. 
1  1 H (s) =   = 

a 
s

2 


 2 

s 1 ss / 2 
(s / 2)  2(s / 2)  1 

4 (with a cut-off frequency = 2 rad/sec.) 
s

2 
 2 2 s 4 

Step 3 Applying the bilinear transformation to Ha(s) with T = 1 will transform the pre-warped 
analog filter into a digital filter with system function H(z) that will satisfy the given digital 
requirements: 

H(z) = H (s) 2(1z1 ) = 
4
 

 

 
 

a s 1z 
 2(1 z 

1 
) 

2  2(1 z 
1 

) 




1 2 z 
1 
 z 

2
 

1 z 
1 



2  4 
 

 1 z 1 

=  3.414  0.585 z 
2

 

HW: Obtain the difference equation. Plot | H (e 
j 

) | and H (e 
j 

) vs . 

 
Bilinear transformation: Cancellation of sampling time in warping and pre-warping The 
digital specifications are the set of critical frequencies {ω1, ω2, …, ωN} and the corresponding set 
of magnitude requirements {K1, K2, …, KN}. When an analog filter is used as the prototype for 

2 

= 

1 

= 



T 2 

 

the bilinear transformation method the relationship between digital and analog frequencies is 

nonlinear and governed by   1  T 

Ω = 
2 

tan  and ω = 2 tan  	
T  2    2  

Therefore, to get the proper digital frequency, we must design an analog filter with analog 

critical frequencies Ωi: i = 1, 2, …, N given by 
2   

Ωi  =     tan   i   , i = 1, 2, …, N 

T  2 

This operation will be referred to as pre-warping. The corresponding analog magnitude 

requirements are not changed and remain the same as the corresponding digital requirements. An 

analog filter Ha(s) is then designed to satisfy the pre-warped specifications given by Ω1, Ω2, …, 

ΩN and K1, K2, …, KN. The bilinear transformation is then applied to Ha(s), i.e., 
H(z) = H (s) 2(1z1 ) 

a s

T (1 z1 ) 

As the T in the Ωi equation and the T in the bilinear transform cancel in the procedure described 

above for low pass filter design, it is convenient to just use T = 1 in both places. This is easily 

seen since if the Ωi comes from an analog-to-analog transformation of an Ha(s) with a unit radian 
2(1  z 

1 
) 

cut-off frequency, we have s→(s/ Ωi), and when the bilinear transformation s → 

used the cascade of transformations is given by 

T (1  z 
is 

1 ) 

2(1  z 1 ) = 2(1 2z 
1 )    (1  z 

1 ) 


s → T (1  z 1 ) T (1 z 
1 

) tan i = (1 z 
1

) tan i
 

i    
   

 
 
 

This does not contain a T. Thus it is immaterial what value of T is used as long as it is the same 
in both steps (which it is). 

The procedure for the design of a digital filter using the bilinear transformation consists 

of:  

Step 1: Pre-warping the digital specifications 

Step 2: Designing an analog filter to meet the pre-warped specs 

Step 3: Applying the bilinear transformation 
 

In the process T is arbitrarily set to 1, but it can be set equal to any value (e.g., T = 2), since it 

cancels in the design. The design process is shown by the figure below. 
 

 

 

 

 
Digital specs 
ω1, ω2 , …, ωN 

K1, K2, …, KN 

 
 

Pre-warp 

T = 1 

Ωi = (2/T) tan (ωi/2) 

 
 

Pre-warped 
Analog specs 
Ω1, Ω2, …, ΩN 

K1, K2, …, KN 

 

Design 

Analog 
Filter Ha(s) 

 

 

 
 

 
Bilinear 

transformation T = 1 
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Desired 

H(z) 

T 1  z  1
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2 

* * 



1 1 1 

Example 3.6.2 Design a digital low pass filter with pass band magnitude characteristic that is 

constant to within 0.75 dB for frequencies below  = 0.2613 and stop band attenuation of at 

least 20 dB for frequencies between  = 0.41 and . 
 

dB (= 20 log10 |H(jω)|) 

 

ω 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Use bilinear transformation. Determine the transfer function H(z) for the lowest order 
Butterworth design which meets these specifications. Draw the cascade form realization. 

 
Step 1: Pre-warp 1 = 0.2613, 2 = 0.41 with T = 1 sec. 

1 = 
T 
2 


tan 1

 


2 

0.2613
= 2 tan = 0.8703 rad / sec 

0.41
2 = tan   2   = 2 tan  = 1.501 rad / sec 

T 2 2 
Step 2: Design Ha(s) 

 100.75/10 1 log 
 1.19 1






log10  10
20/10 1 

 
 10  100 1 

  2.7203  = 5.75 = 6 
  N =  0.8703 = 

2 0.2367   
=  

2 (0.2367) 
  




 2log10 

 

     
 

 
  

  1.501     

Ωc =
   1 = 

2 N 10 K1 /10 1 

  0.8703 
=

 

12 100.75/10  1 

0.8703 

0.8701 
= 1 rad/sec 

* 

Let the left-half plane poles be denoted s1 , s1 , s2 , s2 , s3 , and s3 . Ha(s) = 
 * * *

 

 

s  s s  s  s  s s  s  s  s s  s 
1 1 2 2 3 3 

Since Ωc = 1 the LP to LP transformation s → (s/1) results in the same Ha(s) as given above. 
Step 3: H(z) = H (s) 2(1z1 ) 

a s

1z1 

0 

–0.75 

0.2613π 0.41π π 

–20 

2 



s  s 
1 

s  s * 

2 2 
s  s 

1 

s  s * 

3 3  2(1z )  2(1z )  2(1z ) 

 

= 
1 1 1 

s  
1 z1 

s  
1 z1 

s    
1 z1 

Example 3.6.3 Determine H(z) for a Butterworth filter satisfying the following 

constraints. Use the impulse invariance technique. 

0.5  | H (e 
j 

) |  1, for 0  ω  π /2 

| H (e 
j 

) |  0.2, for 3π /4  ω  π 

 
|H(ω) 

| 

1 

 
0.707 

 

 

0.2 
 

0 

 
ω 

π/2  3π/4 π 
 

 

dB (= 20 log10 |H(ω)|) 

 

ω 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Solution The critical frequencies are ω1 = π/2, ω2 = 3 π/4. Use ω = ΩT to determine the analog 

frequencies 1 and 2. Note T is not given. Take T = 1, so that ω = Ω .1 = Ω. (This corresponds 

to the pre-warping step of the bilinear transformation with Ω = (2 /T ) tan( / 2) ). 

We have ω = Ω .1, so that the critical frequencies are 

 
K1 = –3.01 dB 

1 = ω1 = π/2 rad/sec. (= ωc) 

K2 = – 13.98 dB 

2 = ω2 = 3π/4 rad/sec. 

The order of the filter is given by 

s  s 
1 

s  s * 

1 1 

0 π/2  3π/4 π 

–3 

–13.98 



log   log    log10 	

  

  10
 K1 /10  

 1    103.01/10  1    2 1 
10 	K  /10  10 	13.98/10 

 10 2  1 =  10 1 	 25.003 1


N = 

	        / 2  

= 
  2  

 2 log
10     

1  

   2log10     2 log10   

  2     3 / 4     3  
 13.8 

= 


 = 3.919 = 4 

 2 (0.176) 

c is already known to be  /2 rad/sec. 
The 4

th
 order normalized Butterworth filter (with unit bandwidth) is 

1 
Ha(s) (normalized) = 

s
4 
 2.613 s

3 
 3.414 s

2 
 2.613 s  1 

Using the low pass to low pass analog transformation s→ (s / c ) 

Butterworth filter satisfying the required specs: 

or s→ (s /1.57) we get the 

Ha(s) =  s 4 





 s  3 

1 
 s  2 

 
 s 

	 2.613	   3.414	   2.613	 1 

1.57  1.57  1.57  1.57 

For the impulse invariant design we need the poles of Ha(s), so the above form is not much help. 
We need to use the factored form: 

Ha(s) (normalized) = 

And with s→ (s /1.57) , we have 

1 
 

 

(s
2 
 0.76536 s 1)(s

2 
1.84776 s 1) 

H (s) = 1           
2   

 
 

 a 
   s   

2 
  s       s       s    

  0.76536   1   1.84776    1

1.57  1.57   1.57  1.57  
Put this into partial fraction form. We need the poles individually since we need to use the 
relation 

 

(s = s1) → (z = e
s1T  

), with T = 1 of course 
 

to get H(z) from the Ha(s). Once we get the Ha(s) we can then combine complex conjugate pole 
pairs to biquadratic form and then implement as a parallel form with two biquadratics in it. 

Alternatively, memorize relations 3(c) and 3(d). This latter gives the biquadratics directly. 

 

This same problem will next be solved using the bilinear transformation to show the 

difference. 

Step 1: Pre-warping according to Ω = 
2
 


tan with T = 1 gives 

 
T 2 

Ω1 = 2 tan 
2 

( / 2) 
= 2 tan  = 2 rad / sec 

2 

Ω2 = 2 tan 
2 (3 / 4) 

= 2 tan 
2 2 

= 4.828 rad / sec 

Step 2: Design Ha(s) 

1 



 
 10 3.01/10 1 



log10 	K  /10  log10 	(15) /10  log10 	



log10 
10

13.98/10   
1

  


N = 

 2log 


 2  =? 

10   

 
   

 4.828  

Ωc =
  1 =? 

2 N 10K1 /1 0   1 
Step 3: H(z) = H (s) 2(1z1 ) 

a s

1z1 

 

Example 3.6.4 Design a low pass digital filter by applying impulse invariance to an appropriate 
Butterworth continuous-time filter. The digital filter specs are: 

 

–1 dB  20 Log |H()|  0, 0  ||  0.2 
20 Log |H()|  – 15 dB, 0.3  ||  

Solution First convert the digital frequencies  to analog frequencies . The mapping between 

 and  is linear in the absence of aliasing. We shall use  = T with T = 1. Thus the specs 
become 

 

–1 dB  20 Log |Ha()|  0, 0  ||  0.2
20 Log |Ha()|  –15 dB, 0.3  ||  


dB (= 20 log10 |H|) 

 

0 

K1 = –1 dB 

0.2π 0.3π π 
ω 

 

 

 

K2  = –15 dB 

 

 

 

 

 

 

 

  10
 K1 /10  

 1    10(1) /10 1    1.259 1 

 10 2  1  10 1 	 31.62281


N =      
= 
	 0.2   

= 
 2 log 0.6666 

 2 log  10  1  

   2 log10 	
   

10 


  2     0.3    



jΩc 

s-plane 

ζ 

Ωc 

 
Radius = Ωc 

10 

or z = 

1 1 1 

2 


log   0.2589  30.6228 




 log 0.0085    

=   =  
10   =  2.0729 

 
= 5.885 = 6 

 2  0.1761  2  0.1761


2 (0.3827) 
  





Ωc = 1 = 



  0.2   0.2  = 

 
  0.2  = 

 

= 0.703 rad/sec 

2 N 10 K1 /10 1 
121.2589  1 12 0.2589 0.8935 

* * * 

Let the left-half plane poles be denoted s1 , s1  , s2 , s2 , s3 , and s3 . Ha(s) = 
 * * *

 

 

s  s s  s  s  s s  s  s  s s  s 
1 1 2 2 3 3 

Since Ωc = 0.703 the LP to LP transformation s → (s/0.703) results in 
 

Ha(s) = 
s 

s 

To be completed 
0.703 

 

Example 3.6.5 [2003] [The Butterworth circle and the bilinear transformation] Refer to 

Oppenheim & Schafer, Sec. 5.1.3 and Sec. 5.2.1. The bilinear transformation is given by 
1 (1 

s =   z  ) 1 (sT / 2) 

T  (1  z
1 

) 1 (sT / 2) 

This last equation is used to map the poles on the Butterworth circle in the s-plane into poles on 

the Butterworth circle in the z-plane. For the normalized Butterworth filter with a cut-off 
frequency of 1 rad/sec., the Butterworth circle in the s-plane has unit radius. If the cut-off 

frequency is Ωc instead of 1, then the circle has a radius of Ωc. This is the case in the example on 

pp. 212-214 of Oppenheim & Schafer where the order N of the filter is 3, the radius of the 
Butterworth circle in the s-plane is Ωc, and ΩcT = ½ which corresponds to a sampling frequency 

of twice the cut-off frequency (Figure 5.14). 

For the two poles at s = – Ωc and s = Ωc and ΩcT = ½ we get 

1  (cT / 2) 
 

1 (cT / 2) 

s = Ωc: z = 
1  (cT / 2) 

1 (cT / 2) 

1 (1/ 4) 

1 (1/4) 

1 (1/ 4) 

1 (1/ 4) 

= 3/5 

 
= 5/3 

Both of these z-plane poles are on the real axis as shown in figure below. 
 

jΩ Im 
Unit circle 

 

z-plane 

j1 

3/5 

 
–1 Re 

5/3 
 

 

 
 

Butterworth circle 

in the s-plane 

 

Butterworth circle 

in the z-plane 

s  s s  s s  s 
1 

* s  s s  s * s  s * 

1 1 2 2 3 3 
   

s = – Ωc: z = = 

= 





The other s-plane poles are similarly mapped to z-plane poles, though the algebra involved is a 

little more. Note that the three poles in the left-half of the s-plane are mapped into the inside of 

the unit circle in the z-plane. 

 

 

5.7 Analog design using digital filters 
 

When we are required to simulate an analog filter using the A/D – H(z) – D/A structure, the 

specifications consist of the analog frequencies{Ω1, Ω2, …, ΩN}, the corresponding magnitudes 
{K1, K2, …, KN} and the sampling time T. We convert to digital specs using the relation ωi = ΩiT. 

 

Example 5.7.1 [Bilinear] [4.2, p. 180, Ludeman] Design a digital filter H(z) that when used in 

an A/D-H(z)-D/A structure gives an equivalent low-pass analog filter with (a) –3.01 dB cut-off 

frequency of 500Hz, (b) monotonic stop and pass bands, (c) magnitude of frequency response 

down at least 15 dB at 750 Hz, and (d) sample rate of 2000 samples/sec. 

Solution 

Step 0 First we convert the analog Ω‘s to digital ω‘s using i = iT. 

Ω1 = 2F1 = 2 500 = 1000  rad/sec., K1 = –3.01 dB 

Ω2 = 2F2 = 2 750 = 1500  rad/sec., K2 = –15 dB 
 

Thus  
ω1  = Ω1T = 1000 



ω2  = Ω2T = 1500 


1 

 
 

2000 

1 
 

 

2000 

 
= 0.5  rad, K1 = –3.01 dB 

= 0.75  rad, K2 = –15 dB 

 

Step 1 Pre-warping. Use T = 1. (In Steps 1 and 3 we could have used T = 1/2000 but the two 

occurrences of T would cancel out). 
2  1  2  2 

1 = tan
T 

= 2.0 rad/sec. and 
2 

2 = tan
T 

= 4.828 rad/sec. 
2 

Step 2 Design Ha(s), i.e., determine the low pass Butterworth filter (see earlier example). 
  103.01/10  1 log   

 2 1 





log10  10
15/10   

 1 
  10  31.62 1



	1.486 

 
N = 


  2  




 
2 0.3827 

 
=  

2 
= 1.941 = 2 

(0.3827) 

 2 log10      
 


2.0 

 4.828    
2 

Ωc =  =  = 2 rad / sec 

4  103.01/10   1 
4 2  1 

Do analog low pass to low pass transformation s→(s/Ωc), i.e., s→(s/2) in order to move the cut- 
off frequency from 1 to 2 rad/sec. This gives the Ha(s) with pre-warped specs and Ωc = 2 rad/sec. 

1  1 
H (s) =  

 = 
a 

s
2 
 2 s 1  ss / 2 

=
  4  

s
2 
 2   2 s  4 

(with a cut-off frequency = 2 rad/sec.) 

(s / 2)
2 
 2(s / 2)  1 

= 



) 

 
= 

Step 3 Applying the bilinear transformation s→ 
2 

(1  z 1 
1 

 

to H (s) with T = 1 will transform 
a 

T  (1  z  ) 

the pre-warped analog filter into a digital filter with system function H(z) that will satisfy the 

given requirements: 

H(z) = H 4 (s) 2(1z1 ) 
 

 
1  2z 1  z 2 

a s	= 
(1 z1 )  2(1 z 

1 
)  2  2(1 z 

  2  
1 

)  4 3.414  0.585z 

 1z 1 
2 


1 z 1 



Example 3.7.2 [2002] Derive the Butterworth digital filter having the following specs: 

 

Pass band: 0 to 4411 rad/sec. 

Maximum ripple in pass band: 1 dB 

Stop band: beyond 25975 rad/sec. 

Minimum attenuation in stop band: 60 dB 

Sampling frequency: 20 kHz 

 
 

dB (= 20 log10 |H|) 
 

0 

–1 dB 

0.221  1.299 π 
ω 

 

 

 

 

 
 

 

 

–60 dB 

 

 

 
Solution Even though pass band ripple may suggest a Chebyshev filter we shall comply with the 

request for a Butterworth filter. We use bilinear transformation. 

Analog frequency specs are given. Convert them to digital by using the relation ω = ΩT 

and T = (1/20000) sec. 

 
Ω1 = 4411 rad/sec. becomes ω1 = Ω1T = 4411/20000 = 0.221 rad 
Ω2 = 25975 rad/sec. becomes ω2 = Ω2T = 25975/20000 = 1.299 rad 

Now, starting from these digital specs the design proceeds in 3 steps as usual. 

Step 1 Pre-warp the critical 

digital frequencies 1  and 2  using T = 1 sec., to get 

2  1  0.221 

1 = 
T 

tan


 = 2 
2 

tan   = 2 
2 

tan0.11 = 0.221 rad/sec. 

2  2  1.299 

2    = 
T 

tan


 = 2 
2 

tan   = 2 
2 

tan 0.650 = 1.519 rad/sec. 

2 




1 

2 N 10 K1 /10 1 8 101/10  1 

10 2  1 10  1  10  1 

= = 

 

Step 2 Design an analog low pass filter with critical frequencies  1  and  2   to satisfy 

0  20 log |Ha(j 1 )|  –1 dB = K1, and 

20 log |Ha(j 2 )|  –60 dB = K2 

 
The Butterworth filter of order N and cut-off frequency Ωc is given by equations (3.16) and 

(3.17) of Ludeman: 
  10

 K1 /10  
 1    10

1/10  
1    1.259  1

log10 	K  /10  log10 	60/10  log10 	6 
     


	 

N = 

	     

= 
  0.221  

 
= 

 2 log
10     

1  

     2 log10      


  2      1.519  

2 log 0.145 
10 

log 2.59 . 10
7   

 6.587 
= 	10  =  

 
= 3.934 = 4 

 2  0.837 




 1.674 

Ωc = = 
  0.221      0.221  

8 1.259  1 

0.221 
= 0.262 rad/sec. 

0.845 

Therefore the required pre-warped Butterworth (analog) filter using Table 3.1b (Ludeman) and 

the analog low-pass to low pass transformation from Table 3.2, s→(s/Ωc), that is, s→(s/0.262), is 
1 

Ha(s) = 
s

4 
 2.613 s

3 
 3.414 s

2 
 2.613 s 


1  s  (s / 0.262) 

 

Example 3.7.3 Design a digital LPF using bilinear transformation with the following 
specifications, and a Butterworth approximation: 

 

– 2 dB at 5 rad/sec., 

– 23 dB at 10 rad/sec., 

Sampling frequency = 1000 per sec. 

 
dB (= 20 log10 |H|) 

 

0 

K1 = –2 

0.005 0.01 
ω 

 

 

 

 

 
 

 

K2  = –23 





Solution Convert the analog specs to digital using  = ΩT, with T = 1/1000 sec. The critical 
frequencies are 

ω1  = Ω1T = 5/1000 = 0.005 rad; K1 = –2 dB 
ω2  = Ω2T = 10/1000 = 0.01rad; K2 = –23 dB 

 

Now apply Steps 1, 2 and 3 of the bilinear transformation design process. 

 

Example 5.7.4 [2003] Design a digital filter that will pass a 1 Hz signal with attenuation less 

than 2 dB and suppress 4 Hz signal down to at least 42 dB from the magnitude of the 1 Hz 

signal. 

 
 

dB (= 20 log10 |H|) 

 
0 2π 8π 

Ω
 

K1 = –2 
 

 

 

 

K2  = –44 

 

 

 

 

 
Solution All the specs are given in the analog domain. The sampling period T is not specified. 

Since 1 Hz is in the pass band and 4 Hz in the stop band we shall use some multiple of 4 Hz, say, 

20 Hz as the sampling frequency. Thus T = 1/20. We shall employ the impulse invariance 

method. 
 

Step 0 Convert the analog specs to digital by using ω = ΩT = 2FT. Thus 

Ω1 = 2 .1 =2 rad/sec., and 

Ω2 = 2 . 4 = 8 rad/sec. 

so that ω1 = 2T = 2 (1/20) = 0.1  rad., and ω2 = 8T = 8 (1/20) = 0.4 π rad. 

Step 1 Convert the digital frequencies 1 and 2 back to analog frequencies. Since we are using 
impulse invariance this involves using the same formula ω = ΩT and we get the same analog 

frequencies as before, viz., Ω1 = 2 rad/sec., and Ω2 = 8 rad/sec. (Note that the value of T is 
irrelevant up to this point. We could have used a value of T = 1 in Steps 0 and 1, resulting in 

awkward values for the ω‘s, like 2 and 8 when we expect values between 0 and ; but this is 
not a problem for the design). 

 

Step 2 Determine the order of the analog Butterworth filter. 

42 dB 



= 10 2  1 10  1    25118.8 1 





c 

a + 

=a 

* * 

e 1 

2 

  10
 K1 /10  

 1    10
2 /10 

 1    1.585 1 

log10 	K  /10  log10 	44/10  log10 	
   

N = 

	       2   

= 2 0.602 
 2 log    1      2 log10   

 
10  

 


   8    

= 
 4.633 

= 3.848 = 4 
 
1.204 

Cut–off frequency Ωc is determined next: 

Ω  =  
1 = 

2 N 10K1 /1 0  1 

  2  
= 

  2  
8 1.585 1 = 

    2  

0.93515 

 

= 6.719 

Step 3 The normalized filter Ha(s) of order 4 is 
1 

Ha(s) = 
(s

2 
 1.848s  1) (s

2 
 0.765s  1) 

We may break it down into partial fractions now (before making the transformation s→(s/Ωc). 

H (s) =  As  B  
s

2 
 1.848s  1 

  Cs  D  

s
2 
 0.765s  1 

Determine A, B, C, and D and then substitute s→(s/Ωc). 
 

Alternatively, we can get the individual pole locations from the Butterworth circle. 
1 

H (s) 
(s  0.924  j0.383)(s  0.924  j0.383)(s  0.383  j0.924)(s  0.383  j0.924) 

* 

=
 A 

+
 A  

* 

+    C 
+

 C  

s  s1 s  s1 s  s2 s  s2 

Determine A, A
*
, C and C

*
. Next find H (s) 

a s (s / c ) 

 
which is the analog prototype. From this we 

can find the H(z) by mapping the s-plane poles to z–plane poles by the relation: (s = s1) → (z = 

e
s1T  

). Here at last we must specify T; we could use T = 1/20. In general, the smaller the value of T 
the better. 

Ha(z) = A z 
z s T + A

*
 z z 

es *T 

z 
+ C  z  e

s2T
 + C

*
 

z
  s*T 

 1 z  e 2
 

If we were to use the bilinear transformation use some value of T like 1/20 (justifying it 
on the basis of the sampling theorem) in ω = ΩT in Step 0. 

 

Example 5.7.5 [Low pass filter] Design a digital low pass filter to approximate the following 

transfer function: 

H (s) = 
1
 

a 

 

Using the BZT (Bilinear z-transform) method obtain the transfer function, H(z), of the digital 

filter, assuming a 3 dB cut-off frequency of 150 Hz and a sampling frequency of 1.28 kHz. 

Solution This problem is a slight variation from the pattern we have followed so far in that it 

specifies one critical frequency (cut-off frequency) and the filter order instead of two critical 

frequencies with the filter order unknown. 

Step 0 Convert the analog specs to digital 
 

Ωc = 2Fc = 2 150 = 300  rad/sec. 

8 102 /10 1 

s
2  
 2 s  1 



c c 



The corresponding digital frequency is 

ω  = Ω T = 300  
1
 

 
= 0.2343  rad. 

 

Step 1 Pre-warp (with T = 1) 
2  c 

1280 

c = tan	 = 0.7715 
T  2 

Step 2 Ha(s) is given to be of order 2. We only need to do the analog low pass to low pass 
transformation. 

H  (s) s     
s = 1

 
 

a    
s 2   s 

0.7715 
	 



 0.7715 
2	  1 

 0.7715 
Step 3 Applying the BZT (with T = 1) 

H(z) = H (s) 2(1z1 )  = 1
 

 

 

a s
1 

1  
2  


 1 

T (1 z )  2(1 z )    
2  

2(1 z )  1 
    

(1 z 
1 
) 0.7715

0.0878 (1  2z
1 
 z

2 
) 

    

(1 z 
1 
) 0.7715

= 
1 1.0048 z 

1
  0.3561 z

2
 

 

Example 3.7.6 [Low pass filter] Design a low pass digital filter derived from a second order 

Butterworth analog filter with a 3 dB cut-off frequency of 50 Hz. The sampling rate of the 

system is 500 Hz. 
Solution (This is similar to Example 10). The second order Butterworth analog filter is 

H (s) = 
1
 

a 

 

Step 0 Convert the analog specs to digital 
 

Ωc = 2Fc = 2 50 = 100  rad/sec. 

The corresponding digital frequency is 
1 

ωc = ΩcT = 100 

Step 1 Pre-warp (with T = 1) 

 
 

500 
= 0.2 rad. 

2  c    0.2 
c = 

T 

tan


 = 2 

2 

tan


 = 0.6498 
2 

Step 2 Ha(s) is given to be of order 2. We only need to do the analog low pass to low pass 
transformation. 

1 
 s 2 

 
 s  = 

0.42229 
s

2 
 0.91901s  0.42229 

	 2	  1 

 0.6498   0.6498

Step 3 Applying the BZT (with T = 1) 

H(z) = H (s) 2(1z1 ) = 
 

 

0.42229 
 

 

a s 1  2(1 z 
1 

)  2  2(1 z 
1 

) 
T (1 z ) 

	    0.91901    0.42229 

 (1 z 
1 

)   (1 z 
1 
) 

s
2  
 2 s  1 

= 



0.42229 1  z 
1 2

 

 

The denominator is 

= 
41  z 1 2  (0.91901)(2) 1  z 

1 1  z 
1

  0.422291  z 1 2 

Dr = 41 2z1  z2 1.838021 z2  0.422291 2z1  z2 
Dr = (4 1.83802  0.42229)  z1 (8  0.84458)  z2 (4 1.83802  0.42229) 

Dr = 6.26031 7.15542 z1  2.58427 z2 
 

0.42229(1 2z 
1 
 z 

2 
) 

H(z) = 
6.26031 7.15542 z 

1 
 2.58427 z 

2
 

0.06746(1 2z 
1 
 z 

2 
) 

=  6.260311.14298 z 
1 
 0.4128 z 

2
 

 
Summary of IIR filter design 

Bilinear 

Digital specs given: 

ω1, ω2 (rad.) 
K1, K2 (dB) 

2   
(1) Pre-warp   = tan  , T = 1 sec. 

T   2 

Calculate  1 ,  2   and K1, K2 

(2) Find filter order N, cut-off frequency Ωc 
Find normalized filter Ha(s) 

Find Ha (s) 
s (s /  )

 
c 

(3) H(z) = Ha (s) 
s  2(1z )  with T = 1 sec. 

 1   
 1   

 T (1 z   ) 

Bilinear 

Analog specs given: 

Ω1, Ω2 (rad./sec.), 
K1, K2 (dB), and 
T 

Step 0. (Preparation) 

Use ω = ΩT to convert Ω to ω 

Get ω1, ω2, and K1, K2 
 

Then 

(1) 

(2) As in the left side column 

(3) 

Impulse invariance 

Digital specs given: 
ω1, ω2, 
K1, K2, and 
T (or T = 1) 

(1) Determine Ω1, Ω2 using ω = ΩT 
(2) Find filter order N, cut-off frequency Ωc 

Find normalized filter Ha(s) 

Find Ha (s) 
s (s /  )

 
c 

(3) Find individual pole locations. 

Then (s = s1) → (z =  e
s1T 

) for given T 

 

 

 

Frequency Transformation 
 

Frequency transformation is useful for converting a frequency-selective filter from one type to 

another. 

 

Analog-to-analog transformations Suppose we are given a continuous-time normalized low 

pass filter G(s) with a cut-off frequency of 1 rad/sec. Then what is the effect of the 



20 log10 |H(jΩ)| 

0 dB 

K1 

K2 



transformation s′ = sc where s′ represents the transformed frequency variable? In other words, 

we make the substitution s → s′/c in the transfer function. Since s′ = sc implies ′ =  c, it 

follows that the frequency range 0 ≤  ≤ 1 is mapped into the range 0 ≤ ′ ≤ c. Thus G(s′) 

represents a low pass filter with a cut-off frequency of c. In the rest of what follows, rather than 
use an explicitly different symbol s′ we shall instead indicate such transformation by s → s/c 

and the resulting transfer function by H(s) = G(s)s  s / c 
. 

 

1. Low-pass to low-pass transformation Given the prototype low pass filter G(s) with unit 

band width (i.e., cut-off frequency = 1 rad/sec.) and unity gain at  = 0 (i.e., |G(j0)| = 1), the 

transformation s → s/c gives us a new filter, H(s), with cut-off frequency of c. The filter H(s) 
is given by 

H(s) = G(s)s  s / c 

The critical frequency Ωr of the filter G(s) is transformed to r  of the filter H(s), given by 

r  = Ωr Ωc. Both G(s) and H(s) are low pass filters. 
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0 1 Ωr 

 

 

 

 

 
 

 

 

 

 

 
0 Ωc 

 

Ω 
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More generally, the transformation 

s →  s 
c

 

c 

transforms a low pass filter with a cut-off (or critical) frequency c to a low pass filter with a 

cut-off (or critical) frequency  c . 

2. Low-pass to high-pass transformation Given G(s) as above the transformation s → c/s 
will transform the low-pass G(s) into a high-pass filter H(s) with cut-off frequency of Ωc: 

H(s) = G(s) 
s    / s 

c 

20 log10 |G(jΩ)| 
 

0 dB 

K1 

K2 



The critical frequency r of the filter G(s) is changed to  r  of H(s), given by r  = Ωc/Ωr. 
 

 

20 log10 |H(jΩ)| 

 0 dB  

K1 
 

 

 

K2 

0 r Ωc 
 
 

There are similar transformations from low-pass to band-pass and low-pass to band-stop. 

Refer to table 3.2, page 128, Ludeman. 
The Low-pass prototype analog unit bandwidth filter could be any analog filter such as 

Butterworth, Chebyshev etc. of any order, any ripple etc. 

 

Digital-to-digital transformations Similarly, a set of transformations can be found that take a 

low-pass digital filter and turn it into another low-pass or high-pass or band-pass or band stop 

digital filter. Refer to Sec 4.3, p. 181, Ludeman. 

 

 

The Chebyshev filter 
 

The Butterworth filter provides a good approximation to the ideal low pass characteristics for 

values of Ω near zero, but has a low fall-off rate in the transition band. The Chebyshev filter has 

ripples in either the pass band or the stop band but has a sharper cut-off in the transition band. 

Thus, for filters of the same order, the Chebyshev filter has a smaller transition band than the 

Butterworth filter. We now look at the analog low pass Chebyshev filter. There are two types of 

the Chebyshev filter. 

 

Type I (Chebyshev I) is an all-pole filter. It has equiripple behavior in the pass band and 

monotonically decreases in the stop band. For N = order of the filter, the magnitude response 

looks as below (N = 5 and N = 6 illustrated). The magnitude, |H(jΩ)|, is an even symmetric 

function of Ω. 

 
|H(jΩ)| 

N is odd 
|H(jΩ)| 

N is even 
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N = 6 
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0 Ω1 Ω2 
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N = 5 
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B 

0 Ω2 

Ω 
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1   C 2 2 

N  /  
1 

1 

N = 5 

A 

B 

0 Ω1 Ω2 

Ω 

Type II (Chebyshev II or Inverse Chebyshev) filter has both poles and zeros. It has a 

monotonically decreasing shape in the pass band and an equiripple behavior in the stop band. 

 

|H(jΩ)| 

 
Design of the Chebyshev I filter A typical magnitude response specification is sketched below 

(shown for N = 5 and N = 6). The magnitudes at the critical frequencies Ω1 and Ω2 are A and B, 

respectively. Typically Ω1 is in the pass band or is the edge of the pass band and Ω2 is in the stop 
band or is the edge of the stop band. In terms of the log-magnitude the analog filter specifications 

are as below. Note that (20 log A) = K1 dB and (20 log B) = K2 dB. If A and B are less than 1, K1 
and K2 are negative. 

 

0  20log10 H( j) 

20log10 H ( j) 

 K1 for all Ω  Ω1 

 K2 for all Ω  Ω2 

 

|H(jΩ)| 
N is odd 

|H(jΩ)| 
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N is even 

 

N = 6 
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Ω 
0 Ω1 Ω2 

 

 

The magnitude characteristic of the N
th

 order Chebyshev I filter is given by 

|H(jΩ)| = 
1 

, N = 1, 2, … 

1    

0 
Ω 

  

  

 



1   C 2 2 

N 


1   2 

1 0 



where ‹ has to do with pass band ripple and CN(x) is the N
th

 order Chebyshev cosine polynomial 

defined as 
CN(x) =  cosN cos

1 
x, x ≤ 1 (pass band) 

coshN cosh
1 

x, x > 1 (outside the pass band) 

Chebyshev polynomials are also defined by the recursion formula 

CN (x) = 2xCN 1 (x)  CN 2 (x) 

with C0 (x) =1 and C1 (x) = x. Using this recursion formula we get, for N = 2, C2 (x) = 

2xC (x)  C (x) = 2x
2 
1. 

 
Chebyshev Polynomials, CN(x) 

N CN(x) 

0 1 

1 x 

2 2x
2 
1 

3 4x
3 
 3x 

… … 
 
 

[Aside If the frequencies are normalized, that is, for a normalized filter, Ω1 = 1 rad/sec and the 

magnitude characteristic of the N
th

 order Chebyshev I filter is given by 

|H(jΩ)| = 
1 

, N = 1, 2, … 

End of Aside] 
 

At Ω = 0 we have 

CN(0) = cosN cos
1 

0 = cosN / 2
= 0, N odd 

±1, N even 

As a consequence, on the vertical axis (Ω = 0) the magnitude curve starts at |H(j0)| = 1 for odd N 

and at |H(j0)| = A = 
1 

for even N. 

At Ω = Ω1 we have CN(1) = cosN cos
1 

1= cos0 = 1 for all N. The corresponding 

magnitude is 

|H(jΩ )| = A = 
1 

, for all N 
1 

 

This equation is used to compute ‹ from the given |H(jΩ)|. 

The order, N, of the filter is given by 


cosh

1
 

N = 

10K2 /10  1 

10



K1 /1


0  1  

cosh
1     2    

   

  1  

The symbol   means that the computed result is rounded to the next larger integer. For 

example, if N = 3.2 by the above calculation then it is rounded up to 4, and the order of the 

required filter is N = 4. In such a case the resulting filter would exceed the specification at both 

Ω1 and Ω2. 

1   2
 



 cosh  cosh 

 cosh 
1

   

Example 3.9.1 [Filter order] Determine the order of a Chebyshev I filter to have an attenuation 

of no more than 1 dB for |Ω| ≤ 1000 rad/sec and at least 10 dB for |Ω| ≥ 5000 rad/sec. 

 

Solution The specifications as given are 
 

0  20log10 H( j) 

20log10 H ( j) 

 –1 dB for all Ω  1000 rad/sec 

 –10 dB all Ω  5000 rad/sec 
 

The design parameters are identified as 

 
K1 = –1 dB, Ω1 = 1000 rad/sec 
K2 = –10 dB, Ω2 = 5000 rad/sec 

 

The filter order is given by 

cosh1

 10K2 /1 0  1   1 1010/10 1   1 10 1 

 10K1 /1 0  1   101/10   1 

= 

	1.2589 1 

N = 
1 
    = 

 cosh    
2 

   
   5000    cosh

15 

  1     1000    
cosh

1 
5.8956   2.4601

= 	1  = 
  = 1.073 = 2 

 cosh 5   2.2924 

[On the HP 15C, cosh
1 

5.8956 is obtained by: (1) Enter Radian mode, (2) Enter 5.8956, (3) g, 

(4) HYP
1 

, and (5) COS] 







Pole locations and transfer function The poles of the Chebyshev I filter are related to those of 

the Butterworth filter of the same order and are located on an ellipse in the s-plane. If N is odd 

there will be a pole on the negative real axis. In order to find the pole locations and hence the 

transfer function we introduce the parameter β 

β = 
1 

sinh
1 1/  

N 

The poles of H(s), sksi=n
ζk2k+jΩ1 k, k =sin0h, 1, … ,a(nNd–1), Ωare=gicvoesn 

b2yk 1  
 cosh 

ζk =  
	

k 

 N 2   N 2 






























ζ 

 

 

 

 

 

 

 

 

 
 

Note that if the sinh and cosh  terms were not present we would have the pole locations of 

the normalized Butterw

o2rtkhf1ilter


(on the unit circle), that i


s, 

ζ 
sin and Ω = cos 

2k 1  



k =   k 
 N 2   N 2 

with  2 
 2 = 1 which is the unit circle. Thus, the hyperbolic sine and cosine terms are scale 

k k 

factors which, when applied to the Butterworth pole coordinates, give the pole coordinates of a 

Chebyshev I filter of the same order. The Chebyshev poles are located on an ellipse in the s- 

plane described by 

 2 
k 

2 +
 

sinh 

2 
k = 1 

cosh
2 

The major axis of the ellipse is on the imaginary (jΩ) axis and the minor axis is on the real axis 
and the foci are at Ω = ±1. The 3 dB cut-off frequency occurs at the point where the ellipse 

intersects the jΩ axis, that is, at Ω = cosh  . 
 

 

 
 

jΩ 

cosh β 

sinh β 

–j1 

j1 



1 

k 

1 1 

In putting together the transfer function, H(s), we rely on the symmetry of pole positions 
and make use of the left half plane poles only. Finally, the pole positions are scaled by the actual 

―cut-off frequency‖ Ω1. This last step amounts to s→ s/Ω1 (in the case of the Butterworth design 

this was s→ s/Ωc). 
 

Example 3.9.2 [Pole locations and transfer function] Find the pole locations and the transfer 

function of the Chebyshev I filter designed in above example, that is, with an attenuation of no 

more than 1 dB for |Ω| ≤ 1000 rad/sec and at least 10 dB for |Ω| ≥ 5000 rad/sec. 

 

Solution The filter order has been determined above as N = 2. Further, we know that |H(jΩ1)| = 

1 1   2 
and 20 log H ( j ) = –1 dB. Thus 

20 log1 1  2  = –1 

 

Solving for ‹ we get ‹ = 0.5088. Since N is even |H(j0)| = 1 

on the vertical axis. 

= 0.8913 is the starting point 

With regard to the pole locations, if it were a Butterworth filter of order 2 the poles are 

located at  2k 1   and Ω  = cos 
2k 1  

 , k = 0, 1 

ζk = 
sin

  	

 N  2       N 2 

s0,1 = sin	 ± j cos	 = 1 2± j 1 2
  4    4 

The Chebyshev I poles are then obtained from the Butterworth poles by scaling the real and 

imaginary parts, respectively, by sinh  and cosh  and then scaling both parts by Ω1: 

s0,1 =  11   2sinh   j1   2cosh 
where Ω1 = 1000 rad/sec., and 

β = sinh
1

 

N 
=    sinh

1 

2 
1/ 0.5088 = 0.7140 

Thus the Chebyshev I pole locations are 
1000 1000 

s0,1 =      sinh 0.714 2 ± j      cosh 0.714 
2 

=  
1000 

sinh 0.714 

2 

± j 
1000 

cosh 0.714 

2 

 

Hence 

= – (707.11) (0.7762) ± j (707.11) (1.2659) = –548.86 ± j 895.15 

H(s) =  K 
= 

(s  s0 )(s  s1 ) 

K 
 

 

(s  (548.86  j895.15))(s  (548.86  j895.15)) 

  K  

(s  548.86)
2 
 (895.15)

2
 

Since N is even the constant K will be adjusted to achieve |H(j0)| = 1 

were odd, K would be adjusted to achieve |H(j0)| = 1.) 

|H(j0)| = 
K 

= 0.8913 
(548.86)

2 
 (895.15)

2
 

which yields K = 982694.6. The filter then is 

H(s) = 
982694.6 

(s  548.86)
2 
 (895.15)

2
 

= 0.8913. (If N 

 

 
 

 

1   2 

1   2 

1/  

= 



 cosh  cosh 

1

  

1 

 

1 1 

Example 3.9.3 [Ramesh Babu] Determine the order of a Chebyshev I filter to have a gain of –3 

dB or better for |F| ≤ 1000 Hz and a gain of –16 dB or less for |F| ≥ 2000 Hz. Find the pole 

locations and the transfer function. 

Solution The specifications as given are 
 

0  20log10 H( j) 

20log10 H ( j) 

 –3 dB for all Ω  2π (1000) rad/sec 

 –16 dB all Ω  2π (2000) rad/sec 
 

The design parameters are identified as 

 
K1 = –3 dB, Ω1  = 2000 π rad/sec 
K2 = –16 dB,   Ω2  = 4000 π rad/sec 

 

The filter order is given by 

cosh1

 10K2 /1 0   1   1 1016/10 1   1 39.81 1 

 10K1 /1 0   1   103/10  1 


= 
	1.995 1 

N = 
1 
    = 

 cosh        
2 

   cosh 
   4000    

 cosh
12 

  1     2000     
cosh

1 
6.2445  2.5184 

= 	1  = 
  = 1.9122 = 2 

 cosh 2  1.3169 

Further |H(jΩ1)| = 1 1   2  
and 20 log H ( j )  = –3 dB implies that |H(jΩ1)| = 1 2 . 

From these two conditions it follows that ‹ = 1. Since N is even |H(j0)| = 1 1   2 
= 1 2 . 

The poles ofsHin(
s)2kare1givensibnyhsk  = ζka+ndjΩk, kΩ==0, c1os 

2k 1  
 cosh 

ζk =  
	

k 

 N 2   N 2 

β = sinh
1

 

N 
=  sinh

1  

2 

1/1 = 0.88137 
= 0.44069 

2 
Thus, one of the left half plane poles is 

     
s1 = 1  j1  = sin	 sinh 0.44069 + j cos	 cosh 0.44069 

  4     4 

= –
 1 

0.45509 + j 

2 

1 
1.09868 = –0.3218 + j0.77689 

2 

Scaling this by Ω1 = 2000 π rad/sec results in 
s1 = 2000 π (–0.3218 + j0.77689) = –2021.9 + j4881.3 = –a + jb 

where a = 2021.9 and b = 4881.3. The other left half plane pole is the conjugate of the above, at 

s2 = –2021.9 – j4881.3 = –a – jb 

The transfer function is H(s) = 1/D(s), where the denominator, D(s), is put together from 
the poles as follows 

D(s) = (s  s1 )(s  s2 ) = s  (2021.9  j4881.3)s  (2021.9  j4881.3)
= (s  2021.9)

2 
 (4881.3)

2
 

For convenience we shall write this as D(s) = (s  a)
2 
 b

2 
= s

2 
 2sa  a

2 
 b

2 
, so that 
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1   2 CN (2 / 1 ) 
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C ( 
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N 2  / ) 

1   2 CN (2 / 1 ) 
2 

C ( 
2 

N 2 1 
 /  ) 

1   2 

2 

H(s) = K 
= 

D(s) 

K 
 

 

s2  2sa  a2  b2 

where the constant K is adjusted so as to make |H(j0)| = 1 : 

 

 

Thus 

 

|H(j0)| = 
K 

= 1 2 

a2  b2 

a2  b2 
→ K =    

a
2 
 b

2 

H(s) =  
2 

1 
 

 

s2  2sa  a2  b2 

= 19739005.5 
1
 

s2  4043.8s  27915169.3 
 

Design of the Chebyshev II filter A typical magnitude response specification is sketched below. 
The magnitudes at the critical frequencies Ω1 and Ω2 are A and B, respectively. Typically Ω1 is in 

the pass band or is the edge of the pass band and Ω2 is in the stop band or is the edge of the stop 

band. In terms of the log-magnitude the analog filter specifications are as below. Note that (20 
log A) = K1 dB and (20 log B) = K2 dB. If A and B are less than 1, K1 and K2 are negative. 

 

0  20log10 H( j) 

20log10 H ( j) 

 K1 for all Ω  Ω1 

 K2 for all Ω  Ω2 

 

|H(jΩ)| 
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0 Ω 

Ω1    Ω2 

 

The magnitude characteristic of the N
th

 order Chebyshev II filter is given by 

|H(jΩ)| = 
1
 , N = 1, 2, … 

where ‹ has to do with pass band attenuation and CN(x) is the N
th

 order Chebyshev polynomial. 
At Ω = Ω1 we have 

1 1 
|H(jΩ1)| =   =   = A, for all N 

At Ω = 0, CN (2 / ) = CN () → ∞, and the magnitude becomes 



1   2 CN (2 / 1 ) 
2 

C ( 
2 

N 2 
 / 0) 

1   2 CN (2 / 1 ) 
2 

C ( 
2 

N 2 2 
 /  ) 

1   2 CN (2 / 1 ) 
2 

1 

N 2 1 





|H(j0)| = 
1
 = 1 for all N 

The magnitude curve starts at |H(j0)| = 1 on the vertical axis for all N. 
At Ω = Ω2 we have CN (2 / 2 ) = CN (1) = cosN cos 1 = cos0 = 1 

1 

1 1 
|H(jΩ2)| =   =    

= 
1 

1   2
C 

2 
( /  ) 

= B, for all N 

The order, N, of the filter is given by 


cosh
1

 

N = 

10K2 /10  1 

10



K1 /1


0  1 

 
cosh

1 

    
2  

 

  1  

The symbol   means that the computed result is rounded to the next larger integer. For 

example, if N = 3.2 by the above calculation then it is rounded up to 4, and the order of the 

required filter is N = 4. In such a case the resulting filter would exceed the specification at both 

Ω1 and Ω2. 
 

Example 3.9.4 If an analog low pass filter is to have an attenuation of 1 dB at cut-off frequency 

of 1 kHz, and a maximum stop band ripple of 0.01 for |F| > 5 kHz, determine the required the 

filter order for (a) a Butterworth filter, (b) a Chebyshev I filter, and (c) a Chebyshev II filter. 

Solution The specifications are the same for all three cases but the magnitude characteristic 

differs from one case to the next. 

(a) The Butterworth magnitude (absolute value) characteristic is sketched below. 
 

Ω1 = 2F1 = 2 1000 rad/sec., K1 = –1 dB → A = 0.8912 

Ω2 = 2F2 = 2 5000 rad/sec., B = 0.01 → K2 = –40 dB 
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Ω1= 2π1000 Ω2= 2π5000 

 
Ω, rad./sec. 
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N =? 

A 
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Ω 

The relation between the absolute values and the dB figures (K1 = 20 log A and K2 = 20 log B) is 

used to compute A = 10
K1 / 20 

= 10
1/ 20   

= 0.8912 and K2 = 20 log B = 20 log 0.01 = –40 dB. 
The Butterworth filter order is given by 

  10
 K1 /10 

 1    10(1) /10 1    10
0.1 
1

log10 10 
K 

2
/10 

 1
 log10  (40) /10  

1 
 log10 10 4 1 

 
	 

  
=  10   =   




N = 

	       1    2 log 

 1  
 

 2 log
10     

1 

   2 log10     10 
  2     5     5  

log 
1.25892 1 

 4.5868
 

  10  10000 1 
 

= 3.28 = 4 

=  
   =  






 2 log10 0.2   1.3979 

 


(b) The Chebyshev I specs and magnitude (absolute value) characteristic are diagrammed below. 

As earlier we compute A = 10
K1 / 20 

= 10
1/ 20   

= 0.8912 and K2 = 20 log B = 20 log 0.01 = –40 dB. 
 

Ω1 = 2F1 = 2 1000 rad/sec., K1 = –1 dB → A = 0.8912 

Ω2 = 2F2 = 2 5000 rad/sec., B = 0.01 → K2 = –40 dB 
 

 

|H(jΩ)| 
N is odd 

|H(jΩ)| 
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N is even 

 

N =? 
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Ω 
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The Chebyshev I filter order is given by 
 

1 10K2 /1 0  1  
cosh1 10(40) /10 1   1 

10000 1 
cosh    cosh 0.1 

 10K1 /1 0  1   10(1) /10 1    = 10 1  

N = 
1 
    = 1 5   cosh       

2  

   cosh      
 cosh

15 

  1 

 
    1    

cosh
1 

38617.3  cosh
1 

(196.5)   5.9738 =  
cosh

1 5  =  
cosh

1 5  
= 

2.2924  
= 2.6059 = 3

 

   


(c) The Chebyshev II specs and magnitude (absolute value) characteristic are shown below. As 

earlier we compute A = 10
K1 / 20 

= 10
1/ 20   

= 0.8912 and K2 = 20 log B = 20 log 0.01 = –40 dB. 

Ω1 = 2F1 = 2 1000 rad/sec., K1 = –1 dB → A = 0.8912 

  

  

 



Ω2 = 2F2 = 2 5000 rad/sec., B = 0.01 → K2 = –40 dB 
 

|H(jΩ)| 
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Ω1    Ω2 

 

 

The Chebyshev II filter order is given by 
 

1 10K2 /1 0  1  
cosh1 10(40) /10 1   1 

10000 1 
cosh    cosh 0.1 

 10K1 /1 0  1   10(1) /10 1    = 10 1  

N = 
1 
    = 1 5   cosh       

2  

   cosh      
 cosh

15 

  1 

 
    1    

cosh
1 

38617.3  cosh
1 

(196.5)   5.9738 =  
cosh

1 5  =  
cosh

1 5  
= 

2.2924  
= 2.6059 = 3

 

   


Example 3.9.5 Determine the system function H(z) of the lowest order Chebyshev filter that 

meets the following specs. Use the impulse invariance method. 

(a) 0.5 dB ripple in the pass band, 0 ≤ |ω| ≤ 0.24π 

(b) At least 50 db attenuation in the stop band, 0.35π ≤ |ω| ≤ π 

 

Solution We assume the Chebyshev I filter. The procedure is similar for the Chebyshev II. The 

specs are: 
 

A = 10
K1 / 2 0   

= 0.94406 

B = 10
K2 / 20   

= 0.0031622 
 

The sampling time, T, is not specified. Since this is impulse invariant design, T should be very 

small – the smaller the better. Strictly for convenience we shall use T = 1 sec., and convert the 

digital specs to analog using the relation ω= ΩT. 
 

A = 10
K1 / 2 0   

= 0.94406 

B = 10
K2 / 20   

= 0.0031622 

ω1 = 0.24 rad., K1 = –0.5 dB → 

ω2 = 0.35 rad., K2 = –50 dB → 

 

Ω1 = ω1/T = 0.24 rad/sec, K1 = –0.5 dB → 

Ω2 = ω2/T = 0.35 rad/sec, K2 = –50 dB → 

 




10(0.5) /10 1  =

 
10(50) /10 1  

1         
 



Ω 

The magnitude (absolute value) characteristic is diagrammed below. 
 
 

 
|H(jΩ)| 

1 

N = unknown 

(Shown for N = 5) 

 

 

A = 10K1 / 20  

 

 

 
 

B = 10K2 / 2
  

 
0 Ω1 = 

0.24


Ω 

Ω2 = 

0.35



The Chebyshev I filter order is given by 

cosh

1
 

10K2 /1 0  1  
cosh1 

cosh
1

 

100000 1 


 10K1 /1 0  1  


N = 1

 
     

100.05 1 

cosh 1.4583 

 

=  
cosh

1 
819539.96

=  
cosh

1 
(905.28)







= 7.5014 

cosh
1 1.4583 cosh

1 1.4583 0.9242  = 8.117 = 9 

   

Determine the poles and transfer function H(s), h(t), h(n), and H(z). 

 

 

The Elliptic (or Cauer) filter 
 

An approximation to the ideal low-pass characteristic, which, for a given order of filter, has an 

even smaller transition band than the Chebyshev filter, can be obtained in terms of Jacobi elliptic 

sine functions. The resulting filter is called an elliptic filter. The magnitude characteristic of the 

elliptic filter has ripples in both the pass band and the stop band. 
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IV. FIR digital filters 

Characteristics of FIR digital filters, Frequency response, Design of FIR digital filters using 

Window techniques, Frequency sampling technique, Comparison of IIR and FIR filters. 
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FIR – Recapitulation 

Characteristics if FIR digital filters 

Frequency response 

Design of FIR digital filters – The Fourier series and windowing method 

Choosing between FIR and IIR filters 

Relationship of the DFT to the z-transform 



H(z) = 
i  0

 

 

FIR - Recapitulation 
 

Nomenclature With a0 = 1 in the linear constant coefficient difference equation, 
a0 y(n) + a1 y(n–1) + … + aN y(n–N) 

= b0 x(n) + b1 x(n–1) + … + bM x(n–M), a0  0 
we have,  

M 

biz i 

N 

1   ai z 
i

 

i 1 

This represents an IIR filter if at least one of a1 through aN is nonzero, and all the roots of the 
denominator are not canceled exactly by the roots of the numerator. In general, there are M finite 
zeros and N finite poles. There is no restriction that M should be less than or greater than or equal 
to N. In most cases, especially digital filters derived from analog designs, M ≤ N. Systems of this 

type are called N
th

 order systems. This is the case with IIR filter design. 

When M > N, the order of the system is no longer unambiguous. In this case, H(z) may be 

taken to be an N
th

 order system in cascade with an FIR filter of order (M – N). 

When N = 0, as in the case of an FIR filter, according to our convention the order is 0. 

However, it is more meaningful in such a case to focus on M and call the filter an FIR filter of M 
stages or (M+1) coefficients. 

 

Example The system H(z) = (1 z
8 

) (1 z
1 

) is an FIR filter. Why (verify)? 

 
An FIR filter then has only the ―b‖ coefficients and all the ―a‖ coefficients (except a0 

which equals 1) are zero. An example is the three-term moving average filter y(n) = (1/3) x(n) + 
(1/3) x(n–1) + (1/3)x(n–2). In general the difference equation of an FIR filter can be written 

M 

y(n) =  br x(n  r) = b0x(n) + b1 x(n–1) + … + bM x(n–M) → (1) 
r  0 

There are (M + 1) coefficients; some use only M coefficients. This equation describes a 

nonrecursive implementation. Its impulse response h(n) is made up of the coefficients {br} = 

{b0, b1, …, bM} 
 

h(n) =   bn, for 0  n  M = {b0, b1, …, bM} 
0, elsewhere 

 
Equivalently, the finite length impulse response can also be written in the form of a weighted 

sum of  functions as was done in Unit I 
 for example, x(n)    x(k) (n  k) 



 k    
M 

h(n) = br  (n  r) = b0 (n) + b1(n–1) + … + bM (n–M) 
r  0 

The difference equation (1) is also equivalent to a direct convolution of the input and the 
impulse response: 

M M 

y(n) =  br x(n  r) =  b(r)x(n  r) 
r  0 r  0 

where we have written br as b(r), i.e., the subscript in br is written as an index in b(r). 





The transfer function H(z) of the FIR filter can be obtained either from the difference 

equation or from the impulse response h(n): 

H(z) = 
M

 

n  0 

h(n)z 
n 

= b  b z
1 
 b z

2 
 ...  b z

 M
 

0 1 2 M 

b z 
M  
 b z 

M 1 
 ...  b z

1  
 b 

= 0 1 M 1 M 
 b z M 

b b
b  z 

M 
 1 z 

M 1 
 .... 




M 1 z1  M

 


0  b 
b b  

=  0 0 0 

z M 

The transfer function has M nontrivial zeros and an M
th
 order (trivial) pole at z = 0. This is 

considered as an all-zero system. 

We may obtain the frequency response H (e 
j 

) or H() of the FIR filter either from H(z) 

as 
H (e 

j 
) = H (z) 

z e j

or, from the impulse response, h(n), as the discrete-time Fourier transform (DTFT) of h(n): 

H (e 
j 

) =   h(n) e
 j n 

=   M b e j n = b 
n 

 b e
 j 

 b e
 j 2 

 ...  b e jM

0 1 2 M 

n  n  0 

The inverse DTFT of H(ω) is of course the impulse response, given by 
1 



h(n) =  H () e 
j n

d
2 

The basic design problem is to determine the impulse response h(n), or, the coefficients 

br, for r = 0 to M, required to achieve a desired H(). These coefficients are of course the 
constants that appear in the numerator of the transfer function H(z). The various transformations 
used in IIR filter design cannot be used here since they usually yield IIR functions, i.e., with both 
numerator and denominator coefficients. 

 

 

Characteristics of FIR digital filters 
 

Illustration The equations of the three-term moving average filter are repeated below 
x(n)  x(n 1)  x(n  2) 

y(n) = 
3 

 Y (z) 
= H(z) = 

1 z 1  z2 

X (z) 
 j

3 
 j 2  j j  j 

 


H (e 
j 

) = 
1  e  e 

= 
e (e  1  e ) 

= 
1  2 cos  

 e
 j

3 3  3 

This is a crude low pass filter with linear phase, H () = –ω. 

%Magnitude and phase response of 3-coefficient moving average filter 

%Filter coefficients: h(n) = {1/3, 1/3, 1/3} 

b3=[1/3, 1/3, 1/3], 

a=[1] 

w=-pi: pi/256: pi; 

Hw3=freqz(b3, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude'); 
xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 



subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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Normalized frequency We define the r = ω/π. As ω goes from – to  the variable r goes from 

–1 to 1. This corresponds to a frequency range of –Fs/2 to Fs/2 Hz. In terms of the normalized 
frequency the frequency response of the three-term moving average filter becomes 

H(r) = 
1  e  j r  e j 2 r 

 

3 
 

%Magnitude and phase response of 3-coefficient moving average filter 

%Filter coefficients: h(n) = {1/3, 1/3, 1/3} 

subplot(2,1,1); fplot('abs((1/3)*(1+exp(-j*pi*r)+exp(-j*2*pi*r)))', [-1, 1], 'k'); 

legend ('Magnitude'); 

xlabel('Normalized frequency, r'); ylabel('Magnitude of H(r)'); grid 

subplot(2,1,2);fplot('angle((1/3)*(1+exp(-j*pi*r)+exp(-j*2*pi*r)))', [-1, 1], 'k'); 

legend ('Phase'); 

xlabel('Normalized frequency');ylabel('Phase of H(r)'); grid 
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We illustrate below the characteristics of several types of FIR filter. The filter length N 

may be an odd (preferred) or an even number. Further, we are typically interested in linear phase. 

This requires the impulse response to have either even or odd symmetry about its center. 

 

Example 4.2.1 Find the frequency response of the following FIR filters 

A.  h(n) = {0.25, 0.5, 0.25} Even symmetry 

B.  h(n) = {0.5, 0.3, 0.2} No symmetry 

C.  h(n) = {0.25, 0.5, –0.25} No symmetry 

D.  h(n) = {0.25, 0, –0.25} Odd symmetry 

Solution 

(A) The sequence h(n) = {0.25, 0.5, 0.25} has even symmetry. 
 

%Magnitude and phase response of h(n) = {0.25, 0.5, 0.25} 

%Filter coefficients – Even symmetry 

b3=[0.25, 0.5, 0.25], 

a=[1] 

w=-pi: pi/256: pi; 

Hw3=freqz(b3, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Phase = -\omega'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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(B) The sequence h(n) = {0.5, 0.3, 0.2}is not symmetric. 

 

%Magnitude and phase response of h(n) = {0.5, 0.3, 0.2} 

%Filter coefficients – No symmetry 

b3=[0.5, 0.3, 0.2], 

a=[1] 

w=-pi: pi/256: pi; 

Hw3=freqz(b3, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Nonlinear Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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(C) The sequence h(n) = {0.25, 0.5, –0.25} is not symmetric. 

 

%Magnitude and phase response of h(n) = {0.25, 0.5, –0.25} 

%Filter coefficients – This is not odd symmetry 

b3=[0.25, 0.5, -0.25], 

a=[1] 

w=-pi: pi/256: pi; 

Hw3=freqz(b3, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Nonlinear Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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(D) The sequence h(n) = {0.25, 0, –0.25} has odd symmetry. 

 

%Magnitude and phase response of h(n) = {0.25, 0, –0.25} 

%Filter coefficients – This is odd symmetry 

b3=[0.25, 0, -0.25], 

a=[1] 

w=-pi: pi/256: pi; 

Hw3=freqz(b3, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw3)); legend ('Magnitude'); 
xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw3)); legend ('Phase = -\omega + \pi/2 '); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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Realization of linear phase FIR filters An important special subset of FIR filters has a linear 

phase characteristic. Linear phase results if the impulse response is symmetric about its center. 

For a causal filter whose impulse response begins at 0 and ends at N–1, this symmetry is 

expressed thus 

 

Even:   h(n) = h(N–1–n), for n = 0, 1,…, (N–1) – a total of N points 

Odd: h(n) = – h(N–1–n), for n = 0, 1,…, (N–1) – a total of N points 

 

This symmetry allows the transfer function to be rewritten so that only half the number of 

multiplications is required for the resulting realization. 

 

Linear phase – phase and delay distortion Assume a low pass filter with frequency response 

H (e 
j 

) given by 

 

H (e 
j 

) = 1e
 j k 

, |ω| < ωc 

0, ωc < |ω| < π 
 

where k is an integer. This is a linear phase filter with the slope of the phase ―curve‖ in the pass 

band being –k. Let X (e 
j 

) represent the Fourier transform of an input sequence x(n). Then the 

transform of the output sequence y(n) is given byY (e 
j 

)= X (e 
j 

) . H (e 
j 

) . If X (e 
j 

) is entirely 

within the pass band of H (e 
j 

) then 

Y (e 
j 

)= X (e 
j 

) . e
 j k
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So the output signal y(n) can be obtained as the inverse F-transform of Y (e 
j 

) as 

 
y(n) = x(n–k), a delayed version of x(n) 

 

 

 

 

 

 

 

 
 

ω 
–ωc ωc 

 

 

 

 

 

ω 

 

 

 

 

 
Thus the linear phase filter did not alter the shape of the original signal, simply translated 

(delayed) it by k samples. If the phase response had not been linear, the output signal would have 

been a distorted version of x(n). 

It can be shown that a causal IIR filter cannot produce a linear phase characteristic and 

that only special forms of causal FIR filters can give linear phase. 

 

Theorem If h(n) represents the impulse response of a discrete time system, a necessary and 

sufficient condition for linear phase is that h(n) have a finite duration N, and that it be symmetric 

about its midpoint. 

 

Example 4.3.1 (a) For the FIR filter of length N = 7 with impulse response h(n) let h(n) = h(N– 

1–n). Show that the filter has a linear phase characteristic. (b) Repeat for N = 8. 

 

 

 

 

 

 
 

n 

 

 

 

 
Solution (a) For N = 7, the positive symmetry relation h(n) = h(N–1–n) leads to h(n) = h(6–n) 

which means that h(0) = h(6), h(1) = h(5), and h(2) = h(4), as shown in figure above. 

|H| 

1 

h(n) 

1 5 

0 2 3 4 6 
N–1 

–kω 
H 



6 

H(z) = h(n)z 
n 

n  0 

and H (e 
j 

) = H (z) 

 

 
z  e 

6 

j  =  h(n)e
 j n 

n  0 

H (e 
j 

) = h(0) + h(1) e
 j 

+ h(2) e
 j 2 

+ h(3)e
 j3



+ h(4) e
 j 4 

+ h(5)e
 j5 

+ h(6) e
 j 6



= e
 j3 

{ h(0)e 
j3 

+ h(1)e 
j 2 

+ h(2)e 
j 

+ h(3) 

+ h(4)e
 j 

+ h(5) e
 j 2 

+ h(6)e
 j3 

} 

Since h(0) = h(6), etc., we can write 

 

H (e 
j 

) = e
 j3 

{ h(0)(e 
j3 

 e
 j3 

)+ h(1)(e 
j 2 

 e
 j 2 

)+ h(2)(e 
j 
 e

 j 
) + h(3) } 

= e
 j3 

{ 2h(0) cos3 + 2h(1)cos 2 + 2h(2)cos + h(3) } 

= a(3) = a(2) = a(1) = a(0) 
3 

= e
 j3  a(k) cos k , with a(0) = h(3) and a(k) = 2h(3–k), k = 1, 2, 3 

k   0 

The coefficients, in general, are given by 
 N  1  N 1 

a(0) = h	 and a(k) = 2h	 k  , for k = 1, 2, ..., (N–1)/2 
 2   2 

j	3 

H (e 
j 

) = ± H (e 
j 

) 

3 

ejH (e 
) 
= e

 j3  a(k) cos k
k  0 

where ± H (e 
j 

) =  a(k) cos k and H (e 
j 

) = Θ(ω) = –3ω. The phase response is obviously 
k  0 

linear, with slope = –3 = – (N– 1)/2 which means that the delay is an integer number of samples. 
 

 

 

 
Slope = –3 

H(ω) or Θ(ω) 

 






(b) For N = 8, the positive symmetry relation h(n) = h(N–1–n) leads to h(n) = h(7–n), which 

means h(0) = h(7), h(1) = h(6), h(2) = h(5), and h(3) = h(4) as shown in figure below. 
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H(z) = h(n)z 
n 

n  0 

and H (e 
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) = H (z) 
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H (e 
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 j 
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+ h(4) e
 j 4 
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+ h(6) e
 j 6 

+ h(7)e
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= e
 j 7 / 2 

{ h(0)e 
j 7 / 2 

+ h(1) e 
j5 / 2 

+ h(2) e 
j3 / 2 

+ h(3)e 
j / 2

 

+ h(4) e
 j / 2 

+ h(5) e
 j3 / 2 

+ h(6)e
 j5 / 2 

+ h(7)e
 j 7 / 2 

} 

Since h(0) = h(7), etc., we can write 

 

H (e j ) = e j 7 / 2 { h(0)(e j 7 / 2  e j 7 / 2 ) + h(1) (e j5 / 2  e j5 / 2 ) 

+ h(2)(e 
j3 / 2 

 e
 j3 / 2 

) + h(3)(e 
j / 2 
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 j / 2 

)} 
  7   5   3    

= e
 j 7 / 2  

2h(0) cos	  2h(1) cos	  2h(2) cos	  2h(3) cos    

  2    2   2   2 

= b(4) = b(3) = b(2) = b(1) 
 

With b(k) = 2h((N/2) – k), for k = 1, 2, …, N/2, we can write 
4    

= e
 j 7 / 2 b(k) cos[(k  1/ 2)

k   1 

4    

where ± H (e 
j 

) = b(k) cos[(k 1/ 2)] and H (e 
j 

) = Θ(ω) = –7ω/2. The phase, H (e 
j 

) , 
k  1 

is clearly linear. However, the slope of the phase curve is (–7/2), which is not an integer. The 

non-integer delay will cause the values of the sequence to be changed, which, in some cases, 

may be undesirable. 
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Implementation For a causal filter whose impulse response has even symmetry: 

 

h(n) = h(N–1–n), for n = 0, 1,…, (N–1) – a total of N points 
N 1 

the transfer function H(z) = ʓ{h(n)} = h(n)z 
n 

can be written, depending on whether N is 
n  0 

even or odd, as follows. 

 
For even N The difference equation is derived starting from H(z), 

( N / 2)  1 

H(z) = 
 h(n) z n  z ( N 1n) 

Since Y(z) = H(z) X(z), we can write 
 ( N / 2)  1 

Y(z) = 
 h(n) z 

n 
 z 

( N 1n) 
 X(z) 

   n  0 

=  h(0)1 z
 ( N 1) X (z) +  h(1)z1  

 z 
( N 2) X (z) 

		     1  N  

+ … +  
N 
   

 
2 

 2  

Taking the inverse z-transform of the above we get y(n) as 

y(n) = h(0)x(n)  xn  N 1+ h(1)x(n 1)  xn  N  2
 N     N   N 

+…+ h 2 1x n  2 1  x n  2 

       

The delayed versions of x(n) are added in pairs and then multiplied by coefficients h(.). This is 

shown in figure below for N = 8. Note that there are an odd number (= 7) of delay elements. 

There are N/2 = 4 multiplications and (N/2) + 1 = 4 + 1 = 5 adders (actually the number of two- 

operand additions is 4 + 3 = 7). 

 

Figure for N = 8 
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For odd N We need not derive the equations (they would be necessary if we were writing a 

computer program to automate it). For N = 7, there are N – 1 = 6 delay elements – an even number 

of delay elements. There are (N + 1)/2 = (7 + 1)/2 = 4 multiplications and 4 adders (the number of 

two-operand additions is 6). 
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Figure for N = 7 
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Properties of FIR digital filters The sinusoidal steady state transfer function of a digital filter is 

periodic in the sampling frequency. We have 


H (e 
j 

) = H(z)  
z  e j  =    h(n)e

 j n 

n  

in which h(n) represents the terms of the unit pulse response. The above expression can be 

decomposed into real and imaginary components by writing 
 

H (e 
j 

) =  h(n) cos  n – j  h(n) sin  n = HR(ω) + j HI(ω) 
n   n  

where the real and imaginary parts of the transfer function are given by 


HR(ω) =  h(n) cos  n 
n  



and HI(ω) = –  h(n) sin  n 
n  

These expressions for HR(ω) and HI(ω) show that 
 

1. HR(ω) is an even function of frequency and HI(ω) is an odd function of 
frequency. 

2. If h(n) is an even sequence, the imaginary part of the transfer function, HI(ω), 
will be zero. (The even sequence, h(n), multiplied by the odd sequence sin ωn 

will yield an odd sequence. An odd sequence summed over symmetric limits 
yields zero.) In this case 



H (e 
j 

) =    h(n) cos  n = HR(ω) 
n  

3. Similarly, if h(n) is an odd sequence, the real part of the transfer function, 
HR(ω), will be zero 



H (e 
j 

) = – j  h(n) sin  n = j HI(ω) 
n  

z–1 z–1 z–1 z–1 z–1 z–1 



π/2 

–π π 

–π/2 

Thus an even unit pulse response yields a real-valued transfer function and an odd unit 
pulse response yields on imaginary-valued transfer function. Recall that a real transfer function 

has a phase shift of 0 or   radians, while an imaginary transfer function has a phase shift of 

  / 2 radians as shown in figures below. So, by making the unit pulse response either even or 

odd, we can generate a transfer function that is either real or imaginary. 
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Two types of applications In designing digital filters we are usually interested in one of the 

following two situations: 

 
1. Filtering We are interested in the amplitude response of the filter (e.g., low 

pass, band pass, etc.) without phase distortion. This is realized by using a real 

valued transfer function, i.e., H (e 
j 

) = HR(ω), with HI(ω) = 0. 

2. Filtering plus quadrature phase shift These applications include integrators, 

differentiators, and Hilbert transform devices. For all of these the desired 

transfer function is imaginary, i.e., H (e 
j 

) = j HI(ω), with HR(ω) = 0 

 
FIR Filter Design Procedure 

 

1. Decide whether HR(ω) or HI(ω) is to be set equal to zero. Typically, 

 Hd(ω) = HR(ω) + j 0 for filtering, and 

 Hd(ω) = 0 + j HI(ω) for integrators, differentiators and Hilbert 
transformers 

2. Expand Hd(ω) into Fourier series hd(n). This is the desired impulse response. 
3. Decide on the length N of the impulse response duration. Truncate the 

sequence hd(n) to N samples {ht(n), n = – (N–1)/2 to (N–1)/2}. Even values of 
N result in delays of half-sample periods; odd values of N avoid this problem. 

4. Apply window function {w(n), n = – (N–1)/2 to (N–1)/2} 

5. Find the transfer function H(z) = z
–(N–1)/2

 Ht(z) and the frequency response 
H(ω). If not satisfactory the value of N may have to be increased or a different 
window function may be tried. 

 

Phase delay and group delay If we consider a signal that consists of several frequency 

components (such as a speech waveform or a modulated signal) the phase delay of the filter is 

Θ(ω) = 0 

–π π 

h(n) (Even) 



the amount of time delay each frequency component of the signal suffers in going through the 

filter. Mathematically, the phase delay τp is given by secant 
() 

τp =     


The group delay on the other hand is the average time delay the composite signal suffers at each 
frequency. The group delay τg is given by the slope (tangent) at ω 

d() 
τg =     

d
where Θ(ω) = H (e 

j 
) of the filter. 

A nonlinear phase characteristic will cause phase distortion, which is undesirable in many 

applications, for example, music, data transmission, video and biomedicine. 

A filter is said to have a linear phase response if its phase response satisfies one of the 

following relationships: 

Θ(ω) = – kω → (A) or Θ(ω) = β – kω → (B) 

where k and β are constants. If a filter satisfies equation (A) its group delay and phase delay are 

the same constant k. It can be shown that for condition (A) to be satisfied the impulse response of 

the filter must have positive symmetry (aka even symmetry or just symmetry). The phase 

response in this case is simply a function of the filter length N: 

 

h(n) = h(N–1–n), n = 0, 1, 2, …, (N–1)/2 for N odd 

n = 0, 1, 2, …, (N/2) – 1 for N even 

 

k = (N–1)/2 
 

If equation (B) is satisfied the filter will have a constant group delay only. In this case, the 

impulse response h(n) has negative symmetry (aka odd symmetry or antisymmetry): 

 

h(n) = – h(N–1–n) 

k = (N–1)/2 

β = /2 



Analog filter background of phase and group delay Phase delay ―at a given frequency‖ is the 

slope of the secant line from dc to the particular frequency and is a sort of overall average delay 

parameter. Phase delay is computed over the frequency range representing the major portion of 

the input signal spectrum (0 to F1 in the figure below). 
 

 

 

 H (F) 

 

 

 

 

 

 

 
F1 

Tangent at F1 
Slope = group delay at F1 

 

Phase curve 

 

 
 

Secant at F1 
Slope = phase delay over 0 to F1 

F 

 

The group delay at a given frequency represents the slope of the tangent line at the 
particular frequency and represents a local or narrow range (neighborhood of F1 in the figure) 
delay parameter. 

A case of significance involving both phase delay and group delay is that of a narrow 

band modulated signal. When a narrow band modulated signal is passed through a filter, the 

carrier is delayed by a time equal to the phase delay, while the envelope (or intelligence) is 

delayed by a time approximately equal to the group delay. Since the intelligence (modulating 

signal) represents the desired information contained in such signals, strong emphasis on good 

group delay characteristics is often made in filters designed for processing modulated 

waveforms. 



h 

Summary of symmetry 
Positive symmetry (or just “symmetry” or even symmetry about the middle) is characterized 

by h(n) = h(N–1–n). Show that for positive symmetry 
( N 1) / 2 

a) For N odd (Type I): H (e j ) = e j( N 1)/ 2  a(k) cos k
k   0 

 N  1  N 1 
a(0) = h	 & a(k) =  2h	 k  , k ≠ 0 

 2   2 
N / 2    

b) For N even (Type II): H (e 
j 

) = e
 j ( N 1) / 2 b(k) cos[(k 1/ 2)] 

k   1 

b(k) = 2 
 N 

 k 



 2 




















n 

0 6 
N–1 

n 

7 

N–1 

h(n) Type II 
N is even 

Center of Symmetry 

h(n) Type I 
N is odd 

Center of Symmetry 

0 



h(n) Type IV 
N is even 

Center of Symmetry 

7 
N–1 

0 
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Summary of symmetry, cont’d 
Negative symmetry (or “antisymmetry” or odd symmetry about the middle) is characterized 

by h(n) = – h(N–1–n). Show that for negative symmetry 
 j 


 

N 1 
   ( N 1) / 2 

a) For N odd (Type III): H (e 
j 

)= e   2 2  a(k)sin k
k   0 

 N  1  N 1 
a(0) = h	 & a(k) =  2h	 k  , k ≠ 0 

 
 N 1  

 2   2 
 j  	  N / 2    

b) For N even (Type IV): H (e 
j 

) = e   2
 2  b(k)sin[(k 1/ 2)] 

k  1 

b(k) =  2  
 N  

 k 



 2 





















n n 

h(n) Type III 
N is odd 

Center of Symmetry 

6 
N–1 

0 





z   e 5 

Qualitative nature of symmetry 

Type I Positive symmetry, N is odd. To illustrate take N = 5: 
( N 1)/ 2 2 

H (e j ) = e j( N 1)/ 2  a(k) cos k = e
 j 2 a(k) cos k

k  0 k   0 

= e
 j 2 

[a(0) + a(1) cos ω + a(2) cos 2ω] 

We have to add up a(0), and the two cosine terms. It is clear that at ω = 0 all the cosine terms are 

at their positive peak, so that when added the response of H (e
j 

) vs. ω would indicate a low 

pass filter. Consider 

x(n)  x(n 1)  x(n  2)  x(n  3)  x(n  4) 

y(n) = 
5
 

H (e 
j 

) = H (z) 1 e 
 j e j 2  e j3  e j 4

= 
  j

 e j 2   e j   1  e j   e j 2   1 2cos  2cos 2 

=  e j 2     = 	 e
 j 2

 5   5 

%Frequency response of moving average filter h(n) = {0.2, 0.2, 0.2, 0.2, 0.2} 

b5 = [0.2, 0.2, 0.2, 0.2, 0.2], a = [1] 

w=-pi: pi/256: pi; Hw5=freqz(b5, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw5)); legend ('Magnitude'); title ('Type I, N is odd'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw5)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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=  

Type II Positive symmetry, N is even. Take N = 6: 
N / 2    3    

H (e 
j 

) = e
 j ( N 1) / 2 b(k) cos[(k 1/ 2)] = e

 j5 / 2 b(k) cos[(k 1/ 2)] 
k  1 k  1 

= e
 j5 / 2 

[b(1) cos ω/2 + b(2) cos 3ω/2 + b(3) cos 5ω/2] 

At  =, corresponding to half the sampling frequency (maximum possible frequency), all the 
cosine terms will be zero. Thus this type of filter is unsuitable as a high-pass filter. It should be 
ok as a low pass filter. Consider 

y(n) =
 x(n)  x(n 1)  x(n  2)  x(n  3)  x(n  4)  x(n  5) 

6 

H (e 
j 

) = H (z) 1  e
 j  e j 2  e j3  e j 4  e j5

= 
z  e j	6

 

e
 j (5/ 2)  e j (5 / 2)  e j (3/ 2)  e j (1/ 2)  e j (1/ 2)  e j (3/ 2)  e j (5 / 2) 



 6 

 cos( / 2)  cos(3 / 2)  cos(5 / 2)  e j (5/ 2)

=  
 3 



%Frequency response of moving average filter h(n) = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} 

b6 = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], a = [1] 

w=-pi: pi/256: pi; Hw6=freqz(b6, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw6)); legend ('Magnitude'); 

title ('Type II, N is even'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw6)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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k  0 

h 

Type III Negative symmetry, N is odd. This introduces a 90
0
 (= π/2) phase shift. Because of the 

sine terms |H| is always zero at ω = 0 and at ω = π/2 (half the sampling frequency). Therefore the 

filter is unsuitable as a low pass or a high pass filter. To illustrate take N = 5 and 

 

h(n) = {0.2, 0.2, 0, -0.2, -0.2} 
 j 


 

N 1 
   ( N 1) / 2  j 

 
 51 

 
  (51) / 2 

H (e 
j 

)= e   2 2  a(k)sin k = e  2 

k  0 

2  a(k) sin k
k  0 

2 

= e j 2 j ( / 2) a(k) sin k
 N  1

a(0) = h


= h(2) = 0 
2 

a(k) = 2 
 N 1 

 k 
 

= 2h2  k , k ≠ 0 

 2 

Etc. 

 

%Frequency response of Type III filter, h(n) = {0.2, 0.2, 0, -0.2, -0.2} 

b5 = [0.2, 0.2, 0, -0.2, -0.2], a = [1] 

w=-pi: pi/256: pi; Hw5=freqz(b5, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw5)); legend ('Magnitude'); 

title ('Type III, N is odd'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw5)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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Type IV Negative symmetry, N is even. This introduces a 90
0
 (= π/2) phase shift. Because of the 

sine terms |H| is always zero at ω = 0. Therefore the filter is unsuitable as a low pass filter. To 

illustrate take N = 6 and 
 

h(n) = {1/6, 1/6, 1/6, -1/6, -1/6, -1/6} 
 j 

 
 N 1    N / 2 

 
 j 

 
 61 

 
  

 
  6 / 2 

 
  

H (e 
j 

) = e  2 2  b(k)sin[(k 1/ 2)] = e 
k  1 
3    

 
 2  b(k) sin[(k 1/ 2)] 

k  1 

 

 
Etc. 

= e
 j3 j ( / 2) b(k) sin[(k 1/ 2)] 

k  1 

and b(k) = 2h3  k , k = 1 to 3 

 

%Frequency response of Type IV filter h(n) = {1/6, 1/6, 1/6, -1/6, -1/6, -1/6} 

b6 = [1/6, 1/6, 1/6, -1/6, -1/6, -1/6], a = [1] 

w=-pi: pi/256: pi; Hw6=freqz(b6, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw6)); legend ('Magnitude'); 

title ('Type IV, N is even'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw6)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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Types III and IV are often used to design differentiators and Hilbert transformers because of 

the 90
0
 phase shift that each one can provide. 

Magnitude 

M
a
g
n
it
u
d
e
 o

f 
H

(
) 

P
h
a
s
e
 o

f 
H

(
) 

      Phase  
  

        

        

        

 



sin nc 

 n 

c ,
 



|Hd(ω)| Hd(ω) = 0 

1 

d 

The phase delay for Type I and II filters or group delay for all four types of filters is 

expressible in terms of the number of coefficients of the filter and so can be corrected to give a 

zero phase or group delay response. 
 N  1

Types I and II: τp = τg = –Θ(ω)/ω =  T 
 2 

d()   N  1 
Types III and IV: τg = 	= 	T 

d  2 



 Magnitude (|H(ω)|) response at  

ω = 0 rad. ω = π rad. 

Type I Max  Low pass 

Type II  Zero OK as LP 
Not OK as HP filter 

Type III Zero Zero 90
0
 Phase shift 

Type IV Zero  90
0
 Phase shift 




Design of FIR digital filters – The Fourier series and windowing method 

 

This method of filter design originates with the observation that the sinusoidal steady state 

transfer function of a digital filter is periodic in the sampling frequency. Since H() is a 

continuous and periodic function of  we can expand it into a Fourier series. The resulting 
Fourier coefficients are the impulse response, h(n). The major disadvantage is that one cannot 
easily specify in advance the exact values for pass band and stop band attenuation/ripple levels, 
so it may be necessary to check several alternate designs to get the required one. 

Consider the ideal low pass filter with frequency response H (e 
j 

) or 

below. The subscript d means that it is the desired or ideal filter. 

Hd () as shown 

 

 

 

 

 
 

 
 

 

–2π –π –ωc 

ω 

0 ωc π 2π 
 

 

The impulse response is given by 1    

(e 
j 

) e 
j n

d = 
1 c

 

 
 

j n 

hd(n) =   Hd 1e d 

2  2 c 

= ,   – ∞   n   ∞, n ≠ 0 

 
n = 0 



d 

d 

d 

This is a non-causal infinite impulse response sequence. It is made a finite impulse response 
sequence by truncating it symmetrically about n = 0; it is made causal by shifting the truncated 
sequence to the right so that it starts at n = 0. The shifting results in a time delay and we shall 
ignore it for now. The truncation results in the sequence ht(n) where the subscript t means 
truncation but we shall ignore the subscript 

 

h(n) = hd(n), – (N–1)/2  n  (N–1)/2 
0, otherwise 

 

In general h(n) can be thought of as obtained by multiplying hd(n) with a window function w(n) 
as follows 

h(n) = hd(n) . w(n) 
 

For the h(n) obtained by simple truncation as above the window function is a rectangular 

window given by 
 

w(n) = 1, – (N–1)/2  n  (N–1)/2 

0, otherwise 

 

Let H (e 
j 

) , H (e 
j 

) and W (e 
j 

) represent the Fourier transforms of h(n), hd(n) and w(n) 

respectively. Then the frequency response H (e j ) of the resulting filter is the convolution of 

H (e j ) and W (e j ) given by 


H (e 
j 

) = 
1 
 H (e 

j 
)W (e 

j ( ) 
d = H (e 

j 
)*W (e 

j 
) 

 

d d 

2 
The convolution produces a smeared version of the ideal low pass filter. In other words, 
H (e 

j 
) is a smeared version of H (e j ) . In general, the wider the main lobe ofW (e j ) , the 

d 

more spreading or smearing, whereas the narrower the main lobe (larger N), the closer 

H (e 
j 

) comes to H (e 
j 

) . 

For any arbitrary window the transition band of the filter is determined by the width of 

the main lobe of the window. The side lobes of the window produce ripples in both pass band 

and stop band. 



. We are 
phase dis 

se of the 
a real 

W (e j ) 

Hd (e ) 
j

|Hd(ω)| 

 

1 

In general, we are left with a trade-off of making N large enough so that smearing is minimized, 

yet the number of filter coefficients (= N) is not too large for a reasonable implementation. Some 

commonly used windows are the rectangular, Bartlett (triangular), Hanning, Hamming, 

Blackman, and Kaiser windows. 
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h(n) = hd(n).w(n) H (e j ) 
 

 

 

 

We turn now to filtering applications  n interested in the amplitude respon ω 
filter (e.g., low pass, band pass, etc.) without tortion. This is realized by using 

valued transfer function, i.e., H (e 
j 

) = HR(ω), with HI(ω) = 0. 

 
Example 4.4.1 [Design of 9-coefficient LP FIR filter] Design a nine-coefficient (or 9-point or 

9-tap) FIR digital filter to approximate an ideal low-pass filter with a cut-off frequency c= 0.2. 

The magnitude response, Hd () , is given below. Take Hd () = 0. 

 

 

 

 

 

–π –π/5 0 π/5 π ω, rad/sample 

 

Solution The impulse response of the desired filter is 

w(n) 

hd(n) 



 n 

=  = =



1    

(e 
j 

) e 
j n

d = 
1 0.2






j n 

hd(n) =   Hd 

2 
 0.2j 

 
 

 
j 0.2n 

 

2
 j 0.2n 

1.e d 
 0.2

1    e  (e  e ) sin 0.2 n 
2  jn  0.2 2 jn  n 

Since hd(n) ≠ 0 for n < 0 this is a noncausal filter (also, it is not BIBO stable – see Unit IV). The 
rest of the design is aimed at coming up with a noncausal approximation of the above impulse 
response. 

For a rectangular window of length 9, the corresponding impulse response is obtained by 
evaluating hd(n) for –4  n  4 on a calculator. In the MATLAB segment below, which 
generates the hd(n) coefficients for –50  n   50, division by zero for n = 0 causes ―NaN‖ (Not 
a Number), while all the other coefficients are correct. In generating the frequency 

response H () we copy and paste all the coefficients except for hd(0) which is entered by hand. 

d (sin 0.2 n) 

hd(0) =  dn 
 

d ( n) 

dn 

 

 

 

 
n  0 

= 
0.2 cos 0.2 n 







n  0 

= 0.2 

 

Aside (MATLAB) The segment below generates and stem-plots the hd(n) coefficients. 
 

%Calculate hdn = (sin (0.2*pi*n)) / (pi*n) and stem plot 

n = -50: 50, hdn = (sin(0.2*pi*n)) ./(pi*n), stem(n, hdn) 

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (sin (0.2*pi*n)) / (pi*n)') 

 

n = -50 to 50 

Warning: Divide by zero. 

hdn = -0, -0.0038, -0.0063, -0.0064, -0.0041, 0, 0.0043 0.0070 0.0072, 

0.0046   -0, -0.0048   -0.0080  -0.0082  -0.0052 0, 0.0055 0.0092, 0.0095 
0.0060   -0, -0.0065   -0.0108  -0.0112  -0.0072 0, 0.0078, 0.0132 0.0138 

0.0089   -0, -0.0098   -0.0168  -0.0178  -0.0117 0, 0.0134 0.0233 0.0252 

0.0170   -0, -0.0208   -0.0378  -0.0432  -0.0312, 0, 0.0468 0.1009 0.1514 

0.1871 NaN 0.1871 0.1514 0.1009, 0.0468 0.0000 -0.0312 -0.0432 

-0.0378 -0.0208 -0.0000 0.0170 0.0252, 0.0233 0.0134 0.0000 -0.0117 

-0.0178 -0.0168 -0.0098 -0.0000 0.0089, 0.0138 0.0132 0.0078 0.0000 

-0.0072 -0.0112 -0.0108 -0.0065 -0.0000, 0.0060 0.0095 0.0092 0.0055 

0.0000 -0.0052 -0.0082 -0.0080 -0.0048, -0.0000 0.0046 0.0072 0.0070 
0.0043 0.0000 -0.0041 -0.0064 -0.0063, -0.0038 -0.0000   



hd(n) = (sin (0.2*pi*n)) / (pi*n) 
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Note 1 The segment below is used to get a quick look at the hd(n) coefficients and their 
symmetry. The MATLAB problem with n = 0 may be avoided by replacing n with (n – 0.001). 
This will affect the other coefficients very slightly (which is not a serious problem as far as 
demonstrating the even symmetry of hd(n)) but the accuracy of the coefficients is somewhat 
compromised in the third or fourth significant digit. 

 

%Calculate hdn = (sin (0.2*pi*n)) / (pi*n) and stem plot 

n = -4: 4, hdn = (sin(0.2*pi*(n-0.001) ) ) ./(pi*(n-0.001) ), stem(n, hdn), 

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (sin (0.2*pi*n)) / (pi*n)') 

hdn = 0.0467, 0.1009, 0.1513, 0.1871, 0.2, 0.1871, 0.1514, 0.1010, 0.0468 

h
d
(n

) 



hd(n) = (sin (0.2*pi*n)) / (pi*n) 
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Note 2 As an alternative to the above, one could write a custom program to calculate all 

coefficients exactly including hd(0). 
End of Aside 

The values are shown in table below: 
 

n = –4 –3 –2 –1 0 1 2 3 4 

ht(n) = {0.047, 0.101, 0.151, 0.187, 0.2, 0.187, 0.151, 0.101, 0.047} 
 

By a rectangular window of length 9 we mean that we retain the above 9 values of hd(.) 
and truncate the rest outside the window. Thus 

 

ht(–4) = 0.047, ht(–3) = 0.101, …, ht(0) = 0.2, …, ht(4) = 0.047 
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– 4ω 

j

The transfer function of this filter is 

Ht(z) =  4
 

n  4 

hd (n)z 




n = 0.047 z 
4 
+ 0.101 z

3 
+ 0.151 z 

2 
+ 0.187 z

1 
+ 0.2 z

0
 

 

+ 0.187 z 
1 

+ 0.151 z 
2 

+0.101 z 
3 

+ 0.047 z 
4

 

 

The causal filter is then given by delaying the sequence ht(n) by 4 samples. That is, h(n) = ht(n– 
4), and the resulting transfer function is 

H(z) = z
–4

 Ht(z) 

= 0.047 (1 z
8 

) + 0.101 (z
1 
 z

7 
) + 0.151 (z

2 
 z

6 
) 

+ 0.187 (z
3 
 z

5 
) + 0.2 z 

4
 

We may obtain the frequency response of this realizable (causal) filter by setting z = e 
j 

, 

that is, H (e 
j 

) = H (z) . Because of the truncation the magnitude |H| will only be 
z e 

approximately equal to |Hd| – Gibbs phenomenon, see comparison of 9 coefficients versus 101 

coefficients below. Further, because of the delay the phase H = –4ω whereas, as originally 
dH () 

specified, Hd = 0. The slope 

samples. 

= –4, showing that the filter introduces a delay of 4 

d


H 

 
 

 
ω 

 
 

 
 

%Magnitude and phase response of 9-coefficient LP filter 

%Filter coefficients 

b9=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468], 

a=[1] 

w=-pi: pi/256: pi; 

Hw9=freqz(b9, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw9)); legend ('9 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw9)); legend ('9 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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%Comparison of 9 coefficients vs. 101 coefficients 

%Filter coefficients 

b9=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468], 

a=[1] 

b101 = [-0.0 -0.0038 -0.0063 -0.0064 -0.0041 0.0, 0.0043 0.0070 0.0072 

0.0046   -0.0, -0.0048   -0.0080  -0.0082  -0.0052 0.0, 0.0055 0.0092, 

 

 

 

 

 

 

 

 

 

 

w=-pi: pi/256: pi; 

Hw9=freqz(b9, a, w); 

Hw101=freqz(b101, a, w); 

plot(w, abs(Hw9), w, abs(Hw101), 'k') 

legend ('9 coefficients', '101 coefficients'); 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
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Rectangular window In this example the sequence hd(n), which extends to infinity on both 
sides, has been truncated to 9 terms. This truncation process can be thought of as multiplying the 
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9 coefficients 

101 coefficients 

 

        

        

        

        

        

        

 

0.0095 0.0060 -0.0, -0.0065 -0.0108 -0.0112  -0.0072 0.0, 0.0078 

0.0132 0.0138 0.0089 -0.0, -0.0098 -0.0168  -0.0178   -0.0117 0.0, 

0.0134 0.0233 0.0252 0.0170 -0.0, -0.0208 -0.0378 -0.0432 -0.0312 

0.0, 0.0468 0.1009 0.1514 0.1871 0.2 0.1871 0.1514 0.1009 0.0468 

0.0 -0.0312 -0.0432 -0.0378 -0.0208 -0.0 0.0170 0.0252, 0.0233 

0.0134 0.0 -0.0117 -0.0178 -0.0168 -0.0098  -0.0 0.0089, 0.0138 

0.0132 0.0078 0.0 -0.0072 -0.0112 -0.0108 -0.0065 -0.0, 0.0060 

0.0095 0.0092 0.0055 0.0 -0.0052 -0.0082 -0.0080 -0.0048, -0.0 

0.0046 0.0072 0.0070 0.0043 0.0 -0.0041 -0.0064 -0.0063, -0.0038 - 

0.0]  

 



infinitely long sequence by a window function called the rectangular window, wR(n). The figure 
below shows both hd(n) and wR(n) in the undelayed form, that is, symmetrically disposed about n 
= 0. 

 

Specifying the window function The interval over which the window function is defined 

 

hd(n) 
 

 

 

 

 
 

 

 

 

 

 

   –6 6    

n 

–5 0 5 
 

 

 

 

 

 

 

 

 

 

 
 

 
–6 –5 

n 

0 5 6 
 

depends on whether we first delay hd(n) and then truncate it or the other way around. If, instead 
of truncating first and then delaying, we adopt the procedure of first delaying hd(n) and then 
truncating it, the window function may be defined over the interval 0  n  N–1, where N is the 
number of terms retained. With this understanding the rectangular window, wR(n), is given 
below. 

 

wR(n) = 1, 0  n  N–1 
0, elsewhere 

 

If, however, we define wR(n) symmetrically about n = 0, as we do later, we have 
 

wR(n) = 1, – (N–1)/2  n  (N–1)/2 
0, elsewhere 

 

In this case we have implied that N is odd. 

wR(n) 

1 



Hamming window As an alternative to the rectangular window we shall apply the Hamming 

window, defined over the interval 0  n  N–1, by 

wHam(n) =   0.54 – 0.46 cos[2 n /(N 1)] , 0  n  N–1 
0, elsewhere 

 

For N = 9, the Hamming window is given by wHam(n) = 0.54 – 0.46 cos( n / 4) , 0  n  8 

 
n = 0 1 2 3 4 5 6 7 8 

wHam(n) = {0.08, 0.215, 0.54, 0.865, 1, 0.865, 0.54, 0.215, 0.08} 

 
 

 

 
 

 

 
 

n 

 

 
Imagine that we line up this sequence alongside the hd(n) given earlier. (This means we should 
imagine wHam(n) is moved to the left by 4 samples). We then multiply the two sequences at each 
point to get the windowed sequence, ht(n): 

 
n = –4 –3 –2 –1 0 1 2 3 4 

hd(n) = {0.047, 0.101, 0.151, 0.187, 0.2, 0.187, 0.151, 0.101, 0.047} 

w(n) = {0.08, 0.215, 0.54, 0.865, 1, 0.865, 0.54, 0.215, 0.08} 
ht(n) = {0.00382, 0.0216, 0.0815, 0.1617, 0.2, 0.1617, 0.0815, 0.0216, 0.00382} 

 
 

The transfer function is given by 

Ht(z) = 0.00382 z 
4 
+ 0.0216 z

3 
+ 0.0815 z

2 
+ 0.1617 z

1 
+ 0.2 + 0.1617 z 

1
 

+ 0.0815 z 
2 

+ 0.0216 z 
3 

+ 0.00382 z 
4

 

Delaying by 4 sample periods we get 

H(z) = z
–4

 Ht(z) = 0.00382 (1 z
8 

) + 0.0216 (z
1 
 z

7 
) + 0.0815 (z

2 
 z

6 
) 

+ 0.1617 (z
3 
 z

5 
) + 0.2 z

–4
 

HW Write the corresponding difference equation and show the filter structure. 

 

We compare below the 9-tap Hamming windowed filter to the filter without the window. 

 

%Comparison of no window vs. Hamming window 

%Nine-tap filter coefficients, no window 

b9=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468], 

% 

%Nine-tap, Hamming-windowed filter coefficients 

wHam(n) 1 

0.08 

0 1 2 3 4 5 6 7 8 



9 coefficients, No window 

9 coefficients, Hamming window 

b9Ham=[0.00382, 0.0216, 0.0815, 0.1617, 0.2, 0.1617, 0.0815, 0.0216, 0.00382] 

a=[1] 

w=-pi: pi/256: pi; 

Hw9=freqz(b9, a, w); 

Hw9Ham=freqz(b9Ham, a, w); 

plot(w, abs(Hw9), w, abs(Hw9Ham), 'k') 

legend ('9 coefficients, No window', '9 coefficients, Hamming window'); 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
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Example 4.4.2 [Low pass filter] [2003] Design a low pass FIR filter that approximates the 

following frequency response 
 

H(F) = 1, 0  F  1000 Hz 

0, elsewhere in 0  F  Fs/2 

where the sampling frequency Fs is 8000 sps. The impulse response duration is to be limited to 
 msec. Draw the filter structure. 

Solution Note the specs are given in Hertz. On the digital frequency scale  goes from 0 to 2, 

with 2 corresponding to the sampling frequency of Fs = 8000 Hz or to s = 2 8000 rad/sec. 

Based on this 1000 Hz corresponds to (1/8)2 = /4. Or we may use the relation  = T to 
convert the analog frequency 1000 Hz to the digital frequency. Thus 

 

 = T = 2F T = 2 1000(1/8000) = /4 

Thus the specifications are restated on the ω scale as 
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d H  (e 
j 

) = 1, –/4    /4 

0, elsewhere in the range [– to ] 
 

 

 

 

 

 

 

 

 

 

F 
 

 

ω 

0 π/4 π 2π 
 

We can evaluate the impulse response 
1
 

1 H (e 
j 

) e 
j n

d =  / 41.e j nd = 1  ej n    / 4 hd(n) =        
 




2  
 d

 2 
 2  jn 

  / 4  / 4 

(e 
j n / 4 

 e j n / 4 ) = 
 
= sin 0.25 n 

2 jn  n 

We need to decide the number of coefficients, that is, the filter length, needed. The 

problem specifies the impulse response duration is to be limited to 2.5 msec. At 8000 

 

 

 
 

n 

 

 

 

 

 
samples/sec., the sampling period T = 1/8000 = 0.125 msec. So the duration of 2.5msec translate 

to 2.5/0.125 = 20 sample periods. Arranging these on a linear scale we see that the filter length N 
= 21 or we need 21 coefficients. Therefore determine the values hd(–10) through hd(10), 

sin 0.25 n 
ht(n) =  , –10  n  10 

 n 

ht(0) = 0.25 by L‘Hopital‘s rule 
 

%Calculate hdn = (sin (0.25*pi*n)) / (pi*n) and stem plot 

n = -50: 50, hdn = (sin(0.25*pi*n)) ./(pi*n), stem(n, hdn) 

 

n = -50 to 50 

Warning: Divide by zero. 

h(n) 

0 20 
N–1 

2.5 msec (21 Points) 

|H(F)| or |Hd(ω)| 
Take Hd(ω) = 0 

1 

–1k 0 1k 4k 8k 



hdn = [0.0064 0.0046   -0.0000   -0.0048  -0.0069  -0.0050 0.0000 0.0052 

0.0076 0.0055 -0.0000 -0.0058 -0.0084 -0.0061 0.0000 0.0064 
0.0094 0.0068 -0.0000 -0.0073 -0.0106 -0.0078 0.0000 0.0083 

0.0122 0.0090 -0.0000 -0.0098 -0.0145 -0.0107 0.0000 0.0118 

0.0177 0.0132 -0.0000 -0.0150 -0.0227 -0.0173 0.0000 0.0205 

0.0318 0.0250 -0.0000 -0.0322 -0.0531 -0.0450 0.0000 0.0750 

0.1592 0.2251 NaN 0.2251 0.1592 0.0750 0.0000 -0.0450 - 

0.0531 -0.0322 -0.0000 0.0250 0.0318 0.0205 0.0000 -0.0173 - 
0.0227 -0.0150 -0.0000 0.0132 0.0177 0.0118 0.0000 -0.0107 

-0.0145  -0.0098  -0.0000 0.0090 0.0122 0.0083 0.0000 -0.0078 - 
0.0106 -0.0073 -0.0000 0.0068 0.0094 0.0064 0.0000 -0.0061 - 

0.0084 -0.0058 -0.0000 0.0055 0.0076 0.0052 0.0000 -0.0050 - 

0.0069 -0.0048 -0.0000 0.0046 0.0064]     

n = 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 

ht(n) = 0.25 0.2251 0.1592 0.075 0 -0.045 0.0531 -0.0322 0 0.025 0.0318 

 
10 

Then take the z transform Ht(z) =  h (t n)z 
n 

. Then determine the transfer function, H(z), of the 
n 10 

realizable FIR filter as H(z) = z 
–10

 Ht(z) from which the filter structure can be drawn. The 
frequency response is compared below for 21 and 101 coefficients. The 21-tap filter is not that 
bad. 

 

%21-tap filter coefficients 

b21=[0.0318 0.0250   -0.0000   -0.0322  -0.0531   -0.0450 0.0000 0.0750 

0.1592 0.2251 0.25 0.2251 0.1592 0.0750 0.0000 -0.0450 -0.0531 

-0.0322 -0.0000 0.0250 0.0318], 

a=[1] 

%101-tap filter coefficients 

b101=[0.0064 0.0046   -0.0000   -0.0048  -0.0069   -0.0050 0.0000 0.0052 

0.0076 0.0055 -0.0000 -0.0058 -0.0084 -0.0061 0.0000 0.0064 
0.0094 0.0068 -0.0000 -0.0073 -0.0106 -0.0078 0.0000 0.0083 

0.0122 0.0090 -0.0000 -0.0098 -0.0145 -0.0107 0.0000 0.0118 

0.0177 0.0132 -0.0000 -0.0150 -0.0227 -0.0173 0.0000 0.0205 

0.0318 0.0250 -0.0000 -0.0322 -0.0531 -0.0450 0.0000 0.0750 
0.1592 0.2251 0.25 0.2251 0.1592 0.0750 0.0000 -0.0450 -0.0531 

-0.0322 -0.0000 0.0250 0.0318 0.0205 0.0000 -0.0173 -0.0227 - 
0.0150 -0.0000 0.0132 0.0177 0.0118 0.0000 -0.0107 -0.0145 - 

0.0098 -0.0000 0.0090 0.0122 0.0083 0.0000 -0.0078 -0.0106 - 

0.0073 -0.0000 0.0068 0.0094 0.0064 0.0000 -0.0061 -0.0084 - 

0.0058 -0.0000 0.0055 0.0076 0.0052 0.0000 -0.0050 -0.0069 - 
0.0048 -0.0000 0.0046 0.0064],      

w=-pi: pi/256: pi; 

Hw21=freqz(b21, a, w); 

Hw101=freqz(b101, a, w); 

plot(w, abs(Hw21), w, abs(Hw101), 'k') 

legend ('21 coefficients', '101 coefficients'); 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); 
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Example 4.4.3 [Very narrow band pass filter] [2003] Design a band pass FIR filter that 

approximates the following frequency response: 
 

H(F) = 1, 160  F  200 Hz 

0, elsewhere in 0  F  Fs/2 

when the sampling frequency is 8000 sps. Limit the duration of impulse response to 2 msec. 

Draw the filter structure. 

Solution The sampling frequency Fs = 8000 Hz corresponds to ω = 2 rad. Thus 

160 Hz corresponds to ω = (160/8000)2 = 0.04  rad., and 

200 Hz corresponds to ω = (200/8000)2 = 0.05  rad. 

 
|Hd(ω)| 

 

 

 

 

 
 

ω 

1 

–π –0.05π –0.04π 0 0.04π 0.05π π 

Take Hd(ω) = 0 

21 coefficients 

101 coefficients 
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d H  (e 
j 

) = 1, – 0.05  ω   – 0.04 and 0.04  ω  0.05 

0, elsewhere in the range [– to ] 
1  

 
1   0.04 0.05 j j n hd(n) =   H  (e ) e d =   1e 

j n
d  1e 

j n
d  d 

2      
2   0.05 0.04 

  1   e j n  0.04
=   + 

e j n  







2    
jn  0.05   jn  0.04 

=  
    1  e j 0.04 n   e j 0.05 n  e j 0.05 n   e j 0.04 n  j2

ne  e  e  e 


=  
1 

j 0.05n  j 0.05 n      j 0.04 n  j 0.04 n 

 

 n  j2 j2 

sin 0.05 n  sin 0.04 n 
= 

 n 
 
 

 

 

 
 

n 

 

 

 

 

 
Filter length N is determined by the duration of the impulse response. Two milliseconds 

corresponds to 0.002 / (1/8000) = 16 sample periods. This means that the filter length N = 17, 

and there will be 17 coefficients. Determine the values of hd(n) for –8  n  8, so that 

ht(n) = { hd (–8), hd (–7), …, hd (0), …, hd (8) }, and 
8 

Ht(z) = h t(n)z 
n 

n  8 

Delay the impulse response by 8 sample periods so that 

 

h(n) = ht(n–8) and H(z) = z 
–8

 Ht(z) 

hd(0) = 0.01 by L‘Hopital‘s rule 

 

%Calculate hdn = (sin(0.05*pi*n) - sin(0.04*pi*n)) /(pi*n) and stem plot 

n = -50: 50, hdn = (sin(0.05*pi*n) - sin(0.04*pi*n)) ./(pi*n), stem(n, hdn) 

 

n = -50 to 50 

Warning: Divide by zero. 

hdn =[0.0064 0.0072 0.0080 0.0085 0.0089 0.0092 0.0092 0.0091 

0.0087 0.0082 0.0076 0.0067 0.0058 0.0047 0.0035 0.0022 0.0009 

-0.0005 -0.0018 -0.0031 -0.0044 -0.0056 -0.0066 -0.0076 -0.0084 - 
0.0090 -0.0095 -0.0097 -0.0098 -0.0097 -0.0094 -0.0088 -0.0082 - 

h(n) 

0 16 
N–1 

2 msec (17 Points) 





0.0073   -0.0063   -0.0052   -0.0039  -0.0026   -0.0012 0.0002 0.0016 

0.0029 0.0042 0.0055 0.0066 0.0076 0.0084 0.0091 0.0096 0.0099 

NaN 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042 

0.0029 0.0016 0.0002 -0.0012 -0.0026 -0.0039 -0.0052 -0.0063 - 
0.0073 -0.0082 -0.0088 -0.0094 -0.0097 -0.0098 -0.0097 -0.0095 - 

0.0090 -0.0084 -0.0076 -0.0066 -0.0056 -0.0044 -0.0031 -0.0018 - 

0.0005 0.0009 0.0022 0.0035 0.0047 0.0058 0.0067 0.0076 0.0082 

0.0087 0.0091 0.0092 0.0092 0.0089 0.0085 0.0080 0.0072  

0.0064]         

 

 

n = 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 

hd(n) = 0.01 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042 
 

The frequency responses 17-tap and 101-tap filters are shown below. The 17-tap filter 

looks more like a low pass filter! Owing to the very narrow pass band a very large number of 

coefficients is needed before the pass band becomes discernible. In general FIR filters are 

characterized by a large number of coefficients compared to IIR filters. 

 

%Filter coefficients 

b17=[0.0042 0.0055 0.0066 0.0076 0.0084 0.0091 0.0096 0.0099 
0.01 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042], 

a=[1] 
b101=[0.0064 

 

0.0072 
 

0.0080 
 

0.0085 
 

0.0089 
 

0.0092 
 

0.0092 
 

0.0091 
 

0.0087 0.0082 0.0076 0.0067 0.0058 0.0047 0.0035 0.0022 0.0009 

-0.0005 -0.0018 -0.0031 -0.0044 -0.0056 -0.0066 -0.0076 -0.0084 - 

0.0090 -0.0095 -0.0097 -0.0098 -0.0097 -0.0094 -0.0088 -0.0082 - 

0.0073 -0.0063 -0.0052 -0.0039 -0.0026 -0.0012 0.0002 0.0016 
0.0029 0.0042 0.0055 0.0066 0.0076 0.0084 0.0091 0.0096 0.0099 

0.01 0.0099 0.0096 0.0091 0.0084 0.0076 0.0066 0.0055 0.0042 
0.0029 0.0016 0.0002 -0.0012 -0.0026 -0.0039 -0.0052 -0.0063 - 

0.0073 -0.0082 -0.0088 -0.0094 -0.0097 -0.0098 -0.0097 -0.0095 - 

0.0090 -0.0084 -0.0076 -0.0066 -0.0056 -0.0044 -0.0031 -0.0018 - 

0.0005 0.0009 0.0022 0.0035 0.0047 0.0058 0.0067 0.0076 0.0082 

0.0087 0.0091 0.0092 0.0092 0.0089 0.0085 0.0080 0.0072  

0.0064]         

w=-pi: pi/256: pi; Hw17=freqz(b17, a, w); Hw101=freqz(b101, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw17)); legend ('17 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, abs(Hw101)); legend ('101 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 



0.2 

 
0.15 

 
0.1 

 
0.05 

 
0 
-4 -3 -2 -1 0 1 2 3 4 

Frequency  , rad/sample 

0.8 

 

0.6 

 
0.4 

 
0.2 

 
0 
-4 -3 -2 -1 0 1 2 3 4 

Frequency  , rad/sample 

 

 
Example 4.4.4 [Band pass filter] [2003] Design a band pass filter to pass frequencies in the 

range 1 to 2 rad/sec using Hanning window with N = 5. Draw the filter structure and plot its 

spectrum. 

Solution The Hanning window is also known as the Hann window. It is a raised cosine, is very 

similar to the Hamming window, and is given by 
 

wHan(n) = 0.51 cos2 n /(N 1), 0  n  N–1 

0, elsewhere 

 
Note In order to convert the analog frequencies to digital we need the sampling time T. The 
sampling frequency Fs (or the sampling time T) is not specified. We assume T = 1 sec or, what 
amounts to the same, we assume that the frequencies given are actually digital, that is, 1 to 2 
rad/sample instead of 1 to 2 rad/sec. However, the solution below assumes that the frequencies 

are given correctly, that is, that they are analog, and uses a sampling frequency of s = 4 rad / 
sec. 

Although there is a specialized version of the sampling theorem for band pass signals we 
shall simply take the sampling frequency to be twice the highest frequency which is 2 rad / sec. 

Thus we shall take s = 4 rad / sec. This then gives us a high pass filter rather a band pass. 
However, if we take, say, s = 8 rad / sec., we shall have a band pass filter. We shall next 

convert the analog frequency specs to digital (): 

s = 4 rad / sec corresponds to  = 2 rad 

1 rad / sec corresponds to  = 2/4 = /2 rad 

2 rad / sec corresponds to  = (2/4) 2 =  rad 

17 coefficients 
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     101 coefficients  
   

        

        

        

 



j

Thus  

Hd() =  1, –    –/2 and /2    
0, elsewhere in [–, ] 

 

|Hd(ω)| 
 

 

 

 

 

 

 

 
–π –π/2 

ω 

0 π/2 π 
 

 

Evaluate impulse response 
h (n) = 1   H  () e 

j n
d = 1   / 21 e j nd    1 e j nd

d    d       

2  
2    / 2 

=    1   e j n    / 2  

+ 
 j n  

     1   j n / 2  j n j n j n / 2 

   e    = e  e  e  e 
2 

   
jn     jn   / 2  

j2 n
 

 
 

1 e  e 
j n  j n 



e  e 
j  n / 2  j n / 2 



sin( n)  sin( n / 2) 

 n  j2 j2   n 

hd(0) = 0.5 by L‘Hopital‘s rule 

Determine hd(n) for –2  n  2, so that 

ht(n) = {hd(–2), hd(–1), hd(0), hd(1), hd(2)} 

For N = 5 the Hanning window is given by 

wHan(n) = 0.51 cos2 n / 5 1, 0  n  5 – 1 

= 0.51 cos n / 2, 0  n  4 
Thus w(n) = {0, 0.5, 1, 0.5, 0}. Multiplying ht(n) and wHan(n) point by point we get 

 h (1) h (1) 
ht(n) = ht(n) wHan(n) = 0,  d , h (0),  d , 0 and 

 2 
d 

2 
2 

Ht(z) =  ht(n)z 
n 

n  2 

Delay by 2 samples to get h(n) = ht(n–2) and H(z) = z
–2

 Ht(z). Now draw the direct form structure 

for H(z). The spectrum is given by H (e 
j 

) = H (z) . We compare below filters lengths of 5 
z    e 

and 101 without the Hanning window. 

Generate filter coefficients: 

%Calculate hdn = (sin(pi*n) - sin(pi*n/2)) /(pi*n) and stem plot 

n = -50: 50, hdn = (sin(pi*n) - sin(pi*n/2)) ./(pi*n), stem(n, hdn) 

1 

Take Hd(ω) = 0 

=  = 



n = -50 to 50 

Warning: Divide by zero. 

hdn = [0.0000  -0.0065   -0.0000 0.0068   -0.0000  -0.0071  -0.0000 0.0074 

0.0000 -0.0078 -0.0000 0.0082 -0.0000 -0.0086 -0.0000 0.0091  
0.0000 -0.0096 -0.0000 0.0103 -0.0000 -0.0110 -0.0000 0.0118 

0.0000 -0.0127 -0.0000 0.0138 -0.0000 -0.0152 -0.0000 0.0168 - 

0.0000 -0.0187 -0.0000 0.0212 -0.0000 -0.0245 -0.0000 0.0289 - 

0.0000 -0.0354 -0.0000 0.0455 -0.0000 -0.0637 -0.0000 0.1061 - 

0.0000 -0.3183 NaN -0.3183 -0.0000 0.1061 -0.0000 -0.0637 - 

0.0000 0.0455 -0.0000 -0.0354 -0.0000 0.0289 -0.0000 -0.0245 - 

0.0000 0.0212 -0.0000 -0.0187 -0.0000 0.0168 -0.0000 -0.0152 - 

0.0000 0.0138 -0.0000 -0.0127 0.0000 0.0118 -0.0000 -0.0110 - 

0.0000 0.0103 -0.0000 -0.0096 0.0000 0.0091 -0.0000 -0.0086 - 

0.0000 0.0082 -0.0000 -0.0078 0.0000 0.0074 -0.0000 -0.0071 - 
0.0000 0.0068 -0.0000 -0.0065 0.0000]     

 

Generate frequency responses: 

 

%5-tap filter coefficients 

b5=[0.0000  -0.3183 0.5 -0.3183 -0.0000], 

a=[1] 

%101-tap filter coefficients 

b101=[0.0000  -0.0065  -0.0000 0.0068   -0.0000  -0.0071  -0.0000 0.0074 

0.0000 -0.0078 -0.0000 0.0082 -0.0000 -0.0086 -0.0000 0.0091  
0.0000 -0.0096 -0.0000 0.0103 -0.0000 -0.0110 -0.0000 0.0118 

0.0000 -0.0127 -0.0000 0.0138 -0.0000 -0.0152 -0.0000 0.0168 - 

0.0000 -0.0187 -0.0000 0.0212 -0.0000 -0.0245 -0.0000 0.0289 - 

0.0000 -0.0354 -0.0000 0.0455 -0.0000 -0.0637 -0.0000 0.1061 - 
0.0000 -0.3183 0.5  -0.3183  -0.0000 0.1061 -0.0000 -0.0637 -0.0000 

0.0455 -0.0000 -0.0354  -0.0000 0.0289  -0.0000 -0.0245 -0.0000 

0.0212 -0.0000 -0.0187  -0.0000 0.0168  -0.0000 -0.0152 -0.0000 
0.0138 -0.0000 -0.0127 0.0000 0.0118 -0.0000 -0.0110 -0.0000 

0.0103 -0.0000 -0.0096 0.0000 0.0091 -0.0000 -0.0086 -0.0000 

0.0082 -0.0000 -0.0078 0.0000 0.0074 -0.0000 -0.0071 -0.0000 
0.0068 -0.0000 -0.0065 0.0000],     

w=-pi: pi/256: pi; 

Hw5=freqz(b5, a, w); 

Hw101=freqz(b101, a, w); 

plot(w, abs(Hw5), w, abs(Hw101), 'k') 

legend ('5 coefficients', '101 coefficients'); 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
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We compare below the frequency responses of the 5-tap filter with and without the 

Hanning window. It can be seen that the Hanning window aggravates what is already a poor 

(short) filter length. There may be more to gain by increasing the filter length than by 

windowing. 

 

Generate Hanning window: 

 

%Generate Hanning window wn = 0.5*(1–cos(pi*n/2)) and stem plot 

n = -2: 2, wn = 0.5*(1-cos(pi*n/2)), stem(n, wn) 

 

n = -2 to 2 

wn = 1.0000 0.5000 0 0.5000 1.0000 

 

Generate frequency responses: 

 

%5-tap filter coefficients 

b5=[0.0000  -0.3183 0.5 -0.3183  -0.0000], 

%Hanning window coefficients 

wn = [1.0000 0.5000 0 0.5000 1.0000], 

%Windowed coefficients 

b5Han = b5 .*wn, 

a=[1] 

w=-pi: pi/256: pi; 

Hw5=freqz(b5, a, w); 

Hw5Han=freqz(b5Han, a, w); 

plot(w, abs(Hw5), w, abs(Hw5Han), 'k') 

legend ('5 coefficients, No window', '5 coefficients, Hanning window '); 
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5 coefficients, No window 

5 coefficients, Hanning window 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
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Example 4.4.5 [High pass filter] [2008] Design a high pass linear phase filter with frequency 

response 
 

H  (e j ) = 1 e j3 , c     

0, elsewhere in the range [– to] 

The number of filter coefficients is N = 7 and c =  /4. Use (a) rectangular window and (b) 
Hamming window. 

 
|Hd(ω)| 

 

 

 

 

 

 

 
–π –π/4 0 
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ω 
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1  H () e 
j n

d =  / 4 
 1  j 3 j n 

hd(n) =   d
 1  1 e j 3e j nd   e 

 

e d
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 / 4 

2  
 

 / 4 
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1 e j (n3) d  e j (n3) d


2    / 4 

  
 j (n3) 

 
 / 4 j (n3) 
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+ 

 e 

 



2  
j(n  3)   j(n  3)  / 4 

=  
  1  e j  (n3) / 4   e j (n3)  e j (n3)   e j (n3) / 4 

  j2 (n 


3)  e 
 
e  e 

1 e 
= j (n3)  j (n3) 





j  (n3)/ 4  j (n3)/ 4 


 (n  3)  j2 j2 

sin (n  3) sin (n  3) / 4
=    

 (n  3) 

1 

–3ω 

–π π 



This sequence is centered at n = 3. Since the filter length is N = 7 we can calculate the 7 
coefficients as {hd(n), 0 ≤ n ≤ 6}. In other words we truncate it outside the interval 0 ≤ n ≤ 6; 
moreover, there is no need to right-shift the truncated sequence. 

In general, one may not know the filter length with certainty and there is no special 
advantage in specifying the phase, Hd(ω), as anything but zero. We calculate 101 coefficients 

sin( n)  sin( n / 4) 
of the sequence centered about n = 0, that is, hd(n) =  : 

 n 

hd(0) = 0.75 by L‘Hopital‘s rule 
 

% Generate hdn = (sin(pi*n) - sin(pi*n/4)) /(pi*n) and stem plot 

n = -50: 50, hdn = (sin(pi*n) - sin(pi*n/4)) ./(pi*n), stem(n, hdn) 

 

n = –50 to 50 
Warning: Divide by zero. 

 

hdn = [-0.0064 -0.0046 -0.0000 0.0048 0.0069 0.0050 -0.0000 -0.0052 

-0.0076  -0.0055  -0.0000 0.0058 0.0084 0.0061 -0.0000 -0.0064 - 
0.0094   -0.0068 -0.0000 0.0073 0.0106 0.0078 -0.0000 -0.0083 - 
0.0122 -0.0090 -0.0000 0.0098 0.0145 0.0107 -0.0000 -0.0118 - 

0.0177 -0.0132 -0.0000 0.0150 0.0227 0.0173 -0.0000 -0.0205 - 

0.0318 -0.0250 -0.0000 0.0322 0.0531 0.0450 -0.0000 -0.0750 - 

0.1592 -0.2251 NaN -0.2251 -0.1592 -0.0750 -0.0000 0.0450  

0.0531 0.0322 -0.0000 -0.0250 -0.0318 -0.0205 -0.0000 0.0173  

0.0227 0.0150 -0.0000 -0.0132 -0.0177 -0.0118 -0.0000 0.0107  

0.0145 0.0098 -0.0000 -0.0090 -0.0122 -0.0083 -0.0000 0.0078  

0.0106 0.0073 -0.0000 -0.0068 -0.0094 -0.0064 -0.0000 0.0061  

0.0084 0.0058 -0.0000 -0.0055 -0.0076 -0.0052 -0.0000 0.0050  

0.0069 0.0048 -0.0000 -0.0046 -0.0064]     



The 7-tap and 101-tap filter responses are shown below 

 

%7-tap filter coefficients 

b7=[-0.0750  -0.1592  -0.2251 0.75 -0.2251 -0.1592 -0.0750], 

a=[1] 

%101-tap filter coefficients 

b101=[-0.0064  -0.0046  -0.0000 0.0048 0.0069 0.0050 -0.0000 -0.0052 

 

 

 

 

 

 

 

 

 

 

 

 

w=-pi: pi/256: pi; 

Hw7=freqz(b7, a, w); 

Hw101=freqz(b101, a, w); 

plot(w, abs(Hw7), w, abs(Hw101), 'k') 

legend ('7 coefficients', '101 coefficients'); 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
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101 coefficients 

 

        

        

        

        

        

        

 

-0.0076 -0.0055 -0.0000 0.0058 0.0084 0.0061 -0.0000 -0.0064 - 

0.0094 -0.0068 -0.0000 0.0073 0.0106 0.0078 -0.0000 -0.0083 - 

0.0122 -0.0090 -0.0000 0.0098 0.0145 0.0107 -0.0000 -0.0118 - 

0.0177 -0.0132 -0.0000 0.0150 0.0227 0.0173 -0.0000 -0.0205 - 

0.0318 -0.0250 -0.0000 0.0322 0.0531 0.0450 -0.0000 -0.0750 - 

0.1592 -0.2251 0.75 -0.2251 -0.1592 -0.0750 -0.0000 0.0450  

0.0531 0.0322 -0.0000 -0.0250 -0.0318 -0.0205 -0.0000 0.0173  

0.0227 0.0150 -0.0000 -0.0132 -0.0177 -0.0118 -0.0000 0.0107  

0.0145 0.0098 -0.0000 -0.0090 -0.0122 -0.0083 -0.0000 0.0078  

0.0106 0.0073 -0.0000 -0.0068 -0.0094 -0.0064 -0.0000 0.0061  

0.0084 0.0058 -0.0000 -0.0055 -0.0076 -0.0052 -0.0000 0.0050 

0.0069 0.0048 -0.0000 -0.0046 -0.0064],   

 



|Hd(ω)| 

1 

 

+ e  




Example 4.4.6 [Band-stop filter] Design a band-stop linear phase filter with the following 

frequency response. The number of filter coefficients is N = 31. 
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Example 4.4.7 [Design of 9-coefficient narrow-band LP FIR filter] This is a repeat of 

Example 2.1 with the bandwidth reduced to 0.02π. The band width is narrower by a factor of 10 

from the band width in that example. The objective is to show that the narrower the band width 

the larger the number of coefficients needed to achieve the specified frequency response. 

Design a nine-coefficient (or 9-point or 9-tap) FIR digital filter to approximate an ideal 

low-pass filter with a cut-off frequency c= 0.02. The magnitude response, Hd () , is given 

below. Take Hd () = 0. 

 

–0.02π 0.02π 

 
Solution The impulse response of the desired filter is 1    

(e 
j 

) e 
j n

d = 
1 0.0


2

 j n hd(n) =   Hd    1.e d 

2  
2  

 0.02


1 e j n 




(e 
j 0.02n 

 e j 0.02 n ) 
 

 

sin 0.02 n 

=    = =     jn 
2  0.02 2 jn  n 

|Hd(ω)| 
 

1 

–π 
ω 

0 π 



d (sin 0.02 n) 

  dn  
d ( n) 

dn 

 

0.02 cos 0.02 n 
hd(0) = = 









n  0 

 

= 0.02 

n  0 

 

The MATLAB calculation of coefficients follows (good for all n except 0 where we fill in the 

value 0.02): 

 

% Generate hdn = (sin (0.02*pi*n)) / (pi*n) and stem plot 

n = -50: 50, hdn = (sin(0.02*pi*n)) ./(pi*n), stem(n, hdn) 

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (sin (0.02*pi*n)) / (pi*n)') 

 
 

n = -50 to 50 

Warning: Divide by zero. 

hdn = -0.0000 0.0004 0.0008 0.0013 0.0017 0.0022 0.0027 0.0032 

0.0037 0.0042 0.0047 0.0052 0.0057 0.0063 0.0068 0.0074 0.0079 
0.0085 0.0090 0.0095 0.0101 0.0106 0.0112 0.0117 0.0122 0.0127 

0.0132 0.0137 0.0142 0.0147 0.0151 0.0156 0.0160 0.0164 0.0168 

0.0172 0.0175 0.0178 0.0182 0.0184 0.0187 0.0190 0.0192 0.0194 

0.0195 0.0197 0.0198 0.0199 0.0199 0.0200 NaN 0.0200 0.0199 

0.0199 0.0198 0.0197 0.0195 0.0194 0.0192 0.0190 0.0187 0.0184 

0.0182 0.0178 0.0175 0.0172 0.0168 0.0164 0.0160 0.0156 0.0151 

0.0147 0.0142 0.0137 0.0132 0.0127 0.0122 0.0117 0.0112 0.0106 

0.0101 0.0095 0.0090 0.0085 0.0079 0.0074 0.0068 0.0063 0.0057 

0.0052 0.0047 0.0042 0.0037 0.0032 0.0027 0.0022 0.0017 0.0013 
0.0008 0.0004 -0.0000       

 

The following MATLAB plot of coefficients is good for all n except at n = 0. 
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MATLAB plots of magnitude and phase response of the 9-coefficient narrower band LP filter 

follow: 

 

%Magnitude and phase response of 9-coefficient LP filter 

%Filter coefficients 

b9ex7= [0.0198 0.0199 0.0199 0.0200 0.02 0.0200 0.0199 0.0199 0.0198], 

a=[1] 

w=-pi: pi/256: pi; 

Hw9ex7=freqz(b9ex7, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw9ex7)); legend ('9 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw9ex7)); legend ('9 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 
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The MATLAB plots below enable us to compare (only visually) the magnitude responses 

of the two 9-coefficient filters, the only difference being that Ex 1 has a band width of 0.2π while 

Ex 2 is very narrow at 0.02π. 

 

% Magnitude responses compared: Ex 1 and Ex 7 (9-coefficient LP filters) 

%Filter coefficients 

b9ex1=[0.0468, 0.1009, 0.1514, 0.1871, 0.2, 0.1871, 0.1514, 0.1009, 0.0468], 

b9ex7= [0.0198 0.0199 0.0199 0.0200 0.02 0.0200 0.0199 0.0199 0.0198], 

a=[1] 

w=-pi: pi/256: pi; 

Hw9ex1=freqz(b9ex1, a, w); 

Hw9ex7=freqz(b9ex7, a, w); 

plot(w, abs(Hw9ex1), w, abs(Hw9ex7), 'k') 

legend ('Ex1, 9 coefficients', 'Ex7, 9 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

 

From the plots it clear that the narrow-band filter of Example 6 is no where near either the band 

width or the gain specified. In contrast, the wider band width filter of Example 1 is relatively 

much closer to specification. 
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In the MATLAB plots below we have increased the number of coefficients to 51 for both 

filters, the only difference being that Ex 1 has a band width of 0.2π while Ex 2 is very narrow at 

0.02π. 

% Magnitude responses compared: Ex 1 and Ex 7 (51-coefficient LP filters) 

%Filter coefficients 
 

 

 

 

 
 

 

 
b51ex7= [0.0127 0.0132 0.0137 0.0142 0.0147 0.0151 0.0156  

0.0160 0.0164 0.0168 0.0172 0.0175 0.0178 0.0182 0.0184 0.0187 

0.0190 0.0192 0.0194 0.0195 0.0197 0.0198 0.0199 0.0199 0.0200 

0.02 0.0200 0. 0199 0. 0199 0. 0198 0. 0197 0. 0195 0. 0194 0. 0192 

0.0190 0.0187 0.0184 0.0182 0.0178 0.0175 0.0172 0.0168 0.0164 

0.0160 0.0156 0.0151 0.0147 0.0142 0.0137 0.0132 0.0127], 

a=[1]    

w=-pi: pi/256: pi; 

Hw51ex1=freqz(b51ex1, a, w); Hw51ex7=freqz(b51ex7, a, w); 

plot(w, abs(Hw51ex1), w, abs(Hw51ex7), 'k') 

legend ('Ex1, 51 coefficients', 'Ex7, 51 coefficients'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

 

From the plots it clear that the narrow-band filter of Example 6 still has a long way to go. In 

contrast, the wider band width filter of Example 1 is almost there. 
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b51ex1=[0.0, 0.0078 0.0132 0.0138 0.0089 -0.0, -0.0098 -0.0168 - 

0.0178  -0.0117 0.0, 0.0134 0.0233 0.0252 0.0170 -0.0, -0.0208 - 

0.0378   -0.0432   -0.0312 0.0, 0.0468 0.1009 0.1514 0.1871 0.2 

0.1871 0.1514 0.1009 0.0468 0.0 -0.0312 -0.0432 -0.0378 -0.0208 - 
0.0 0.0170 0.0252, 0.0233 0.0134 0.0 -0.0117 -0.0178 -0.0168 - 

0.0098  -0.0 0.0089, 0.0138 0.0132 0.0078 0.0], 

%  

 



d d 

d d d 

We turn now to filtering plus quadrature phase shift. These applications include 
integrators, differentiators, and Hilbert transform devices. For all of these the desired transfer 

function is imaginary, i.e., H (e 
j 

) = j HI(ω), with HR(ω) = 0 

 
Example 4.4.8 [The ideal differentiator] In the analog situation the ideal differentiator is given 

by the transfer function H(s) = s with the frequency response H(Ω) = jΩ, for 0  Ω  . The 

digital version of the ideal differentiator may be defined as 

 

H  (e 
j 

) or H  () = jω, –  ω  



Note H () = jω =  e 
j / 2 

has a magnitude of H () =  , and a phase H () =   / 2 (see 

figure). 
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Since Hd () is periodic in ω with period 2, we can expand in into a Fourier series as 



Hd () =   hd 

 j n 

(n) e 
n  

where the Fourier coefficients hd(n) (the impulse response) are given by 1    
j n 

 

 
Substituting 

hd(n) =   Hd  () e d
2 

Hd () = jω, we get 1 
j e 

j n
d = 

j
 




 
j n 

e j n 

hd(n) =      e  1.  d
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 2n  2   
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sin n
 n2

 

sin n

cos n 

n 
– 0, n = non-zero integers 

where we have used the fact that 
 n2

 

= 0 for non-zero integer values of n. For n = 0 the value 

of hd(0) is evaluated from the defining equation, viz., 
1     j 




hd(0) =   j e 
j 0 

d = 1 
  j d =   = 0 

 
Thus 

2  
2 

 2 



hd(n)= , n = non-zero integers 

n = 0 

 

As a specific case choose a filter length N = 9 and evaluate hd(n) for –4  n  4. 

%Ideal Differentiator 

% Generate hdn = (cos(n*pi)) /(n) and stem plot 

n = -50: 50, hdn = (cos(n*pi)) ./(n), stem(n, hdn) 

xlabel('n'), ylabel('hd(n)'); grid; title ('hd(n) = (cos(n*pi)) /(n)') 

 

n = –50 to 50 

Warning: Divide by zero. 

hdn =[-0.0200 0.0204  -0.0208 0.0213  -0.0217 0.0222   -0.0227 0.0233 

-0.0238 0.0244  -0.0250 0.0256  -0.0263 0.0270   -0.0278 0.0286  - 

0.0294 0.0303 -0.0313 0.0323 -0.0333 0.0345 -0.0357 0.0370 - 
0.0385 0.0400 -0.0417 0.0435 -0.0455 0.0476 -0.0500 0.0526 - 

0.0556 0.0588 -0.0625 0.0667 -0.0714 0.0769 -0.0833 0.0909 - 
0.1000 0.1111 -0.1250 0.1429 -0.1667 0.2000 -0.2500 0.3333 - 

0.5000 1.0000 0  -1.0000 0.5000  -0.3333 0.2500   -0.2000 0.1667 - 

0.1429 0.1250 -0.1111 0.1000 -0.0909 0.0833 -0.0769 0.0714 - 
0.0667 0.0625 -0.0588 0.0556 -0.0526 0.0500 -0.0476 0.0455 - 

0.0435 0.0417 -0.0400 0.0385 -0.0370 0.0357 -0.0345 0.0333 
-0.0323 0.0313  -0.0303 0.0294  -0.0286 0.0278   -0.0270 0.0263 - 

0.0256 0.0250  -0.0244 0.0238  -0.0233 0.0227   -0.0222 0.0217 - 
0.0213 0.0208  -0.0204 0.0200] 

 
We can see the odd symmetry of hd(n) from the following stem plot (note that the correct 

value of hd(0) = 0; the MATLAB segment used here has hd(0) = ∞ which is not correct). 



hd(n) = (cos(n*pi)) /(n) 
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The frequency response 

 

%Ideal Differentiator 

%9-tap filter coefficients 

b9=[ -0.2500 0.3333  -0.5000 1.0000 0   -1.0000 0.5000  -0.3333 

0.2500], 

a=[1] 

%101-tap filter coefficients 

b101=[-0.0200 0.0204  -0.0208 0.0213  -0.0217 0.0222   -0.0227 0.0233 

-0.0238 0.0244  -0.0250 0.0256  -0.0263 0.0270   -0.0278 0.0286  - 

 

 

 

 

 

 

 

 

 

 

 

w=-pi: pi/256: pi; 

Hw9=freqz(b9, a, w); 

Hw101=freqz(b101, a, w); 

plot(w, abs(Hw9), w, abs(Hw101), 'k') 
legend ('9 coefficients', '101 coefficients'); 

h
d
(n

) 

0.0294 0.0303 -0.0313 0.0323   -0.0333 0.0345  -0.0357 0.0370 - 

0.0385 0.0400 -0.0417 0.0435   -0.0455 0.0476  -0.0500 0.0526 - 
0.0556 0.0588 -0.0625 0.0667 -0.0714 0.0769  -0.0833 0.0909 - 

0.1000 0.1111 -0.1250 0.1429  -0.1667 0.2000  -0.2500 0.3333 - 
0.5000 1.0000 0  -1.0000 0.5000  -0.3333 0.2500   -0.2000 0.1667 - 

0.1429 0.1250 -0.1111 0.1000 -0.0909 0.0833 -0.0769 0.0714 - 

0.0667 0.0625 -0.0588 0.0556 -0.0526 0.0500 -0.0476 0.0455 - 
0.0435 0.0417 -0.0400 0.0385 -0.0370 0.0357 -0.0345 0.0333 - 

0.0323 0.0313 -0.0303 0.0294 -0.0286 0.0278 -0.0270 0.0263 - 

0.0256 0.0250 -0.0244 0.0238 -0.0233 0.0227 -0.0222 0.0217 - 

0.0213 0.0208 -0.0204 0.0200],      

 



π/2 

–π π 

–π/2 
d 

d 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
 

 

 
Magnitude Response 

4 

 
 

3.5 

 
 

3 

 
 

2.5 

 
 

2 

 
 

1.5 

 
 

1 

 
 

0.5 

 

0 
-4 -3 -2 -1 0 1 2 3 4 

Frequency  , rad/sample 

 

 
Example 4.4.9 [The Hilbert transformer] This is used to generate signals that are in phase 

quadrature to an input sinusoidal signal (or, more generally, an input narrowband waveform). 
That is, if the input to a Hilbert transformer is the signal xa(t) = cos Ω0t, the output is ya(t) = sin 

Ω0t. The Hilbert transformer is used in communication systems in various modulation schemes. 
The frequency response of the Hilbert transformer is (Figure) 

H (e 
j 

) = – j sgn(), –    

where the sgn(ω) is the signum function defined as 

 

sgn(ω) = 1 if ω is positive 

–1 if ω is negative 

 

|Hd()| 

 

 








Hd() 
 

 

 
Since j = e 

j / 2 
we may also express 



H (e 
j 

) also as 
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jn 
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hd(n) =   Hd () e d =    j e d  ( j) e d

hd(0) =   Hd () e d =    j1d  ( j)1d 

H  (e j ) = – e j / 2   = –j = 1 at –/2, 0    

e 
j / 2   

= j = 1 at /2, –    0 

 

Note that the magnitude H (e 
j 

) = 1 for all ω and Hd() changes from /2 to –/2 at ω = 0. 

The filter coefficients are the Fourier coefficients given by 

1    
j n 1  0 

j n 


 j n 

2  
2   0 

 j n 
0  ( j)  

 


= 2
j 
 

e 
jn 






 

 
2   

 0  

= 
1 (1e

 j n 
) (e 

j n  
1) = 

 

1 2  e 
 

 
 j n e j n 

2 n 

2  2cos n
= 

2 n 
=

 

 
1 cos n

n

2 n 

, n ≠ 0 

For n = 0, hd(0) may be evaluated from the defining equation: 

1    
j 0 1  0 

 


2 

= 
j  

0
 

2   0 

– 
j  

 = 0 

 
Thus 

2  2 0
 

hd(n) = 2/n, n odd 

0, n even (including 0) 
 

As a specific case choose a filter length N = 9 and evaluate hd(n) for –4  n  4. 

Generate the filter coefficients: 

%Hilbert Transform 

%Generate hdn = 2/(n*pi) for odd n & hdn = 0 for even n, and stem plot 

n = -50: 50, hdn = 2 ./(n*pi), stem(n, hdn) 

 

n = –50 to 50 (Entered hdn = 0 by hand for even n) 

Warning: Divide by zero. 

 

 

 

 

0 

 

 

 

 

 

We copy and paste the above coefficients and do a stem plot: 

 

%Hilbert Transform 

+ 

hdn =[ 0 -0.0130 0 -0.0135 0 -0.0141 0 -0.0148 0 -0.0155 0 - 
0.0163 0 -0.0172 0 -0.0182 0 -0.0193 0 -0.0205 0 -0.0220 0 - 

0.0236 0 -0.0255 0 -0.0277 0 -0.0303 0 -0.0335 0 -0.0374 0 - 
0.0424 0 -0.0490 0 -0.0579 0 -0.0707 0 -0.0909 0 -0.1273 0 - 

0.2122 0 -0.6366  Inf 0.6366 0 0.2122 0 0.127 3 0 0.0909 
0.0707 0 0.0579 0 0.0490 0 0.0424 0 0.0374 0 0.0335 0 

0.0303 0 0.0277 0 0.0255 0 0.0236 0 0.0220 0 0.0205 0 

0.0193 0 0.0182 0 0.0172 0 0.0163 0 0.0155 0 0.0148 0 
0.0141 0 0.0135 0 0.0130 0]       

 



%Stem plot hdn = 2/(n*pi) for odd n & hdn = 0 for even n 

n = -50: 50, 

hdn =[0 -0.0130 0 -0.0135 0 -0.0141 0 -0.0148 0 -0.0155 0 -0.0163 

0 -0.0172 0 -0.0182 0 -0.0193 0 -0.0205 0 -0.0220 0 -0.0236 0 - 

0.0255 0 -0.0277 0 -0.0303 0 -0.0335 0 -0.0374 0 -0.0424 0 -  

0.0490 0 -0.0579 0 -0.0707 0 -0.0909 0 -0.1273 0 -0.2122 0 - 

0.6366  0 0.6366 0 0.2122 0 0.1273 0 0.0909 0 0.0707  0 
0.0579 0 0.0490 0 0.0424 0 0.0374 0 0.0335 0 0.0303 0 

0.0277 0 0.0255 0 0.0236 0 0.0220 0 0.0205 0 0.0193 0 

0.0182 0 0.0172 0 0.0163 0 0.0155 0 0.0148 0 0.0141 0 

0.0135 0 0.0130 0],         

stem(n, hdn) 
xlabel('n'), ylabel('hd(n)'); grid; 
title ('hd(n) = 2/(n*pi) for odd n & hdn = 0 for even n') 

 
 

hd(n) = 2/(n*pi) for odd n & hdn = 0 for even n 
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Frequency response 

 

%Hilbert Transform 

%Comparison of 9 coefficients vs. 101 coefficients 

%9-tap filter coefficients 

b9=[0   -0.2122  0   -0.6366 0 0.6366 0 0.2122 0], 

a=[1] 

b101 =[ 0 -0.0130 0 -0.0135 0 -0.0141 0 -0.0148 0 -0.0155 0 - 

 

 

 

0.2122  0   -0.6366 0 0.6366 0 0.2122 0 0.1273 0 0.0909 0 

h
d
(n

) 

0.0163 0 -0.0172 0 -0.0182 0 -0.0193 0 -0.0205 0 -0.0220 0 - 

0.0236 0 -0.0255 0 -0.0277 0 -0.0303 0 -0.0335 0 -0.0374 0 - 

0.0424 0 -0.0490 0 -0.0579 0 -0.0707 0 -0.0909 0 -0.1273 0 - 

 



0.0707 0 0.0579 0 0.0490 0 0.0424 0 0.0374 0 0.0335 0 

0.0303 0 0.0277 0 0.0255 0 0.0236 0 0.0220 0 0.0205 0 

0.0193 0 0.0182 0 0.0172 0 0.0163 0 0.0155 0 0.0148 0 

0.0141 0 0.0135 0 0.0130 0]       

w=-pi: pi/256: pi; 
Hw9=freqz(b9, a, w); 

Hw101=freqz(b101, a, w); 

plot(w, abs(Hw9), w, abs(Hw101), 'k') 

legend ('9 coefficients', '101 coefficients'); 

title('Magnitude Response'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 
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Window functions [Ref. S.K. Mitra] We want to see the frequency behavior of window 
functions by themselves. Note that depending on convenience we shall define the window 

functions either over – (N–1)/2  n  (N–1)/2 or over 0 ≤ n ≤ (N–1). In the former case the 

phase function will be zero; in the latter case, used especially in MATLAB, the phase has a 
negative slope. 

There are fixed windows and adjustable windows. Among the fixed windows we have (in 

addition to the rectangular window) the following tapered windows: 

1. Bartlett (triangular) window 

2. Hann (aka Hanning or von Hann) window 

3. Hamming window 

4. Blackman window 

These windows result in a fixed amount of ripple in the frequency response of the designed filter. 

The Kaiser window is an adjustable window which allows some control over the ripple. 

Bartlett: w(n) = 1





N 1 
, – (N–1)/2  n  (N–1)/2 

 2 n 
Hann: w(n) = 0.5 + 0.5 cos	 , – (N–1)/2  n  (N–1)/2 

 N 1
 2 n 

Hamming: w(n) = 0.54 + 0.46 cos	 , – (N–1)/2  n  (N–1)/2 
 N 1

 2 n   4 n 
Blackman: w(n) = 0.42 + 0.5 cos	 + 0.08 cos	 , – (N–1)/2  n  (N–1)/2 

 N 1  N 1

2 n 



The following MATLAB multiplot gives a graphical comparison of the above window 

functions. Note that all are discrete sequences; to make it easy on the eyes some are plotted as 

continuous lines and some as discrete. 

 

%Window functions defined over n = –(N–1)/2 to (N–1)/2 

N = 31; n = -(N-1)/2: (N-1)/2; 

wR = n-n+1; %Rectangular 

wBa = 1 - 2* abs(n)/(N-1); %Bartlett 

wHn = 0.5 + 0.5 * cos(2*pi*n/(N-1)); %Hamming 

wHm = 0.54 + 0.46 * cos(2*pi*n/(N-1)); %Hamming 

wBl = 0.42 + 0.5 * cos(2*pi*n/(N-1)) + 0.08 * cos(4*pi*n/(N-1)); %Blackman 

%Multiplot. All are discrete sequences. 

%To make it easy on the eyes some are plotted with continuous lines. 

plot (n, wR, 'o', n, wBa, 'b', n, wHn, 'k', n, wHm, 'b*', n, wBl, 'k--'); 

legend ('Rectangular', 'Bartlett', 'Hanning', 'Hamming', 'Blackman'); 

xlabel('n'), ylabel('w(n)'); grid; title ('Window functions') 
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%Window functions defined over n = –(N–1)/2 to (N–1)/2 

N = 31; n = -(N-1)/2: (N-1)/2; 

wHn = 0.5 + 0.5 * cos(2*pi*n/(N-1)); %Hanning 

wHm = 0.54 + 0.46 * cos(2*pi*n/(N-1)); %Hamming 

wBl = 0.42 + 0.5 * cos(2*pi*n/(N-1)) + 0.08 * cos(4*pi*n/(N-1)); %Blackman 

% 

subplot(3, 1, 1), stem(n, wHn); legend ('Hanning'); 

xlabel('n'), ylabel('w(n)'); grid 

subplot(3, 1, 2), stem(n, wHm); legend ('Hamming'); 

xlabel('n'), ylabel('w(n)'); grid 

subplot(3, 1, 3), stem(n, wBl); legend ('Blackman'); 

xlabel('n'), ylabel('w(n)'); grid 
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Rectangular window w(n) 

1 



= 1e 

The rectangular window defined over – (N–1)/2  n  (N–1)/2 is given by 

wR(n) =  1, –(N–1)/2  n  (N–1)/2 

0, elsewhere 
 
 

 

 

 

 

 

 

 

 

 

 
N 1 

2 

n 

0 N  1 

2 

 

%Rectangular window defined over n = –(N–1)/2 to (N–1)/2 

% w(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 

N = 11; n = -(N-1)/2: (N-1)/2; wn = n-n+1; 

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid 
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The Fourier transform (spectrum) of the window is 

W e j =  w(n)e
 j n 

n  

( N 1) / 2 
 

 j n 

n  ( N 1) / 2 

w
(n

) 

          

          

          

          

          

          

          

          

          

          

 



 

N terms 



 



= 1e 



j  N 1  j  N 1  j N 

 N 1   N 3   N 1 
j 	 j 	  j 	

= e  2  + e 
 2  + … + e 

j 
+ 1 + e

 j
 + … + e  2 

We can simplify the above in one of two ways. One possibility is We = e  
2 








 j  j 2  j N 1  2 




1  e 

  1 e  e  ...  e  = e 



1  e 

 j 




j 	 e jN / 2 e jN / 2  e j N / 2  = e j N / 2  e jN / 2 =  e       2  
  
	     

 N 1  

 e
 j / 2   e j / 2   e j / 2 

 e j / 2  e j / 2 


= 
 

Using L‘Hopital‘s rule, 

W(e
j 

)

sin (N / 2) 

sin ( / 2) 

 
(N / 2) cos (N / 2) = = N 

 0 
(1/ 2) cos ( / 2)    0 

20log10 W (e 
j 

) 0 = 20 log10 N 

In frequency response plots this is normally regarded as a reference point, that is, as the 0 dB 
level. That is, the expression for W e 

j 
is normalized by dividing it by its value at dc, N in this 

case: 

We j = 
1 sin (N / 2) 

 

 

N sin ( / 2) 

The second method to simplify W e 
j  is to combine pairs of terms, one from each end 

of the expression, into a cosine (or sine, in the case of odd symmetry): 

W e j =  w(n)e
 j n 

n  
 N 1 

( N 1) / 2 
 

 j n 

n  ( N 1) / 2 
 N 3   N 1 

j 	 j 	  j 	

= e 


2  + e  2  + … + e 
j
+ 1 + e  j + … + e  2 

= 1 + 2 cos ω + 2 cos 2ω + … + 2 cos
 N 1 

 





 

 N 1
 2 

This consists of 1 


 terms and should be normalized by dividing by N. 
2 

Using the equation W e 
j = 

1
 

N 

sin (N / 2) 
, its zero-crossings occur when ( N 

sin ( / 2) 

 

2) equals 

integer multiples of π, that is, 

(N  2) = ± kπ or ω = k(2π/N), k≠ 0 

The spectrum between the zero-crossings at – (2π/N) and (2π/N) is called the main lobe, the 
remaining lobes are called side lobes. The width of the main lobe is 

 

Width of the main lobe = 2(2π/N) = 4π/N 

Width of each side lobe = 2π/N 

 

As the length of the window, N, is increased the lobes become narrower; also the height of the 

main lobe increases (= N). However, with reference to the normalized frequency response 

W e 
j = 

1
 

N 

sin (N / 2) 

sin ( / 2) 
 

 

j



 
 



0 the height of the main lobe, W (e 
j 

) , stays at 1 (or 0 dB) while the side lobes keep getting 

smaller with increasing N. 

In the MATLAB segment below the window is defined over 0 ≤ n ≤ (N–1) rather than 
over – (N–1)/2 ≤ n ≤ (N–1)/2. 

 

%Frequency response of rectangular window defined over n = 0 to N–1 

% h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 

b11= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 

a= [1] 

w=-pi: pi/256: pi; 

Hw11=freqz(b11, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw11)); legend ('Magnitude (Length = 11)'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

subplot(2, 1, 2), plot(w, angle(Hw11)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 

 

Note in the plot below that the height of the main lobe is 11 (= N). The width of the main lobe is 

taken as the separation between the zero crossings on either side of ω = 0: 

Width of main lobe = 4π/N = 4π/11 
From the plot, by eyeballing, we can gather: 

1. For a given window length the side lobes have the same width. 
2. For a given window length the magnitude of the side lobes decreases with 

increasing frequency 
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Normalized frequency r In the MATLAB segment below the window is defined over 0 ≤ n ≤ 

(N–1). Further we define the normalized frequency r = ω/π. As ω varies from –π to π the 

normalized frequency varies from –1 to 1. 

 

%Magnitude response of rectangular window defined over n = 0 to N–1 

% h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 

b11=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 

a=[1] 

w=-pi: pi/256: pi; r = w/pi; 

Hw11=freqz(b11, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw11)); legend ('Length = 11'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

% 

%Normalized frequency r = ω/π 

Hr11=freqz(b11, a, pi*r); 

subplot(2, 1, 2), plot(r, abs(Hr11)); legend (' Length = 11'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 

 

Note in the plot below that as ω goes from –π to π the normalized frequency r goes from –1 to 1. 
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Normalized magnitude In the MATLAB segment below we go another step: we normalize the 

magnitude by dividing it by N. The window is defined over 0 ≤ n ≤ (N–1) and the normalized 

frequency is r = ω/π. As ω varies from –π to π the normalized frequency varies from –1 to 1. 

 

%Magnitude response rectangular window defined over n = 0 to N–1 

% h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 

N = 11; b11= ones(1, 11); a=[1]; 

w=-pi: pi/256: pi; r = w/pi; 

% 

%Normalized magnitude H(ω)/N 

Hw11n= freqz(b11, a, w)/N; 

subplot(2, 1, 1), plot(w, abs(Hw11n)); legend (' Length = 11'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)');grid; 

title ('Normalized magnitude') 

% 

%Normalized magnitude and normalized frequency 

Hr11n= freqz(b11, a, pi*r)/N; 

subplot(2, 1, 2), plot(r, abs(Hr11n)); legend (' Length = 11'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid; 

title ('Normalized magnitude') 

 
 

Note in the plot below that the height of the main lobe is 1 since it is normalized. 
 
 

Normalized magnitude 

1 

 
 
 
 
 
 
 

 
0 
-4 -3 -2 -1 0 1 2 3 4 

Frequency , rad/sample 

Normalized magnitude 

1 

 
 
 

0.5 

 
 
 

0 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Normalized Frequency r 

Length = 11 

Length = 11 

M
a
g
n
it
u
d
e
 o

f 
H

(
) 

M
a
g
n
it
u
d
e
 o

f 
H

(r
) 



Comparison of two rectangular windows of lengths 11 and 31 In the MATLAB segment 

below we go another step: we normalize the magnitude by dividing it by N. The window is 

defined over 0 ≤ n ≤ (N–1) and the normalized frequency is r = ω/π. As ω varies from –π to π the 

normalized frequency varies from –1 to 1. 

 

%Magnitude response rectangular window defined over n = 0 to N–1 

% Comparison of two rectangular windows of lengths 11 and 31 

N1 = 11; b11= ones(1, N1); N2 = 31; b31= ones(1, N2); a=[1]; 

w=-pi: pi/512: pi; r = w/pi; 

% 

%Length 11, normalized magnitude and normalized frequency 

Hr11n= freqz(b11, a, pi*r )/N1; 

subplot(2, 1, 1), plot(r, abs(Hr11n)); legend ('Length = 11'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 

% 

%Length 31, normalized magnitude and normalized frequency 

Hr31n= freqz(b31, a, pi*r)/N2; 

subplot(2, 1, 2), plot(r, abs(Hr31n)); legend ('Length = 31'); 
xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 

 

Only the first side lobe is of concern since all the other side lobes are smaller. From the plot 

below the maximum of the first side lobe is a little over 20% of the height of the main lobe in 

both windows. 
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Two rectangular windows of lengths 11 and 31 compared on a multi-plot In the MATLAB 

segment below we compare the two window lengths on the same multi-plot. As before, the 

window is defined over 0 ≤ n ≤ (N–1) and the normalized frequency is r = ω/π. As ω varies from 

–π to π the normalized frequency varies from –1 to 1. 

 

%Magnitude response rectangular window defined over n = 0 to N–1 

% Comparison of two rectangular windows of lengths 11 and 31 

N1 = 11; b11= ones(1, N1); N2 = 31; b31= ones(1, N2); a=[1]; 

w=-pi: pi/768: pi; r = w/pi; 

% 

%Length 11, normalized magnitude and normalized frequency 

Hr11n= freqz(b11, a, pi*r )/N1; 

% 

%Length 31, normalized magnitude and normalized frequency 

Hr31n= freqz(b31, a, pi*r)/N2; 

% 

plot(r, abs(Hr11n), r, abs(Hr31n), 'k'); legend ('Length = 11', 'Length = 31'); 

title('Comparison window lengths 11 vs. 31'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 
 

From the plot, by eyeballing, we can gather that for a given window length the magnitude 

of the side lobes decreases with increasing frequency. Further, as the window length 

increases the height of a specific side lobe (such as the first side lobe) decreases: for 

instance the height of the first side lobe for N = 31 is smaller than that of the first side 

lobe for N = 11. 
 

 

 
Comparison window lengths 11 vs. 31 

1 

 
0.9 

 
0.8 

 
 

 
0.6 

 
0.5 

 
0.4 

 
0.3 

 
0.2 

 
0.1 

 

0 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Normalized Frequency r 

Length = 11 

Length = 31 

M
a
g
n
it
u
d
e
 o

f 
H

(r
) 





+  2
 

The Hamming window defined over – (N–1)/2  n  (N–1)/2 is 

wHam(n) = 0.54 + 0.46 cos[2 n /(N 1)] , – (N–1)/2  n  (N–1)/2 

0, elsewhere 

 

%Hamming window defined over n = –(N–1)/2 to (N–1)/2 

% w(n) = 0.54 + 0.46 cos(2*pi*n/(N-1)) 

N = 31; n = -(N-1)/2: (N-1)/2; wn = 0.54 + 0.46 * cos(2*pi*n/(N-1)), 

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Hamming window') 
 

n = -5 -4 -3 -2 -1 0 1 2 3 4 5  

w(n) = {0.0800 0.0901 0.1198 0.1679 0.2322 0.3100 0.3979 0.4919 0.5881 

0.6821 0.7700 0.8478 0.9121 0.9602 0.9899 1.0000 0.9899 0.9602 0.9121 

0.8478 0.7700 0.6821 0.5881 0.4919 0.3979 0.3100 0.2322 0.1679 0.1198 

0.0901 0.0800}         
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The Fourier transform (spectrum) of the window is 

W e j =  w(n)e
 j n 

n  

( N 1) / 2 

( N 1)/ 2 

=  {0.54  0.46 cos 2 n /( N 1)}e
 j n 

n  (N 1)/ 2 

( N 1) / 2 

= 0.54 e
 j n 

+  0.46{cos 2 n /(N 1)}e
 j n 

n  ( N 1) / 2 n  ( N 1)/ 2 

( N 1) / 2  j 2 n /( N 1)   j 2 n /( N 1) 

= 0.54 sin (N / 2) 

sin ( / 2) 
0.46 

e e 
e

 j n 

n  ( N 1)/ 2    

= … 

w
(n

) 



 

0 

= 0.54  sin (N / 2)  sin [(N / 2)  N /( N 1)] 

sin ( / 2) 
+ 0.23 

sin [( / 2)   /( N 1)] 

sin [(N / 2)  N /(N 1)] 
+ 0.23 

sin [( / 2)   /(N 1)] 
 

The magnitude at dc is 

W(e
j 

) = 0.54 N + 2 (0.23) 

 

sin[N /( N 1)] 
 

 

sin[ /( N 1)] 

This is calculated below for N = 11, 21, 31 and 41: 

 

%Magnitude at DC 

N = 11:10:41, 

WdcN = 0.54*N + 0.46* sin(pi*N./(N-1))./sin(pi./(N-1)) 

 

N = 11 21 31 41 

WdcN = 5.4800 10.8800 16.2800 21.6800 

 
The width of the main lobe is taken as the separation between the zero crossings on either 

side of ω = 0. This is obtained by setting W e 
j 

= 0 and solving for ω; it is given as 

 
Width of main lobe (Hamming) = 8π/N 

twice that of the rectangular window. 



The Hamming window, defined over the interval 0  n  N–1, is given by 

wHam(n) =   0.54 – 0.46 cos[2 n /(N 1)] , 0  n  N–1 
0, elsewhere 

 

For N = 11, the Hamming window is given by wHam(n) = 0.54 – 0.46 cos( n / 5) , 0  n  10. 

Frequency response of Hamming window: 

%Magnitude response of 11-point Hamming window defined over n = 0 to N–1 

% WHam = b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)) 
N = 11; n = 0: N-1; b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); 

a=[1] 

w=-pi: pi/256: pi; 

Hw11=freqz(b11, a, w); 

subplot(2, 1, 1), plot(w, abs(Hw11)); legend ('Magnitude (Length = 11)'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of H(\omega)'); grid 

title('Hamming window, Frequency response'); 

subplot(2, 1, 2), plot(w, angle(Hw11)); legend ('Phase'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of H(\omega)'); grid 

 

In the phase plot below the phase reaches –π in the interval 0 ≤ ω ≤ 1 and is therefore adjusted by 

adding 2π; this is not due to a zero-crossing. The same applies to the phase adjustment in the 

interval –1 ≤ ω ≤ 0. 
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%Magnitude response of Hamming window defined over n = 0 to N–1 

%Length 11 

N = 11; n = 0: N-1; b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1]; 

w=-pi: pi/768: pi; r = w/pi; % normalized frequency 

Hr11n= freqz(b11, a, pi*r); % Frequency response 

% Plot 

plot(r, abs(Hr11n)); legend ('Length = 11'); 

title('Hamming window, Frequency response'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 
 

 

 
Hamming window, Frequency response 
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%Magnitude response of Hamming window defined over n = 0 to N–1 

%Length 11 

N = 11; n = 0: N-1; b11 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1]; 

w=-pi: pi/768: pi; r = w/pi; % normalized frequency 

%Magnitude at dc 

WdcN = 0.54*N + 0.46* sin(pi*N/(N-1))/sin(pi/(N-1)), 

Hr11n= freqz(b11, a, pi*r)/WdcN; % normalized frequency response 

% Plot 

plot(r, abs(Hr11n)); legend ('Length = 11'); 

title('Hamming window, Normalized frequency response'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 
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%Magnitude response of Hamming window defined over n = 0 to N–1 

%Length 31 

N = 31; n = 0: N-1; b31 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1]; 

w=-pi: pi/768: pi; r = w/pi; % normalized frequency 

Hr31n= freqz(b31, a, pi*r); % Frequency response 

% Plot 

plot(r, abs(Hr31n)); legend ('Length = 31'); 

title('Hamming window, Frequency response'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 
 

 

 
Hamming window, Frequency response 
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%Magnitude response of Hamming window defined over n = 0 to N–1 

%Length 31 

N = 31; n = 0: N-1; b31 = 0.54 - 0.46 *cos((2*pi/(N-1) .*n)); a=[1]; 

w=-pi: pi/2048: pi; r = w/pi; % normalized frequency 

%Magnitude at dc 

WdcN = 0.54*N + 0.46* sin(pi*N/(N-1))/sin(pi/(N-1)), 

Hr31n= freqz(b31, a, pi*r)/WdcN; % normalized frequency response 

% Plot 

plot(r, abs(Hr31n)); legend ('Length = 31'); 

title('Hamming window, Normalized frequency response'); 

xlabel('Normalized Frequency r'), ylabel('Magnitude of H(r)'); grid 

 

Observations: 

1. In the plot below the magnitude of the side lobes appears to stay about the same 

with increasing frequency for the first few lobes, but beyond r = 0.6 there is a 

discernible (to the eye) fall-off in the height of the side lobes. Relative to the 

rectangular window, however, we may say the side lobe height stays about the 

same with increasing frequency. 

2. The width of the side lobe appears to stay constant with increasing frequency. 
 
 

Hamming window, Normalized frequency response 
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Hanning window 
 

%Hanning window defined over n = –(N–1)/2 to (N–1)/2 

% w(n) = 0.5 + 0.5 * cos(2*pi*n/(N-1)) 

N = 31; n = -(N-1)/2: (N-1)/2; wn = 0.5 + 0.5 * cos(2*pi*n/(N-1)), 

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Hanning window') 
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Blackman window 
 

%Blackman window defined over n = –(N–1)/2 to (N–1)/2 

% w(n) = 0.5 + 0.5 * cos(2*pi*n/(N-1)) 

N = 31; n = -(N-1)/2: (N-1)/2; 

wn = 0.42 + 0.5 * cos(2*pi*n/(N-1)) + 0.08 * cos(4*pi*n/(N-1)), 

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Blackman window') 
 
 

Blackman window 
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The width of the main lobe is taken as the separation between the zero crossings on either 
side of ω = 0. This is obtained by setting W e 

j 
= 0 and solving for ω; it is given as 

 
Width of main lobe (Blackman) = 12π/N 

thrice that of the rectangular window. 

w
(n

) 



Bartlett window 
 

%Bartlett window defined over n = –(N–1)/2 to (N–1)/2 

% w(n) = 1 - 2* abs(n)/(N-1) 

N = 31; n = -(N-1)/2: (N-1)/2; wn = 1 - 2* abs(n)/(N-1), 

stem (n, wn); xlabel('n'), ylabel('w(n)'); grid; title ('Bartlett window') 
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4.5 Choosing between FIR and IIR filters 
 

 
IIR Filter FIR Filter 

Use IIR when the only important 

requirements are 

1. sharp cutoff frequency and 

2. high throughput as IIR filters, 

especially those using elliptic 

characteristics, will have fewer 

coefficients than FIR 

Use FIR if 

1. the number of coefficients is not a 

problem and 

2. in particular, if very little or no 

phase distortion is desired 

Some DSP processors have architectures 

that are tailored/designed for FIR filters. 
 

The choice between FIR and IIR filters depends largely on the relative advantages of the two 
types of filters. 

 

(1) Linear phase FIR filters can have exactly linear phase response. This means no phase 

distortion. This is an important requirement in, for example, data transmission, biomedicine, 

digital audio, and image processing. 

The phase response of IIR filters is nonlinear, especially at the band edges. 

 

(2) Stability FIR filters realized non-recursively are always stable. The stability of IIR filters 

cannot always be guaranteed. 

 

(3) The effects of finite word length such as round off noise and coefficient quantization errors 

are much less severe in FIR than in IIR. 

 

(4) FIR requires more coefficients for sharp cut-off filters than IIR. Thus for a given amplitude 

response specification, more processing time and storage will be required for FIR 

implementation. However, one can readily take advantage of the computational speed of the FFT 

and multirate techniques to improve significantly the efficiency of FIR implementation. 

 

(5) Analog filters can be readily transformed into equivalent IIR digital filters meeting similar 

specifications. This is not possible with FIR filters as they have no analog counterpart. However, 

with FIR it is easier to synthesize filters of arbitrary frequency response. 

 

(6) In general, FIR is algebraically more difficult to synthesize, if CAD support is not available. 



Digital Signal Processing – 5 
 

5 Multirate DSP 

 

 
Decimation, Interpolation, Sampling rate conversion, Filter design and 

Implementation of sampling rate conversion. 
 

Contents:  
Time and frequency scaling in continuous-time systems 

Transformation of the independent variable 

Down-sampling 

Up-sampling 

Cascading sampling rate converters 

Identities 

FIR implementation of sampling rate conversion 

Polyphase structures 

Polyphase structure for a decimator 

 

 

Discrete-time systems with different sampling rates at various parts of the system are called 

multirate systems. They are linear and time-varying systems. Integer sampling rate converters 

change the sampling frequency by an integer factor and rational sampling rate converters by a 

rational number. Here is a sampling of sampling rates in commercial applications (Mitra): 

 
Sampling Rates 

Digital Audio Video 

Broadcasting – 32 kHz 

CD – 44.1 kHz 

DAT – 48 kHz 

Composite Video Signal 

 NTSC – 14.3181818 MHz 

 PAL – 17.734475 MHz 

Digital Component Video Signal 

 Luminance – 13.5 MHz 

 Color difference – 6.75 MHz 



X(Ω) 

Time and frequency scaling in continuous-time systems 
 

Illustration An audio signal recorded on cassette tape at a certain speed could be played back at 

a higher speed than that at which it was recorded. This is called time scaling, in particular, 

compression in the time domain, and results in an inverse effect in the frequency domain, i.e., an 

expansion of the frequency spectrum. Similarly when the audio signal is played back at a slower 

speed than the recording speed we have expansion in the time domain resulting in a 

corresponding compression of the spectrum in the frequency domain. 

Given the signal x(t) and its Fourier transform X(Ω), represented notationally by 

 

x(t) — X(Ω) 

 
then time scaling results in 

1 
x(at) — 

a 

If a > 1 the scaling corresponds to compression in time. If, for instance, a = 2, we may visualize 
a new signal y1(t) = x(2t); with t = 1, for instance, the value of x, that is, x(2) that occurred at 2 
seconds occurs at 1 second in the case of y1, that is, y1(1) – which is compression in time. 
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If x(t) is an audio signal recorded on tape then x(2t) could be the signal x(t) played back at twice 

the speed at which x(t) was recorded. The signal x(2t) varies more rapidly than x(t) and the 

playback frequencies are higher. 

If a < 1 the scaling corresponds to expansion in time. If, for instance, a = 1/2, then x(t/2) 
is the signal x(t) played back at half the speed at which x(t) was recorded. The signal x(t/2) varies 
slower than x(t) and the playback frequencies are lower. Again, we may visualize this as a new 

signal y2(t) = x(t/2); the value of x(.) that occurred at t/2 occurs at t in the case of y2(.) – which is 
expansion in time. 

Time expansion and frequency compression is found in data transmission from space 

probes to receiving stations on earth. To reduce the amount of noise superposed on the signal, it 

is necessary to keep the bandwidth of the receiver as small as possible. One means of doing this 

is to reduce the bandwidth of the signal: store the data collected by the probe, and then transmit it 

at a slower rate. Since the time-scaling factor is known, the signal can be reproduced at the 

receiver. 

The corresponding operations in the case of discrete-time systems are not quite so 

straight forward owing to 

 

1. The need to band limit the continuous-time signal prior to sampling, and 

2. The need to avoid aliasing in the process of sampling 

 
Example 5.1 Consider the 4 Hz signal x(t) = cos 2π4t which is obviously band-limited to Fmax = 
4 Hz. It is sufficient to sample it at 8 Hz. Alternatively, the signal can be sampled at, say, 16 Hz 
or 20 Hz etc. Suppose that it has been over-sampled by a factor of, say, 6 at Fs = 48 Hz to give 
x(n) = cos 2π4n(1/48) = cos (πn/6). 

 
(a) If it is desired subsequently to generate from x(n) another signal x1(n) that is a 

discrete-time version of x(t) sampled at Fs1 = 16 Hz ( sampling rate reduced by a 
factor of 3), then can we do this by simply dropping two samples of x(n) for every 

sample that we keep? That is x1(n) = x(3n). This is called down-sampling. 
(b) How do we generate from x(n) another signal x2(n) that is a discrete-time version of 

x(t) sampled at, say, Fs2 = 96 Hz ( sampling rate doubled)? This is called up- 
sampling. 

(c) Can we generate from x(n) another signal x3(n) that is a discrete-time version of x(t) 
sampled at Fs3 = 6 Hz? 

 

We pick up on this problem again after covering transformation of the independent variable. 

 

 

Transformation of the independent variable 
 

Time scaling (Refer also to Section 7.5 of Signals and Systems, Oppenheim and Willsky.) Given 

the sequence x(n), the sequence y(n) = x(2n) is obtained by skipping odd-numbered samples in 

x(n) and retaining the even-numbered ones. The extension to y(n) = x(Mn) means we retain 

sample numbers 0, M, 2M, 3M, …, and skip the intervening M–1 samples between those we 

keep. The original sequence x(n) is obtained by sampling a continuous signal x(t) at a certain rate 

(perhaps over-sampling). The signal y(n) = x(Mn) is then obtained by reducing the sampling rate 

by a factor of M on the continuous-time signal x(t). This is known as down-sampling or 

decimation or sampling rate compression. 

Similarly the process of constructing the sequence y(n) = x(n/L) from the sequence x(n) 

means we derive y(n) by inserting (L–1) sequence points with zero value between points of x(n). 

This is called up-sampling or interpolation or sampling rate expansion. (Inserting (L–1) zeros is 



just one way of interpolating. It is also possible for the up-sampler to be followed by a digital 

system that replaces the inserted zeros with more appropriate values based on a linear 

combination of the x(n) samples.) 

In general, the result of time scaling a discrete-time signal is not just a stretched or 

compressed version of the original but possibly a totally different sequence/waveform. 

 

Example 5.2.1 Given that x(t) = e
5t

u(t) is sampled at 50 Hz, find an expression for x(n). Plot 

x(t), x(n) and x(2n). Sketch the spectrum of x(n). 

Solution The sampling time is T = 0.02 sec. Replacing t with nT we get x(nT) = e
5nT

u(nT ) , or 

x(n) =  e0.1 n 

u(n)  =  (0.905)
n 
u(n) . 

We show below three plots: (1) The continuous-time signal x(t), (2) The sampled (at 50 Hz) 

version x(n), and (3) x(2n), the 2-fold down-sampled version of x(n); this is equivalent to 

sampling x(t) at 25 Hz. 

 

t = 0 : 1/512: 1; xt = exp (-5*t); %x(t) evaluated at 512 points 

subplot(3, 1, 1), plot(t, xt); legend ('x(t) = exp(-5t)'); 

xlabel ('time, sec.'), ylabel('x(t)'); grid; title ('x(t) – Continuous-time') 

% 

t1 = 0 : 0.02: 1; xn = exp (-5*t1); %Sampled at 50 Hz. 

subplot(3, 1, 2), stem(t1, xn); legend ('x(n) at 50 Hz'); 

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 0.02 sec') 

% 

t2 = 0 : 0.04: 1; xt2 = exp (-5*t2); %Sampled at 25 Hz 

subplot(3, 1, 3), stem(t2, xt2); legend ('2-fold down-sampled'); 

xlabel ('time, sec.'), ylabel('x(2n)'); grid; title ('x(nT) at T = 0.04 sec.') 
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Note that X(s) = ℒ  e5t 
u(t) = 1 (s  5) . Shown below is the MATLAB plot of the 

magnitude spectrum |X(jΩ)| of the continuous-time signal x(t) using the function plot. Omega is a 
vector, consequently we use ―./‖ instead of ―/‖ etc. The main point to be made here is that X(jΩ) 
extends asymptotically to ∞, so, strictly speaking, x(t) is not band-limited. Consequently, the 

spectrum X(ω) of the sampled signal x(n) (shown later below) has some built-in aliasing. 

 

t = 0 : 1/512: 1; xt = exp (-5*t); %x(t) evaluated at 512 points 

subplot(3, 1, 1), plot(t, xt); legend ('x(t) = exp(-5t)'); 

xlabel ('time'), ylabel('x(t)'); grid; title ('x(t) – Continuous-time') 

% 

Omega = -6*pi: pi/256: 6*pi; X = 1./(5.+ j .*Omega); 

subplot(3, 1, 2), plot(Omega, abs(X), 'k'); legend ('Spectrum of x(t)'); 

xlabel ('Omega, rad/sec'), ylabel('|X(Omega)|'); grid; title ('Magnitude')% 

subplot(3, 1, 3), plot(Omega, angle(X), 'k'); legend ('Spectrum of x(t)'); 

xlabel ('Omega, rad/sec'), ylabel('Phase of X(Omega)'); grid; title ('Phase') 
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DTFT 

Coming to the discrete-time signal, the spectrum of x(n) = a
n
u(n) = (0.905)

n 
u(n) 

X (e 
j 

) = 
   

a 
n  

e
 j n  

= 
  1   

= 
  1 

 
1 ae

 j 
1  0.905e

 j




is its 

n  0 

The MATLAB segment is 
 

t1 = 0 : 0.02: 1; xn = exp (-5*t1); %Sampled at 50 Hz. 

subplot(3, 1, 1), stem(t1, xn); legend ('x(n) at 50 Hz'); 

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 0.02 sec') 

% 

x(t) = exp(-5t) 
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     Spectrum of x(t)  
   

        

 

     Spectrum of x(t)  

   

        

 



x(n) = e
n / 2

u(n) = a
n
u(n) 

a = e
1/ 2 

= 0.606 
a 

a2 

a3 

a4 

n 

b = [1]; %Numerator coefficient 

a = [1, -0.905]; %Denominator coefficients 

w = -6*pi: pi/256: 6*pi; [Xw] = freqz(b, a, w); 

subplot(3, 1, 2), plot(w, abs(Xw)); legend ('Spectrum of x(n)'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of X(\omega)'); grid 

subplot(3, 1, 3), plot(w, angle(Xw)); legend ('Spectrum of x(n)'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Phase of X(\omega)'); grid 
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Example 5.2.2 Given x(n) = e

n / 2
u(n), find (a) x(5n/3), (b) x(2n), (c) x(n/2). 

Answer The sequence 

x(n) =  e
 n / 2

u(n) = e1/ 2 n 

u(n) = (0.606)
n 
u(n) =  a

n
u(n) 

where a = e
1/ 2 

= 0.606, is sketched below: 
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(a) With y(n) = x(5n/3), we evaluate y(n) for several values of n (we have assumed here that x(n) 

is zero if n is not an integer): 

 

y(0) = x(5 . 0/ 3) = x(0) = e
0 / 2 

= 1 

y(1) = x(5 . 1/ 3) = x(5 / 3) = 0 

y(2) = x(5 . 2/ 3) = x(10 / 3) = 0 

y(3) = x(5 . 3/ 3) = x(5) = e
5 / 2 

= a
5
 

… 

y(6) = x(5 . 6 / 3) = x(10) = e
10/ 2 

= a
10

 

… 

The general expression for y(n) can be written as 

y(n) = x(5n/3) =e
(5n / 3)/ 2 

, n as specified below 

 

= e
5n / 6 

, n = 0, 3, 6, … 

0, otherwise 

 
n = 0 1 2 3 4 5 6 7 8 9 10 

y(n) = 1 0 0 a5 0 0 a10 0 0 a15 0 

The sequence is sketched below: 
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n 

0 1 2 3 4 5 6 

 

(b) With y(n) = x(2n), we evaluate y(.) for several values of n: 

y(0) = x(2 . 0) = x(0) = 1 

y(1) = x(2 . 1) = x(2) = a
2
 

y(2) = x(2 . 2) = x(4) = a
4
 

y(3) = x(2 . 3) = x(6) = a
6
 

… 
 

The general expression for y(n) can be written as 

y(n) = x(2n) = e
–(2n)/2

, n as specified below 

 

= e
–n

, n ≥ 0 

0, otherwise 

y(n) = x(5n/3) = e
–5n/

 
6
, n = 0, 3, 6, … 

0, otherwise 

 
a = e

–1/
 
2
 = 0.606 

a5 

a10 



n = 0 1 2 3 4 5 
y(n) = 1 a2 a4 a6 a8 a10 

The sequence y(.) is made up of every other sample of x(.). This is down-sampling or 

decimation by a factor of 2 (or, compression in time). Note that some of the original sample 

values have disappeared. The sequence is sketched below. 
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n 

0 1 2 3 4 5 6 
 

 

(c) With y(n) = x(n/2) = e
n / 4

u(n), we evaluate y(.) for several values of n (again, we have 

assumed here that x(n) is zero if n is not an integer): 

 

y(0) = x(0/2) = x(0) = 1 

y(1) = x(1/2) = x(0.5) = 0 
y(2) = x(2/2) = x(1) = a 

y(3) = x(3/2) = x(1.5) = 0 

… 

The general expression for y(n) can be written as 

y(n) = x(n/2) = e
–(n/2)/2

, n as specified below 

 

= e
–n/

 
4
, n = 0, 2, 4, … 

0, otherwise 

 
n = 0 1 2 3 4 5 6 

y(n) = 1 0 a 0 a2 0 a3 

The sequence y(.) is constructed by inserting one zero between successive samples of x(.). This is 

up-sampling or interpolation by a factor of 2 (or expansion in time). The sequence is sketched 

below: 
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n 

0 1 2 3 4 5 6 

x(n) = e–n n ≥ 0 

0, otherwise 

a2 
a = e

–1/
 
2
 = 0.606 

a4 

a6 

a8 

x(n) = e–n/ 4 n = 0, 2, … 

0, otherwise 

 
–1/ 2 

a a = e = 0.606 
 

a2 

a3 



To get back to the problem raised earlier, given the sequence x(n) obtained from x(t) at a 

rate (1/T) 

 

x(t) ‹ x(nT) ‹ x(n), rate (1/T) 
 

we want to obtain the sequence x(n) which corresponds to a sampling rate (1/ T  ) where T ≠ T 

x(t) ‹ x(n T  ) ‹ x(n) , rate (1/ T  ) 

There are two approaches to do this: 

1. Convert x(n) to x(t) and resample at (1/ T  ) to generate  x(n) . This is not ideal 

because of the imperfections in the A/D-H(z)-D/A originally involved in 

generating x(n). Or, 

2. Change the sampling rate entirely with discrete-time operations. 

 

Example 5.2.3 Consider the 4 Hz signal x(t) = cos 2π4t which is obviously band-limited to Fmax 
= 4 Hz. It is sufficient to sample it at 8 Hz. Suppose that it has been over-sampled by, say, a 

factor of 6 at Fs = 48 Hz to give x(n) = cos 2π4n(1/48) = cos (πn/6). 
If it is desired subsequently to generate from x(n) another signal x1(n) that is a discrete- 

time version of x(t) sampled at Fs1 = 16 Hz (sampling rate reduced or down-sampled by a factor 
of 3), then can we do this by dropping two samples of x(n) for every sample that we keep? In this 
specific example this is possible since a sampling rate of 16 Hz is clearly greater than 2Fmax of 8 
Hz. Thus the down-sampled version is obtained by replacing n in x(n) by 3n 

 

x1(n) = x(3n) = cos (π3n/6) = cos (πn/2) ‹ (1) 
 

Let us compare this with what we would get if we were to sample x(t) = cos 2π4t directly at 16 

Hz. We simply replace t by nT = n(1/16) 

x1(n) = cos 2π4n(1/16) = cos (πn/2) ‹ (2) 

The results in (1) and (2) are the same. (QED) 

We show below three plots: (1) The continuous-time signal x(t), (2) The sampled (at 48 

Hz) version x(n), and (3) x(3n), the 3-fold down-sampled version of x(n); this is equivalent to 

sampling x(t) at 16 Hz. 

 

t = 0 : 1/128: 0.5; xt = cos (2*pi*4*t); %x(t) evaluated at 128 points 

subplot(3, 1, 1), plot(t, xt); legend ('4-Hz Cosine'); 

xlabel ('time, sec.'), ylabel('x(t)'); grid; title ('x(t) – Continuous-time') 

% 

t1 = 0 : 1/48: 0.5; xn = cos (2*pi*4*t1); %Sampled at 48 Hz 

subplot(3, 1, 2), stem(t1, xn); legend ('x(n) at 48 Hz'); 

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 1/48 = 0.020 sec.') 

% 

t3 = 0 : 1/16: 0.5; x1n = cos (2*pi*4*t3); %Sampled at 16 Hz 

subplot(3, 1, 3), stem(t3, x1n); xlabel ('time, sec.'), ylabel('x(3n)'); 

grid; title ('3-fold down-sampled, x(nT) at T = 1/16 = 0.0625 sec.') 
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Alternatively, assuming x(t) is not available, x1(n) could be obtained as follows: 
 

1. Recover x(t) by passing x(n) through a DAC 

2. Sample the resulting x(t) at Fs1 = 16 Hz 
 

We take it, however, that this option is not desirable. 
The above analysis assumes that we know the frequency content of the base band signal, 

x(t). Generally this is not the case. Given the sequence x(n) that was obtained by sampling at a 
rate, say Fs, we do not know what is the maximum frequency, Fmax, contained in the underlying 
analog signal, x(t). Assuming it was originally band-limited and properly sampled, it is safest to 
assume that the base band signal was band-limited to Fs/2 (= Fmax) and not lower. In such a case 
simply dropping one or more samples of x(n) for every sample we keep will not work. If we 
want to reduce the sampling rate by a factor of, say, K, then we would have to band-limit the 
precursor of x(n) to (Fs/2)/K = (Fs/2K) and then sample it at the K-fold reduced sampling rate to 
achieve the required decimation. This amounts to down sampling x(n) by a factor of K. (If the 
signal x(t) originally actually contained a maximum frequency of Fs/2 then subsequent down 
sampling will result in unavoidable loss of information. But if it was band limited to significantly 
less than Fs/2 then down-sampling without loss of information is possible.) 

The band-limiting mentioned above may be done either in the continuous-time domain or 
in the discrete-time domain. The procedure in the continuous time domain is as follows: Imagine 
that x(t) is recovered from x(n); x(t) is then band-limited to Fs/2K by passing it through an ideal 
low pass filter described by 

 
H(F) = 1, 0 ≤ F < Fs/2K 

0, Fs/2K ≤ F ≤ Fs/2 

x(n) at 48 Hz 

x
(3

n
) 

x
(n

) 
x
(t
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       4-Hz Cosine  

    

          

 



 
$K 

 
H(z) 

Sampler, 

Rate = Fs/K 

 
H(F) 

x(t) x1(t) x1(n) 

 

 
The band-limited signal, denoted x1(t) is then sampled at the reduced rate of Fs/K to generate 
x1(n). This method is generally undesirable because of all the imperfections inherent in originally 
generating x(n) from x(t) at a sampling rate of Fs, converting x(n) back into x(t), then band- 
limiting x(t) to Fs/2K to generate x1(t) and then sampling x1(t) at a sampling rate of Fs/K to 
generate x1(n). 

 

Sampling rate decimation Reducing the sampling rate by an integer factor in the discrete-time 

domain is shown in the following block diagram. The down arrow in $K indicates down 

sampling by a factor of K. The filter H(z) is a digital anti-aliasing filter whose output v(n) is a 

low pass filtered version of x(n). 

 
x(n) v(n) y(n) 

 

 
If the filter H(z) is implemented as a linear phase FIR filter with (M+1) coefficients 

specified as {br, r = 0 to M}, (some call it ―M
th

 order‖), then 
M 

v(n) = br x(n  r) 
r  0 

We desire the output y(n) to be a down-sampled version of x(n), that is 
M 

y(n) = v(Kn) =  br x(Kn  r) 
r  0 

Example 5.2.4 Consider the 4 Hz signal x(t) = cos 2π4t which is obviously band-limited to Fmax 

= 4 Hz. It is sufficient to sample it at 8 Hz. Suppose instead that it has been over sampled, say, 

by a factor of 6 at Fs = 48 Hz to give x(n) = cos 2π4n(1/48) = cos (πn/6). 
Can we generate from x(n) another signal x3(n) that is a discrete-time version of x(t) 

sampled at Fs3 = Fs/8 = 6 Hz? This is down sampling by a factor of 8. We simply replace t by nT 
= n(1/6) to get 

 

x3(n) = cos 2π4n(1/6) = cos (8πn/6) = x(8n) = {x(0), x(8), x(16), …} 
 

In other words, x3(n) is made up of every 8
th

 sample of x(n). For every sample value of x(n) we 
keep we discard the next 7 samples. We know, however, that a sampling frequency of 6 Hz does 
not satisfy the sampling theorem; in this case down sampling has been taken too far. 

We show below three plots: (1) The sampled (at 48 Hz) version x(n) – this is repeated 

from above, (2) x(2n), the 2-fold down-sampled version of x(n); this is equivalent to sampling 

x(t) at 24 Hz, and (3) x(8n), the 8-fold down-sampled version of x(n); this is equivalent to 

sampling x(t) at the unacceptably low rate of 6 Hz. 
 

t1 = 0 : 1/48: 0.5; xn = cos (2*pi*4*t1); %Sampled at 48 Hz 

subplot(3, 1, 1), stem(t1, xn); legend ('x(n) at 48 Hz'); 

xlabel ('time, sec.'), ylabel('x(n)'); grid; title ('x(nT) at T = 1/48') 

% 

t2 = 0 : 1/24: 0.5; xt2 = cos (2*pi*4*t2); %Sampled at 24 Hz 



subplot(3, 1, 2), stem(t2, xt2); xlabel ('time, sec.'), ylabel('x(2n)'); 

grid; title ('2-fold down-sampled, x(nT) at T = 1/24 sec.') 

% 

t4 = 0 : 1/6: 0.5; x3n = cos (2*pi*4*t4); %Sampled at 6 Hz 

subplot(3, 1, 3), stem(t4, x3n); xlabel ('time, sec.'), ylabel('x(8n)'); 

grid; title ('8-fold down-sampled, x(nT) at T = 1/6 sec.') 
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Example 7.2.5 To show visually a case of down sampling that is not satisfactory, consider x4(n) 
generated from x(n) by down sampling by a factor of 12, i.e., x4(n) = x(12n). This is also 
obtained by sampling at 48/12 = 4 Hz: 

 

x4(n) = x(nT) = cos 2π4n(1/4) = cos (2πn) = cos (12πn/6) = x(12n) 
 

In this case cos (2πn) = 1 for all n, so that 

 

x4(n) = 1 for all n 
 

which has no resemblance to x(n), making it visually obvious that down sampling has been taken 
too far. Depending on at what point in the cycle the samples are taken, x4(n) equals a constant 
(including 0), for all n. 

 

 

 

 

 

 

 

 

x(n) at 48 Hz 

x
(8

n
) 

x
(2

n
) 

x
(n

) 



↓3 
↓M 

Down sampler 

Down-sampling 

Assume that x(n) is obtained from an underlying continuous-time signal x(t) by sampling at Fx 
Hz. Assume that x(t) was originally band limited to Fx/2 Hz. On the digital frequency (ω) scale 
this amounts to x(n) being band limited to π. 

We now wish to generate a signal y(n) by down-sampling x(n) by a factor of M, that is, 

we are reducing the sampling rate by a factor of M. This amounts to: 
 

1. Converting x(n) to x(t) using a D/A converter. 

2. Band limiting x(t) to Fx/2M Hz. Assume that no information is lost due to this 
band limiting. 

3. Resampling x(t) at Fx/M Hz. to produce y(n). 
 

Equivalently the above task is accomplished entirely in the digital domain by 

 

1. Band limiting x(n) to π/M. Assume that no information is lost due to this step. 

2. Down-sampling the above x(n) by a factor of M to produce y(n). 

 

We may view y(n) as though it were generated by sampling an underlying analog signal y(t) at a 

rate Fy = Fx/M Hz. 
Given the signal x(n) that was obtained at a certain sampling rate the new signal y(n), the 

down-sampled version of x(n), with a sampling rate that is (1/M) of that of x(n), obtained from 
x(n), is given by: 

 

y(n) = x(Mn) 

 

and is made up of every M
th

 sample value of x(n); the intervening (M–1) sample values of x(n) 

are dropped. This amounts to 

 

y(0) = x(0), y(1) = x(M), y(2) = x(2M), y(3) = x(3M), … 

 

The time between samples of y(.) is M times that between samples of x(.), or the sampling 

frequency of y(.) is reduced by a factor of M from that of x(.). The block diagram of a down 

sampler is shown below. 

 

x(n) y(n) = x(Mn) x(n) y(n) = x(3n) 
    

 

 

Example 5.3.1 As an example, if x(n) = a
n
u(n) , a < 1, is the sequence: 

 
 

n = 0 1 2 3 4 5 6 7 8 
x(n) = {1 a a2 a3 a4 a5 a6 a7 a8 . . .} 

then y(n) = x(2n), with M = 2, is its 2-fold down-sampled version and is obtained by keeping 

every other sample of x(n) and dropping the samples in between: 
 

 
 

n = 0 1 2 3 4 5 
y(n) = {1 a2 a4 a6 a8 a10 . . .} 



p(n) 

1 

 
T[.] 

 = 

In this example it is understood that the time between samples of y(n) is twice that between 

samples of x(n), or, the sampling rate of y(n) is one-half of that of x(n). 

 

Example 7.3.2 Test the system y(n) = x(Mn), where M is a constant, for time-invariance. 

 
 

x(n) y(n) = T[x(n)] = x(Mn) 

 

Solution See also Unit I. For the input x(n) the output is 

 

y(n) = T[x(n)] = x(Mn) 

 

Delay this output by n0 to get 
 

y(n–n0) = x(M(n–n0)) = x(Mn–Mn0) ‹ (A) 
 

Next, for the delayed input x(n–n0) the output is 
 

y(n, n0) = T[x(n–n0)] = x(Mn) = x(Mn–n0) ‹ (B) 
 

→e see that (A) ≠ (B), that is, y(n–n0) and y(n, n0) are not equal. Delaying the input is not 
equivalent to delaying the output. So the system is not time-invariant. In other words the down- 
sampling operation is a time-varying system. 

 

Spectrum of a down-sampled signal Given the signal x(n) whose spectrum is X(ω) or X(e
jω

) we 
want to find the spectrum of y(n), the down-sampled version of x(n), denoted by y(n) — Y(ω). 

Consider the periodic train of impulses, p(n), with period M 

 

p(n) = 1, n = 0, ±M, ±2M, … 

0, otherwise 

 

 

 

 

 

 

 

 

–M x(n) M 2M n 

 

 
The discrete Fourier series representation (see Example 1 in Unit II) of p(n) is 

M 1 

p(n) =  Pk 

k  0 

e j 2 k n / M  , 0 ≤ n ≤ M–1 

The Fourier coefficients are given by 
M 1 

Pk = 1 p(n) e j 2 k n /M  1  , 0  k  M–1 
M  n  0  M 







    

Thus the DFS for p(n) is 

p(n) = 
1
 

 
M 1 

e 
j 2 k n /  M  

, 0 ≤ n ≤ M–1 
M k 0 

 

Define the signal  x(n) 

 

x(n)  = x(n) p(n) = x(n), n = 0, ±M, ±2M, … 

0, otherwise 
 

The sequence x(n) consists of values of x(n) whenever n = 0, ±M, ±2M, …, and zeros in between 

those points. 

 

 

 
y(n) = x(Mn)  = x(Mn) 

 

 
Define the down-sampled version y(n) 

 

y(n) =  x(Mn) = x(Mn) p(Mn) = x(Mn) 

 
The signal y(n) consists of values of x(Mn) at n = 0, ±1, ±2, …, but no zeros in between. 

 

With y(n) = x(Mn) = x(Mn) our objective is to find the spectrum Y(ω). Keep in mind that 

X(ω) periodic in ω since x(n) is a discrete-time sequence; and the same is true of Y(ω). Now the 

z-transform of y(n) is 
 

Y(z) =  y(n)z 
n  

=  x(Mn)z 
n 

n  n 

Set Mn = k: then n = k/M and the summation limits n = {– ∞ to ∞} become k = {– ∞ to ∞}. Thus 
 

Y(z) =   x(k)z 
k / M  

=   x(n)z 
n / M 

k 

  n 

Here  x(n) = 0 except when n is a multiple of M. Substituting x(n) p(n) for   x(n)  in the above 

equation, 


Y(z) =  x(n) p(n)z 
n / M 

n 

Substituting 1  
M 1 

e 
j 2 k n / M 

for p(n) (from the DFS) in the above equation, 
M  k  0 

  M 1 
 

j 2 k n / M  n / M 

 

 
M 1 

Y(z) =  x(n) 1 e  z = 
1 
  x(n)e 

j 2 kn / M
z
n / M 

n  M 
M 1 

k 0 


 M k 0 n 

= 
 1 

x(n) e j 2 k / M z1/ M n 

M k  0 n  

= X e j 2 k / M z1/ M  

p(n) 

x(n) x(n) 
X ↓M 



=  X  

=   1   
M1 

X e j 2 k / M z1/ M  
M  k  0 

Substituting z = e 
j 

gives us the DTFT, Y(ω) or Y (e 
j 

) , 

Y(ω)= Y (z) j = 
 

 

1 M 1 

 
 

  j 2 k / M e j / M 
M 1 1 

 
 

 j ( 2 k ) / M 


z  e 

M 
 X e = 

M 
 X e 

M 1 
  

k 
2

0k 
1  

M k 0  M 

k  0 



 

MATLAB. To demonstrate the stretching and shifting of X(ω) to X((ω–2πk)/M) for k = 1 
and M =2, that is, X((ω–2π)/2). This is done in 3 steps: (1) X(ω) , (2) X(ω/2), and (3) X((ω– 
2π)/2) 

 

w = -2*pi: pi/256: 2*pi; 

subplot(3, 1, 1), plot(w, cos(w)); 

xlabel ('\omega, rad/sample'), ylabel('X(\omega)'); grid; title ('X(\omega)') 

% 

subplot(3, 1, 2), plot(w, cos(w/2)); 

xlabel ('\omega, rad/sample'), ylabel('X(\omega /2)'); grid; 

title ('Stretched by factor 2: X(\omega /2)') 

% 

subplot(3, 1, 3), plot(w, cos((w-2*pi)/2)); 

xlabel ('\omega, rad/sample'), ylabel('X((\omega – 2\pi)/2)'); grid; 

title ('And shifted by 2\pi: X((\omega – 2\pi)/2)') 
 

 

X() 
1 

 
0 

 
 

 

-1 

-8 -6 -4 -2 

 
0 

, rad/sample 

 
 

2  4  6  8 

Stretched by factor2: X( /2) 
1 

 
0 

 

-1 

-8 -6 -4 -2 

 
0 

, rad/sample 

 
   

2  4  6  8 

And shifted by 2:  X(( – 2)/2) 
1 

 

0 

 

-1 
-8 -6 -4 -2 0 

, rad/sample 

 
   

2 4 6 8 

 
 
 

where, for simplicity, we have used the notation X(ω) instead of X (e 
j 

) . This expression for 

Y (e 
j 

) is a sum of M terms. Note that the function X(ω-2πk) is a shifted (by 2πk) version of 

X(ω) and X(ω/M) is a stretched (by a factor M) version of X(ω). Thus Y (e 
j 

) is the sum of M 

uniformly shifted and stretched versions of X (e 
j 

) each scaled by the factor (1/M). The shifting 

X
((


 –
 2


)/
2
) 

X
(

 /
2
) 

X
(

) 

        

        

 

        

        

 

        

        

 



M 1 

2 k  0 

in multiples of 2π corresponds to the factor (ω–2πk) in the argument of X(.), and the stretching 

by the factor M corresponds to the M in (ω–2πk)/M. Note that the amount of shift is also affected 

by the factor M, that is, the amount of shift doesn‘t stay at 2πk but ends up being 2πk/M. 

The expression for Y (e 
j 

) contains a total of M versions of X (e 
j 

) , one original and (M– 

1) shifted replicas. Each of these is also stretched by a factor of M, so X (e 
j 

) should have been 

preshrunk, that is, band limited, to π/M before undertaking the down-sampling. Writing out the 

expression for Y (e 
j 

) in full, we have

2 k 

Y (e 
j 

)=  
1  
X 	

M  k  0  M 
1        2 1    2 (M 1) 

=   X 	  X	  ...  X 	
M   M   M   M 

1   
The first term that makes up Y (e 

j 
) , that is,  X 	 , is shown in the figure below. The figure 

M  M 
implicitly uses M = 2. In general there will be (M–1) shifted replicas of this term. 

 

 

 

 

 

 

 

 

ω 

 

 

 

 

 

 

 

 

ω 

 

 

 
In particular, for M 2=1 2, 


we hav2e k  1         2  

Y (e 
j 

)= 
1 
 X 		 =      X     X 	 2 k 0 

 2  2   2   2 
1       

=      X        X    
2   2   2 

This is also written in the form 
21 

Y(e j )= 1 
 X e j(2 k ) / 2  = 1 X e j / 2  X e j (2 ) / 2 

2 

X(ω) 

      A    

–3π –2π –π  –π/M  0 π/M π 2π 3π 

X ( / M ) 

M 

      A/M    

–3π –2π –π  –π/M  0 π/M π 2π 3π 



↓M 

Down sampler 

 

= 
1 X ej / 2  X ej / 2 j = 
2 

1 X e 
j / 2  X  e 

j / 2 
2 

To recapitulate, before we decided to down sample X(ω) was originally band limited to π 
on the digital frequency scale (that is, Fx /2 Hz). We then band limited it to π/M (that is, Fx /2M 
Hz) and down sampled by a factor of M. 

 

Aliasing Down-sampling by a factor of M, in itself, is simply retaining every M
th

 sample while 

dropping all samples in between. If, therefore, prior to down-sampling, the signal x(n) is indeed 

band-limited to π/M then we generate the down-sampled version y(n) by simply taking every M
th

 

sample of x(n). This process is shown below in block diagram fashion. If in this set-up x(n) is not 

band-limited as required then the spectrum of y(n) will contain overlapping spectral components 

of x(n) due to stretching, i.e., X / M  will overlap X  2 / M , etc. This results in aliasing. 

 
x(n) y(n) 

  

 

 
Band-limiting x(n) to π/M (if not done already) is done by an anti-aliasing filter (digital 

low pass filter) with a cut-off frequency of π/M. The general process of decimation then consists 

of filtering followed by down sampling shown in block diagram below. 

 

 

 

 

 

y(n) 

 

 

 

 

 

 

Unlike an analog anti-aliasing filter associated with an ADC, the filter in this diagram is a digital 

anti-aliasing filter specified as 

 

H(ω) = 1, 0 ≤ |ω| < π/M 

0, π/M ≤ |ω| ≤ π 

 
Note that π corresponds to Fx/2 and π/M corresponds to Fx/2M where Fx is the sampling 
frequency of x(n). 

Typically, in order to avoid (delay) distortion, the filter H(z) is a linear phase FIR filter 

with (N+1) coefficients {h(r), r = 0 to N}. The output, v(n), of the low pass filter is then given by 

convolution 
N 

v(n) =  h(r) x(n  r) 
r  0 

and the decimated signal is 

x(n) v(n) 

π/M –π/M 

H(z) 
Low pass filter 
 

|H(ω)| 

1 

ω 

↓M 

Down sampler 



↓2 

= , 

N 

y(n) = v(nM) = h(r) x(nM  r) 
r  0 

In summary, in order to down sample a signal by a factor of M: 

 The signal should have been originally over-sampled by a factor of M (that is 

originally band limited to π/M and over-sampled). In this case the signal is down- 

sampled straightaway; no pre-filter is needed. OR 

 The signal, assumed originally band limited to π, should be band-limited to π/M 

by a pre-filter; the signal is then down-sampled. In this case there will be some 

loss of information. 

 
Example 5.3.3 Consider the signal x(n) = a

n
u(n) , a < 1. 

a) Determine the spectrum X(ω) 

b) If x(n) is applied to a decimator that reduces the sampling rate by a factor of 2 

determine the output spectrum 

c) Show that the spectrum in part (b) is simply the Fourier transform of x(2n) 

d) Plot the spectra of x(n) and x(2n) for a = 0.905 

 

Solution [See also Unit I] 
a) The spectrum of x(n) is given by its DTFT 

  

X(ω) =    x(n) e
 j n  

=   an  
e
 j n    

=   a e
 j  n

 

n  

1 
= 

 

n  0  
ae j

n  0 

< 1 

1 ae
 j



This spectrum is not band-limited but we may pretend it is. This may also be obtained as X(ω) 

= X (z)  
z  e j . 

x(n) y(n) = x(2n) 
b) The spectrum of y(n) = xM(21 n)isgiv2en bky

Y () = 
1   
 X 	

M  k  0  M 

which, with M = 2, becom1es    2 k  1       

Y () = 
1 
 X 	 =      X       X      

2 k 0  2  2   2   2 
1  1 1  1  1 1 

= 

2 1 ae j / 2 1  ae j (( / 2)   ) 




2 1 ae j / 2 
 

1  ae j / 2e j 
1  1 1  1 

= 
2 1 ae j / 2 

 
1 ae j / 2 

=     

1  a2e j

c) The Fourier transform of y(n) = x(2n) = a
2 n

u(2n) = a
2 n

u(n) is 


Y(ω) =  a2 n 
e
 j n

 =   a2  e j   1  a2e j < 1 

 

d) The spectra. 

n  0 

n 

n  0 

1  a2e j



b = [1]; %Numerator coefficient 

a1 = [1, -0.905]; a2 = [1, -0.819]; %Denominator coefficients 

w = -pi: pi/256: pi; %A total of 512 points 

[X1w] = freqz(b, a1, w); [X2w] = freqz(b, a2, w) 

subplot(2, 1, 1), plot(w, abs(X1w)); legend ('Spectrum of x(n)'); 

, 

= 





xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of X1(\omega)'); grid 

subplot(2, 1, 2), plot(w, abs(X2w)); legend ('Spectrum of x(2n)'); 

xlabel('Frequency \omega, rad/sample'), ylabel('Magnitude of X2(\omega)'); grid 
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T[.] 

↑3 
↑L 

Up sampler 

Up-sampling 
 

Assume that x(n) is obtained from the continuous-time signal x(t) by sampling at Fx Hz. We now 
wish to generate a signal y(n) by up-sampling x(n) by a factor of L, that is, we are increasing the 
sampling rate by a factor of L. This amounts to 

1. Converting x(n) to x(t) using a D/A converter. 

2. Resampling x(t) at LFx Hz to produce y(n). 
We may view y(n) as though it were generated by sampling an underlying analog signal y(t) (or 
x(t) for that matter) at a rate Fy = LFx Hz. As in the case of down-sampling we prefer to do this 
entirely in the digital domain. 

Given the signal x(n) that was obtained at a certain sampling rate we can obtain a new 

signal y(n) from x(n) with a sampling rate that is L times that of x(n). The signal y(n), an up- 

sampled version of x(n), is given by: 

 

y(n) = x(n/L), n = 0, ±L, ±2L, … 

0, otherwise 

 

and is constructed by placing (L–1) zeros between every pair of consecutive samples of x(n). The 

time between samples of y(n) is (1/L) of that between samples of x(n), or the sampling frequency 

of y(n) is increased by a factor of L from that of x(n). The block diagram of an up-sampler is 

shown below. 

 
x(n) y(n) = x(n/L) x(n) y(n) = x(n/3) 

    

 

 
 

Example 5.4.1 As an example, if x(n) = a
n
u(n) , a < 1, is the sequence: 

 
 

n = 0 1 2 3 4 5 6 7 8 
x(n) = {1 a a2 a3 a4 a5 a6 a7 a8 . . .} 

then y(n) = x(n/2), with L = 2, is its 2-fold up-sampled version and is obtained by inserting a 0 

between each pair of consecutive values in x(n) 
 

 
 

n = 0 1 2 3 4 5 6 7 8 9 10 
y(n) = {1 0 a 0 a2 0 a3 0 a4 0 a5 . . .} 

 

In this example it is understood that the time between samples of y(n) is one half of that between 

samples of x(n), or, the sampling rate of y(n) is twice that of x(n). 

 

Example 5.4.2 Test the system y(n) = x(n/L), where L is a constant, for time-invariance. 

 
x(n) y(n) = T[x(n)] = x(n/L) 



Solution See also Unit I. The system y(n) = x(n/L) in itself only partially defines an up-sampler. 

But the following goes to show that the up-sampling operation is a time-varying system. For the 

input x(n) the output is 

 

y(n) = T[x(n)] = x(n/L) 

 

Delay this output by n0 to get 
 

y(n–n0) = x((n–n0)/L) = x((n/L)–(n0/L)) ‹ (A) 
 

Next, for the delayed input x(n–n0) the output is 
 

y(n, n0) = T[x(n–n0)] = x(n/L) = x((n/L)–n0) ‹ (B) 
 

→e see that (A) ≠ (B), that is, y(n–n0) and y(n, n0) are not equal. Delaying the input is not 
equivalent to delaying the output. So the system y(n) = x(n/L) is not time-invariant. Therefore the 
up sampler defined by 

 

y(n) = x(n/L), n = 0, ±L, ±2L, … 

0, otherwise 

 

is not time-invariant; it is a time-varying system. 

 

Spectrum of an up-sampled signal Given the signal x(n) whose spectrum is X(ω) or X(e
jω

) we 

want to find the spectrum of y(n), the up-sampled version of x(n), denoted by y(n) — Y(ω). 

The signal y(n), with a sampling rate that is L times that of x(n), is given by: 

 

y(n) = x(n/L), n = 0, ±L, ±2L, … 

0, otherwise 

 

We obtain the z-transform and from it the spectrum: 
  

Y(z) =  y(n)z 
n  

=  x(n / L) z 
n  

+ 0 z 
n

 

n 




n  0, L, 2 L,... n  otherthan kL 
k  all integers 

=   x(n / L) z 
n 

n  0, L, 2 L,... 

Set n/L = k: this leads to n = kL, and the summation indices n = {0, ±L, ±2L, ±3L, …} become k 
= {–∞ to ∞}, so that 

 


Y(z) =  x(k) z 
k L 

= 
k  

Setting z = e 
j 

gives us the spectrum 

 x(k) z 
L  k 

= 
k  

X z 
L 

Y (e 
j 

) =Y (z) 
 
z  e j

= XejL  or Y(ω) = X(ωL) 

Thus Y(ω) is an L-fold compressed version of X(ω); the value of X(.) that occurred at ωL occurs 

at ω, (that is, at ωL/L) in the case of Y(.). In going from X to Y the frequency values are pushed in 

toward the origin by the factor L. For example, the frequency ωL is pushed to ωL/L, the 

frequency π is pushed to π/L, 2π is pushed to 2π/L, etc. 

Shown below are the spectra X(ω) and Y(ω) for 2-fold up-sampling, that is, L = 2. Note 

that X(ω) is periodic to start with so that the frequency content of interest is in the base range (–π 

≤ ω ≤ π) with replicas of this displaced by multiples of 2π from the origin on either side. Due to 



up-sampling the frequency content of X(ω) in the range (–π ≤ ω ≤ π) is compressed into the 

range (–π/L ≤ ω ≤ π/L) of Y(ω), that is, into (–π/2 ≤ ω ≤ π/2), centered at ω = 0. The first replica 

of X(ω) in the range (π ≤ ω ≤ 3π), centered at 2π, is compressed to the range (π/2 ≤ ω ≤ 3π/2) of 

Y(ω), centered at π; its counterpart, in (–3π ≤ ω ≤ –π), centered at –2π, is compressed to (–3π/2 ≤ 

ω ≤ –π/2), centered at –π. If, for the purpose of discussion, we consider the range (0, 2π) as one 

fundamental period then the replica in the range (π/2, 3π/2) of Y is an image (spectrum) and 

needs to be filtered out with a low pass filter (anti-imaging filter) of band-width π/2. With L = 2 

this is the only image in (0, 2π). 

Furthermore, while the spectrum X(ω) is periodic with a period = 2π, the spectrum Y(ω), 

on account of the image, is a 2-fold periodic repetition of the base spectrum in (–π/2 ≤ ω ≤ π/2); 

the image spectrum is actually spurious/unwanted; further the periodicity of Y(ω) is still 2π. 
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ω 

 
 

These observations can be extended to larger values of L. For L = 3, for instance, there 

will be two image spectra (a 3-fold periodic repetition of the base spectrum in (–π/3 ≤ ω ≤ π/3), 

and the anti-imaging filter band width will be π/3. 

In general, up-sampling of x(n) by a factor of L involves 

 Inserting L–1 zeros between successive pairs of sample values of x(n). 

 The spectrum Y(ω) of the up-sampled signal is an L-fold compressed version of 

X(ω). As a result Y(ω) contains L–1 images and is an L-fold periodic repetition of 
the base spectrum in (–π/L ≤ ω ≤ π/L). 

 The anti-imaging filter band width is π/L. 

X(ω) 

      A    

–3π –2π –π  –π/L 0 π/L π 2π 3π 

Y(ω) 

         A    

L = 2 

      

–3π –2π –π  –π/L 0 π/L π 2π 3π 

Y(ω) after anti-image filtering 

      A 

L = 2 
   

–3π –2π –π  –π/L 0 π/L π 2π 3π 



The over-all scheme of up-sampling is shown in block diagram below. Unlike an analog 

anti-imaging filter associated with a DAC, the filter in this diagram is a digital anti-imaging 

filter. 

 

 

 

 

 
x(n) 

 

 

 

 

 

 
 

In this diagram the pass band gain of the anti-imaging filter is shown as 1. This gain is 

actually chosen equal to L to compensate for the fact that the average value of y(n) is 1/L times 

the average value of x(n) due to the presence of the inserted zeros. 

 

H(ω) = L, 0 ≤ |ω| < π/L 

0, π/L ≤ |ω| ≤ π 

 
Note that π corresponds to Fx/2 and π/L corresponds to Fx/2L where Fx is the sampling frequency 
of x(n). 

The output of the low pass filter is given by the convolution sum 


y(n) = h(n  r) v(r) 
r   

where its input is 

v(r) = x(r/L), r = 0, ±L, ±2L, … 

0, otherwise 

 

Now v(r) = 0 except at r = kL, where k is all integers from –∞ to ∞. Thus we have 

 

v(kL) = x(kL/L) = x(k) 

 

The convolution sum may be written as 
  

h(n  r) v(r) = h(n  kL) v(kL) =  h(n  kL) x(k) 
r  

so that the interpolated signal is 


k    k  

y(n) = h(n  kL) x(k) 
k  



Illustration Given the signal x(n) = {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10
, …}, its 2-fold up- 

sampled version is obtained by inserting a 0 between each pair of consecutive samples in x(n): 

 

y(n) = {1, 0, a, 0, a
2
, 0, a

3
, 0, a

4
, 0, a

5
, 0, a

6
, 0, a

7
, 0, a

8
, 0, a

9
, 0, a

10
, …} 

v(n) y(n) ↑L 

Up sampler 

π/L –π/L 

H(z) 
Low pass filter 
 

|H(ω)| 

1 

ω 



Intuitively, even visually, y(n) contains higher (or, more) frequencies than x(n) because of the 

inserted zeros. For instance, consider the first two or three samples in each sequence. In the case 

of x(n) the changes from 1 to a to a
2
 are smoother than the fluctuations in y(n) from 1 to 0 to a to 

0 to a
2
; these latter fluctuations are the higher frequencies not originally contained in x(n). It is 

these higher frequencies that are represented by the image in the spectrum of y(n) prior to anti- 

imaging filtering. The anti-imaging filter removes or smoothes out the higher frequency 

fluctuations from the up-sampled version; this smoothing is manifested in the form of the 

interpolated zeros being replaced by nonzero values. 

 

 

Cascading sampling rate converters 
 

Given a discrete-time signal x(n) we may want to convert its sampling rate by a non integer 

factor, in particular, by a rational number. For instance, we may be interested in x(3n/2). This 

involves a 2-fold up-sampling and a 3-fold down-sampling for a net down sampling by a factor 

of 1.5 (= 3/2). The sequence x(3n/5) involves a 5-fold up-sampling and a 3-fold down-sampling 

for a net up-sampling by a factor of 1.67 (= 5/3). 

In general, in a cascade of an M-fold down-sampler and an L-fold up-sampler the 

positions of the two samplers are inter-changeable with no difference in the input-output 

behavior if and only if M and L are co-prime (relatively prime, that is, M and L do not have a 

common factor). The sequence x(3n/2) may be generated by cascading the up-sampler and the 

down-sampler in either order, that is, down followed by up or vice versa. However, a cascade of 

a 6-fold down-sampler (M = 6) followed by a 4-fold up-sampler (L = 4) is not the same as a 

cascade of a 4-fold up-sampler followed by a 6-fold down-sampler even though in both cases 

M/L = 6/4. This is because M and L have a common factor, that is, the rational number M/L is not 

in its reduced form. The ratio M/L should be reduced to 3/2; then the 3-fold down-sampler and 

the 2-fold up-sampler are interchangeable in position. 

 

Example 5.5.1 Given x(n) = e
–n/2

 u(n), find x(5n/3). 

Answer We borrow this from an earlier section. Our objective is to present the earlier solution 

and then reformulate it in the context of cascading up- and down-samplers. The sequence 

 

x(n) = e
–n/2

 u(n) = (e
–1/2

)
n
 u(n) = (0.606)

n
 u(n) = a

n
 u(n) 

 

where a = e
–1/2

 = 0.606, is sketched below: 

 
x(n) = e

–n/2
 u(n) = a

n
 u(n) 

 
1 a = e

–1/
 
2
 = 0.606 

a 

a2 

a3 

a4 

n 

0 1 2 3 4 5 6 

 

With y(n) = x(5n/3), we evaluate y(.) for several values of n (we have assumed here that x(n) is 

zero if n is not an integer): 



↓5 ↑3 

y(0) = x(5 . 0 / 3) = x(0) = e
–0/

 
2
 = 1 

y(1) = x(5 . 1 / 3) = x(5 / 3) = 0 

y(2) = x(5 . 2 / 3) = x(10 / 3) = 0 

y(3) = x(5 . 3 / 3) = x(5) = e
–5/

 
2
 = a

5
 

… 

y(6) = x(5 . 6 / 3) = x(10) = e
–10/

 
2
 = a

10
 

… 
The general expression for y(n) can be written as 

 

y(n) = x(5n/3) = e
–(5n/3)/2

, n as specified below 

 

= e
–5n/

 
6
, n = 0, 3, 6, … 

0, otherwise 
 

 

 

 
The sequence is sketched below: 

 

 

 

 

 

 
1 

. . 

. .} 

 

 

 

 

 
 

n 

0 1 2 3 4 5 6 
 

 

We shall recast this problem in terms of cascading the up- and down-samplers. In the 

expression y(n) = x(5n/3) there is a 3-fold up-sampling and a 5-fold down-sampling. Since the 

numerator 5 is greater than the denominator 3 there is a net down-sampling by a factor of 1.67 

(= 5/3). Let us first do a 3-fold up-sampling of x(n) followed by a 5-fold down-sampling of the 

resulting sequence. That is, given the sequence x(n) 

 
 

x(n) yu(n) = x(n/3) y(n) = x(5n/3) 
   

 

 

 
n = 0 1 2 3 4 5 6 7 8 9 10 . . 

x(n) = {1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 . .} 

y(n) = x(5n/3) = e
–5n/

 
6
, n = 0, 3, 6, … 

0, otherwise 

 
a = e

–1/
 
2
 = 0.606 

a5 

a10 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12. 
y(n) = {1 0 0 a5 0 0 a10 0 0 a15 0 0 a20 

 



↑3 ↓5 

we define yu(n) = x(n/3), and then y(n) = yu(5n) = x(5n/3). The sequences yu(n) and y(n) are given 
below. 

 

 

yu(n) = x(n/3) = e
–n/6

 u(n/3) = a
n/3

 n = 0, 3, 6, … 

0, otherwise 

 
yu(n) = x(n/3) 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . 
yu(n) = {1 0 0 a 0 0 a2 0 0 a3 0 0 a4 0 0 a5 . . . .} 

 
y(n) = yu(5n) = x(5n/3) = e

–5n/6
 u(5n/3) = a

5n/3
 n = 0, 3, 6, … 

0, otherwise 
 

y(n) = yu(5n) = x(5n/3) 
n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . 

y(n) = {1 0 0 a5 0 0 a10 0 0 a15 0 0 a20 0 0 a25 . . . .} 

 
Alternatively, we may first do a 5-fold down sampling followed by a 3-fold up-sampling: 

 
x(n) yd(n) = x(5n) y(n) = x(5n/3) 

   

 
yd(n) = x(5n) = {1, a

5
, a

10
, a

15
, a

20
, … } 

y(n) = yd(n/3) = x(5n/3) = {1, 0, 0, a
5
, 0, 0, a

10
, 0, 0, a

15
, 0, 0, a

20
, … } 

The net effect is that between the first two terms (1 and a
5
) of the final output y(.) we 

have dropped four original terms and inserted two zeros. 

 

Example 5.5.2 Given x(n) = e
–n/2

 u(n), find x(3n/5). Here there is a 5-fold up-sampling and a 3- 

fold down sampling. Since the denominator is bigger there is a net up-sampling by a factor of 

1.67. 
 

x(n) = {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10
, …} 

 
Method A Up-sampling followed by down sampling is given below. The 5-fold up-sampled 
signal, yu(n), is obtained by inserting 4 zeros shown in bold face between every pair of 
consecutive samples in x(n) 

 

yu(n) = x(n/5) 
= {1, 0, 0, 0, 0, a, 0, 0, 0, 0, a

2
, 0, 0, 0, 0, a

3
, 0, 0, 0, 0, a

4
, 0, 0, 0, 0, 

a
5
, 0, 0, 0, 0, a

6
, 0, 0, 0, 0, a

7
, 0, 0, 0, 0, a

8
, 0, 0, 0, 0, a

9
, 

0, 0, 0, 0, a
10

, …} 

 
The 3-fold down-sampled signal, y1(n), is obtained by keeping every third sample in yu(n) and 
discarding the rest (shown underlined) 

 

yu(n) = = {1, 0, 0, 0, 0, a, 0, 0, 0, 0, a
2
, 0, 0, 0, 0, a

3
, 0, 0, 0, 0, a

4
, 0, 0, 0, 0, 



a
5
, 0, 0, 0, 0, a

6
, 0, 0, 0, 0, a

7
, 0, 0, 0, 0, a

8
, 0, 0, 0, 0, a

9
, 

   

0, 0, 0, 0, a
10

, …} 
 

 

y1(n) = yu(3n) = x(3n/5) 

= {1, 0, 0, 0, 0, a
3
, 0, 0, 0, 0, a

6
, 0, 0, 0, 0, a

9
, 0, …} 

 
Method B Down-sampling followed by up sampling is given below. The 3-fold down-sampled 
signal, yd(n), is obtained by keeping every third sample in x(n) and discarding the rest (shown 
umderlined) 

 

x(n) = {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10
, a

11
,…} 

yd(n) = x(3n) = {1, a
3
, a

6
, a

9
, a

12
,…} 

The 5-fold up-sampled signal, y2(n), is obtained by inserting 4 zeros shown in bold face between 
every pair of samples in yd(n) 

 

y2(n) = yd(n/5) = x(3n/5) 
 

y2(n) = {1, 0, 0, 0, 0, a
3
, 0, 0, 0, 0, a

6
, 0, 0, 0, 0, a

9
, 0, 0, 0, 0, a

12
, …} 

= {1, 0, 0, 0, 0, a
3
, 0, 0, 0, 0, a

6
, 0, 0, 0, 0, a

9
, 0, 0, 0, 0, a

12
, …} 

 

It is seen that y1(n) = y2(n). 
 

Example 5.5.3 Given that x(n) = {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10
, …} is the input, 

1. Find the output y1(n) of a cascade of a 2-fold up-sampler followed by a 4-fold down 
sampler. 

2. Find the output y2(n) of a cascade of a 4-fold down sampler followed by a 2-fold up- 
sampler. 

Solution Note that the down-sampling factor M = 4 and the up-sampling factor L = 2 are not co- 
prime since they have a factor in common. The ratio M/L = 4/2, as given, is not in its reduced 

form. As a result we do not expect that y1(n) and y2(n) will be equal. Specifically, in the first case 
we have 

 

x(n) = {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10
, …} 

 

Up-sample by inserting a zero (shown bold face) between consecutive samples of x(n) resulting 

in yu(n) 
 

yu(n) = x(n/2) = {1, 0, a, 0, a
2
, 0, a

3
, 0, a

4
, 0, a

5
, 0, a

6
, 0, a

7
, 0, a

8
, 0, a

9
, 0, a

10
, …} 

 
Down-sample by keeping every fourth sample of yu(n) and discarding the three samples in 
between resulting in y1(n) 

 

y1(n) = yu(4n) = x(4n/2) = {1, a
2
, a

4
, a

6
, a

8
, a

10
, …} 

In the second case 

 

x(n) = {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
, a

10
, …} 

 

yd(n) = x(4n) = {1, a
4
, a

8
, a

12
, …} 



F  = = 0.6 F 

.F 

y2(n) = yd(n/2) = x(4n/2) = {1, 0, a
4
, 0, a

8
, 0, a

12
, …} 

It is seen that y1(n) ≠ y2(n). 
 

Sampling Rate Conversion by a Rational Factor L/M Here the sampling rate is being 
converted by a non-integral factor such as 0.6 or 1.5. That is, given x(n) with a sampling rate of 
Fx we want to obtain y(n) with a sampling rate of Fy of, say, 0.6Fx (decimation) or 1.5Fx 
(interpolation). 

Take, for instance L/M = 3/5. Here the basic approach is to first interpolate (up-sample) 

by a factor of L = 3 and then decimate (down-sample) by a factor of M = 5. The net effect of the 

cascade of interpolation followed by decimation is to change the sampling rate by a rational 
factor L/M, that is, 

 L   3 
Fy = 	  x      x x 

 M   5
The corresponding signal is given by y(n) = x(5n/3), ignoring the filters involved. (This can also 

be done by first down-sampling and then up-sampling). 

The block diagram of the scheme where the interpolator precedes the decimator is shown 

below. 
 

Rational sampling rate conversion 
 

 

 

In general, if L < M we have a rational decimator and if L > M we have a rational 

interpolator. In this set-up interpolation is done before decimation in order to work at the higher 

sampling rate so as to preserve the original spectral characteristics of x(n). Recall that unless x(n) 

was originally over-sampled, decimation in itself or decimation prior to interpolation will modify 

the spectrum of x(n) irrecoverably. 

The above configuration has an added benefit that the two filters Hu(z) and Hd(z) in series 
(which operate at the same sampling rate) can be combined into a single equivalent low pass 
filter with a frequency response of H(ω) = Hu(ω)Hd(ω). The simplified configuration is shown 
below. 

Rational sampling rate conversion 
 

Interpolator Decimator 

x(n) y(n) 

Fx LFx LFx LFx LFx/M 

 
↓M 

 
Hd(z) 

 
Hu(z) 

 
↑L 

x(n) v(n) w(n) y(n) 
H(z) 

Fx LFx/M 

LFx 

 
↓M 

 
↑L 



The bandwidth of the anti-imaging filter Hu(z) is π/L rad., and that of the anti-aliasing 
filter Hd(z) is π/M rad., so that the bandwidth of the composite anti-imaging and anti-aliasing 
filter H(ω) is 

 
ωc = min 

 
,  

 L M 
and the frequency response is given by 

 

H(ω) = L, 0 ≤ |ω| < ωc 

0, ωc ≤ |ω| ≤ π 
 

In the time domain, the output of the up-sampler, v(n), is given by 

 

v(n) = x(n/L), n = 0, ±L, ±2L, … 

0, otherwise 

 

and the output of the linear time-invariant filter H(z) is 


w(n) =  h(n  k) v(k) 
k   

Since v(k) = 0 except at k = rL, where r is an integer between –∞ to ∞, we set k = rL. As k goes 
from –∞ to ∞, r goes from –∞ to ∞, and v(rL) = x(rL/L) = x(r). 

  

w(n) =  h(n  rL) v(rL) =  h(n  rL) x(r) = h(n  kL) x(k) 
r  

Finally the output of the down sampler is 


r   k  

y(n) = w(Mn) = h(Mn  kL) x(k) 
k   

In summary, sampling rate conversion by the factor L/M can be achieved by first 

increasing the sampling rate by L, accomplished by inserting L–1 zeros between successive 
samples of the input x(n), followed by linear filtering of the resulting sequence to eliminate 
unwanted images of X(ω) and, finally, by down-sampling the filtered signal by the factor M to 
get the output y(n). The sampling rates are related by Fy = (L/M)Fx. If Fy > Fx, that is, L > M, the 

low pass filter acts as an anti-imaging post-filter to the up-sampler. If Fy < Fx, that is, L < M, the 
low pass filter acts as an anti-aliasing pre-filter to the down-sampler. 



Example 5.5.4 The signal x(t) = cos 2π2t + 0.8 sin 2π4t is sampled at 40 Hz to generate x(n). 

a) Give an expression for x(n) 

b) Design a sampling rate converter to change the sampling frequency of x(n) by a 

factor of 2.5. Give an expression for y(n). 

c) Design a sampling rate converter to change the sampling frequency of x(n) by a 

factor of 0.4. Give an expression for y(n). 

Solution 

a) x(n) = cos 2π2nT + 0.8 sin 2π4nT = cos πn/10 + 0.8 sin πn/5 

b) The rate conversion factor is L/M = 2.5 = 5/2. We do this by first up-sampling by a factor of 5, 

then down-sampling by a factor of 2. Roughly speaking, y(n) = x(2n/5). 

 
Rational sampling rate conversion 

 

 

The up-sampling requires an anti-imaging LP filter of bandwidth of π/L = π/5 rad., and a 

gain of 5. The down-sampling requires an anti-aliasing LP filter of band width π/M = π/2 rad. 

When the up-sampler precedes the down-sampler we have the following configuration where the 

filter has the smaller of the two band widths, that is, π/5 rad. The gain is 5 and is always 

determined by the up-sampler. 

Write equations for v(n), w(n), and y(n) based on the above diagram and assuming H(z) is 

an FIR filter of N coefficients. 

c) The rate conversion factor is L/M = 0.4 = 2/5. We do this by first up-sampling by a factor of 2, 

then down-sampling by a factor of 5. Roughly speaking, y(n) = x(5n/2). Band width of filter = 

π/5 rad., and gain = 2, once again determined by the up-sampler. 

 
Rational sampling rate conversion 

 

 

Write equations for v(n), w(n), and y(n) based on the above diagram and assuming H(z) is 

an FIR filter N coefficients. 

 

Multistage conversion The composite anti-imaging and anti-aliasing LP filter band width is π/L 

or π/M whichever is smaller. That is, the filter band width is determined by the larger number of 

L and M. However, if either L or M is a very large number the filter bandwidth is very narrow. 

x(n) v(n) w(n) y(n) 

Fx 5Fx/2 

5Fx 

 
↓2 

 
H(z) 

 
↑5 

x(n) v(n) w(n) y(n) 

Fx 2Fx/5 

2Fx 

 
↓5 

 
H(z) 

 
↑2 



Narrowband FIR (linear phase) filters can require a very large number of coefficients (see Unit 

VI, FIR Filters, Example 6). This can pose problems in 

1. Increased storage space for coefficients, 

2. Long computation time, and 

3. Detrimental finite word length effects 

The latter drawback is minimized by using a multistage sampling rate converter where the 

conversion ratio L/M is factored into the product of several ratios each of which has its own 

smaller L and M valu

es. If


, f

or in


stance, the ratio L/M is split into the product of two ratios 

L  L 

 L   

=  
1  

  
2  


M  M1   M 2 

where the L‘s and M‘s on the right hand side are smaller, we may implement the rate conversion 

in two stages as shown below 
 
 

 

Example 7.5.5 [Rational sampling rate converter][CD, DAT] Digital audio tape (DAT) used 

in sound recording studios has a sampling rate of 48 kHz, while a compact disc (CD) is recorded 

at a sampling rate of 44.1 kHz. Design a sampling rate converter that will convert the DAT 

signal x(n) to a signal y(n) for CD recording. 

 

Over-sampling analog-to-digital converter (ADC) [Ref. SKMitra, Sec 4.8.4] A practical 

difficulty with analog to digital conversion is the need for a low pass analog anti-aliasing 

prefilter to band limit the signal to less than half of the sampling rate. High-order analog filters 

are expensive, and they are also difficult to keep in calibration. The combination of over- 

sampling followed by down-sampling can be used to transfer some of the anti-aliasing burden 

from the analog into the digital domain, and thereby use a simpler low order analog filter.  

As an example, a typical compact disk encoding system may employ an over-sampling 

sigma-delta A/D converter which over-samples at 3175.2 kHz which is then brought down to the 

CD sampling rate of 44.1 kHz. This amounts to over-sampling by a factor of 72 (= 3175.2/44.1). 

Suppose the range of frequencies of interest in the signal x(t) is 0 ≤ |F| ≤ FM. Normally 
we would band-limit x(t) to the maximum frequency FM with a sharp cut-off analog low pass 
filter and sample it at a rate of Fs = 2FM at least (strictly, Fs ≥ 2FM). Suppose that we instead 
over-sample x(t) by an integer factor M, at Fs = M (2FM). This significantly reduces the 
requirements for the anti-aliasing filter which may be specified more leniently as 

 

Ha(s) = 1, 0  |F|  FM 

0, MFM  |F| < ∞ 

↑L1 

Stage 1 

H1(z) ↓M1 ↑L2 

Stage 2 

H2(z) ↓M2 



x 

Though this is still an ideal low pass filter in the pass band and stop band, its transition band 

width is no longer zero and it may be approximated with an inexpensive first- or second-order 

Butterworth filter as shown below. 

 
|Ha(F)| with over-sampling 

 

 

 

 

 

 

 
 

Hz 

 

|Ha(F)| without over-sampling 
 

 

 
1 

 

 

 

Hz 

 

 
We are paying the price of a higher sampling rate for the benefit of a cheaper analog 

anti-aliasing filter. The result is a discrete-time signal that is sampled at a much higher rate than 
2FM. Following the sampling operation, we can reduce this sampling rate to the minimum value 
using a decimator. The resulting structure of the over-sampling ADC is shown in the block 
diagram below. There are two anti-aliasing filters, a low-order analog filter Ha(s) with cut-off 
frequency FM rad/sec., and a high-order digital filter Hd(z), with a cut-off frequency (π/M) 
rad/sample. 

 

 
 
 

x(t) 

Over-sampling AD converter 

x(n) 
  

M(2FM) 

samples/sec 

 
 

y(n) 
  

2FM 
samples/sec 

 

A second benefit of using the over-sampling ADC is the reduction in quantization noise. 

If q is the quantization step size (precision), then the quantization noise in x(n) is  2 
= q

2 
12 , 

and the noise appearing in the output y(n) in the above scheme is  
2 
= 

2 
M = q

2 
12 M , a 

y x 

reduction by a factor of M. 

Pass Stop Band 

0 FM MFM F, 

Pass 
Transition band 
(Unspecified) Stop Band 

1 

0 FM MFM F, 

↓M Hd(z) ADC Ha(s) 



w(n) a y(n) 
↑L ↑L 

↓M 

Identities 
 

A sampling rate converter (the $M or ‡L operation) is a linear time-varying system. On the other 
hand, the filters Hd(z) and Hu(z) are linear time-invariant systems. In general, the order of a 
sampling rate converter and a linear time-invariant system cannot be interchanged. We derive 

below several identities, two of which are known as noble identities (viz., identities 3 and 6, all 
the others being special cases), which help to swap the position of a filter with that of a down- 
sampler or up-sampler by properly modifying the filter. 

Recall that the input-output description of a down-sampler is 

y(n) = x(Mn) — Y(z) = 1   M


1 

X e j 2 k / M z1/ M   —   Y(ejω) =   1 
M1 

X e j ( 2 k ) / M 
M 

and the same for an up-sampler is 

k 0 M k  0 

 

y(n) = x(n/L),  n = 0, ±L, ±2L, … — Y(z) = X(z
L
) — Y(e

jω
) = X(e

jωL
) 

0, otherwise 
 

which we use in the following development. 

 

Example 7.6.1 Show that the following systems are equivalent. 

 
 

x(n) a v(n) y(n) x(n) 
  

 

In the structure on the left the process of generating y(.) consists of multiplying every input 

sample x(.) by a and then, in the down-sampling process, dropping (M–1) of these products for 

every M
th

 one we keep. The structure on the right is more efficient computationally: the (M–1) 

samples are dropped first and every M
th

 is multiplied by a, that is, only the samples that are 
100(M 1) 

retained are multiplied. The number of multiplications is reduced by %. 
M 

 

Example 5.6.2 Show that the following systems are equivalent. 

 

 

x(n) x(n) a v(n) y(n) 
  

 

 
In the structure on the left the process of generating y(.) consists of first up-sampling, that is, 

inserting zeros between consecutive points of x(n) and then multiplying by a. In the process the 

(L–1) zeros are also multiplied. The structure on the right is more efficient computationally: the 
sequence x(n) is first multiplied and then the zeros inserted. The number of multiplications is 

100(L 1) 
reduced by %. 

L 

w(n) a y(n) 
↓M 




y(n) 

y2(n) 
↓M 

↓M 

M 

M  k  0 M k  0 

2 

Identity #1 If we use the notation $M{.} to mean the down-sampling of the signal in braces, then 

we have 

 
$M{a x1(n) + b x2(n)} = $M{a x1(n)} + $M{b x2(n)} ‹ (1) 

= a $M{x1(n)} + b $M{x2(n)} ‹ (2) 
 

In words, the result of down-sampling the weighted sum of signals equals the weighted sum of 

the down-sampled signals. In other words, the two block diagrams below are equivalent. 

 

x1(n) a x1(n) a y1(n) 
 
 

 

 
x2(n) b 

w(n) 


y(n)  

 
x2(n) b 

 

 

 

In the diagram on the left the weighted sum of two inputs is down-sampled: 

 

w(n) = a x1(n) + b x2(n) — W(e
jω

) = a X1(e
jω

) + b X2(e
jω

) 

The output and its spectrum are then given by 
 

 

 

 

 

 

 

 
output. 

y(n) = w(Mn) 
M 1 

Y(e
jω

) = 1 
W e j ( 2 k ) / M 

k 0 
M 1 M 1 

=   
a   
X 1 e j(2 k ) / M +   b   

 X 2e j(2 k ) / M  ‹ (A) 

In the diagram on the right the weighted inputs are down-sampled and added to form the 
 

M 1 

y1(n) = a x1(Mn) — Y1(e
jω

) = 
 a 
 X

 
e j ( 2 k ) / M 

M 
jω b 

k  0 
M 1 

y2(n) = b x2(Mn) — Y2(e ) =   X e j ( 2 k ) / M 


The output and its spectrum are given by 

 

y(n) = y1(n) + y2(n) 

 

 

 

 

 

 
M 1 

M k  0  

 

 

 

 

 
M 1 

Y(e
jω

) = Y1(e
jω

) + Y2(e
jω

) = a 
 X 1 e j(2 k ) / M  +  b    X e j ( 2 k ) / M ‹ (B) 

M 

Equations (A) and (B) are identical. QED. 

k  0 M k 0 

Eventually, by virtue of Example 6.1, the down-samplers are moved to the upstream side 

of the multipliers which would correspond to Eq. (2). 
 

Identity #2 A delay of M sample periods before an M-fold down-sampler is the same as a delay 

of one sample period after the down-sampler. 

↓M 

1 

2 



y1(n) y(n) 
↓M z–M 

H(z) ↓M 

 

M 

M 

X e 

 

x(n) x(n) 
  

 

 

 

 

 

 
and 

In the first case (diagram on the left) we have 

 

y1(n) = x(n–M) — Y1(z) = z
–M

 X(z) ‹ (1) 

 1  
M 1 

     


y(n) = y1(Mn) — Y(z) = 
 

Note from (1) that 

Y e j 2 k / M z1/ M  = Y z

Y1 e 
j 2 

M k  0 

 

= z
M 

X (z) 

k / M 
z

1/ M  ‹ (2) 

1 1 z  e j 2 k / M z1 / M z e j 2 k / M z1 /  M 

=  e j 2 k / M z1/ M   M  
X e j 2 k / M z1/ M  

Substituting this in (2) we have 
M 1 

Y(z) =   1  
e j 2 k / M z1/ M  M  

X e j 2 k / M z1/ M  
k 0 

M 1 M 1 

=  
 1  
 e j 2 k M / M z M / M  X e j 2 k / M z1/ M  =  

 1  
1 z 1 X e j 2 k / M z1/ M  

M k  0 

M 1 

M  k  0 

= z–1    1  
 X e j 2 k / M z1/ M   ‹ (A) 

k    0 

In the second case (diagram on the right) we have 
1 

y2(n) = x(nM) — Y2(z) = 
M 

M 1 

k  0 

 2 k / M 1/ M  ‹ (3) 

y(n) = y2(n–1) — Y(z) = z
–1

 Y2(z) ‹ (4) 

Substituting from (3) into (4) we have 
1   M 1 

Y(z) = z
–1

 Y2(z) = z
–1 

  X e
2 k / M 

z
1/ M 

‹ (B) 
M  k  0 

Equations (A) and (B) are identical. QED. 
 

Identity #3 (Noble identity) An M-fold down-sampler followed by a linear time invariant filter 

H(z) is equivalent to a linear time invariant filter H(z
M

) followed by an M-fold down-sampler. 

Note that the second identity is a special case of this identity with H(z) = z
–1

 and H(z
M

) = z
–M

. 

x(n) 

 
x(n) y2(n) y(n) 

   

 
For the system consisting of the filter followed by the down-sampler we have 

 

Y1(z) = H(z
M

) X(z) 

y2(n) y(n) 
z–1 

↓M 

y1(n) y(n) 
↓M H(z

M
) 

z 



1 

1 1 

 

M 

M 

X e 

X e 

Y(z) =
 1 M 1

 

M  k 0 
Y  e 

 

 j 2 k / Mz1/ M 

Note that 

Y e j 2 k / M z1/ M  = Y z

= Hz
M Xz





z  e j 2 k / M z1 / M 

 

 

 

 
 

Thus 

z  e j 2 k / M z1/ M 

=  H e j 2 k / M z1/ M  M     
X e j 2 k / M z1/ M  

=  H e j 2 k M / M z M / M  X e j 2 k / M z1/ M  
=  H 1z X e j 2 k / M 

z
1/ M  = H(z) X e j 2 k / M 

z
1/ M  

M 1 

Y(z) =   1  
 H (z) X e j 2 k / M z1/ M  
k 0 

M 1 

= H(z)   1  
 X e j 2 k / M z1/ M   ‹ (A) 

k    0 

For the system consisting of the down sampler followed by the filter we have 
y2(n) = x(nM) 

1 
Y2(z) = 

M 

M 1 

k  0 

 2 k / M 1/ M 

1 
Y(z) = H(z) Y2(z) = H(z) 

M 

M 1 

k  0 

 2 k / M 1/ M  ‹ (B) 

Equations (A) and (B) are identical. Thus the two systems are equivalent. 

z 

z 



x(n) 

↑L 

↑L 

H(z
L
) ↓L 

z–L 
↓L 

↑L 

Identity #4 (This identity contains no summing junction as does identity #1.) Eventually, by 

virtue of Example 6.2, the up-samplers are moved to the downstream side of the multipliers. 

 

a y1(n) 

 
v(n) 

a y1(n) 

 

 

x(n) v(n) 
 

 
 

b y2(n) v(n) 
b y2(n) 

 

 

 

Identity #5 A delay of one sample period before an L-fold up-sampler is the same as a delay of L 

sample periods after the up-sampler. 
 

x(n) 

 
x(n) y2(n) y(n) 

   

 
For the system consisting of the up-sampler preceded by z

–1
 we have 

Y1(z) = z
–1

 X(z) 
Y(z) = Y1(z

L
) = z

–L
 X(z

L
) ‹ (A) 

For the system consisting of the up-sampler followed by z
–L

 we have 

Y2(z) = X(z
L
) 

Y(z) = z
–L

 Y2(z) = z
–L

 X(z
L
) ‹ (B) 

Since equations (A) and (B) are identical the two systems are equivalent. 
 

Identity #6 (Noble identity) An L-fold up-sampler preceded by a linear time invariant filter H(z) 

is equivalent to a linear time invariant filter H(z
L
) preceded by an L-fold up-sampler. Note that 

the fifth identity is a special case of this identity with H(z) = z
–1

 and H(z
L
) = z

–L
. 

 
x(n) 

 
x(n) y2(n) y(n) 

   

 
For the system consisting of the filter followed by the up-sampler we have 

 

Y1(z) = H(z) X(z) 

Y(z) = Y1(z
L
) = H(z

L
) X(z

L
) ‹ (A) 

y1(n) y(n) 
↓L 

y1(n) y(n) 
↓L 

H(z) 

z–1 



For the system consisting of the up-sampler followed by the filter we have 
 

Y2(z) = X(z
L
) 

Y(z) = H(z
L
) Y2(z) = H(z

L
) X(z

L
) ‹ (B) 

Since equations (A) and (B) are identical the two systems are equivalent. 

                      

                      FIR implementation of sampling rate conversion 
 

The anti-aliasing filter in a decimator and the anti-imaging filter in an interpolator may each be 

either an FIR or an IIR filter, the former being preferred since it offers linear phase. We give here 

the FIR implementation. 

 

Implementation of Decimator The process of decimation consists of an anti-aliasing (low pass) 

filter followed by a down-sampler. We repeat below the block diagram developed earlier. 

 

 

 

 

 
y(n) 

 

 

 

 

 

 
 

Taking the filter H(z) to be an FIR filter, the decimator is implemented as shown below, 
using a direct form structure for H(z). Note that the coefficients {bi, i = 0 to (N–1)}, used in 
earlier formulations, are the same as {h(i), i = 0 to (N–1)} used in this diagram. Further, the FIR 
filter here is implemented with N coefficients rather than (N+1) coefficients. 

 
y(n) 

x(n
) 

h(0
) 

v(n
) 

h(1
) 

h(2
) 



h(N–
2) 

h(N–
1) 

z–1 

z–1 

z–1 

$M 

x(n) v(n) 

π/M –π/M 

H(z) 
Low pass filter 
 

|H(ω)| 

1 

ω 

↓M 

Down sampler 



The implementation equations which correspond to the above structure are 
N 1 

v(n) =  h(r) x(n  r) 
r  0 

N 1 

and y(n) = v(Mn) =  h(r) x(Mn  r) 
r  0 

We first compute v(n) for all values of n. Then y(n) is obtained by retaining every M
th

 value of 

v(.), dropping the intervening (M–1) values. In other words there are (M–1) computations of v(.) 

that could be avoided. 
We may use identity #1 to move the down-sampler to the left of the adders and the result 

of Example 6.1 to move it to the upstream side of the multipliers as shown below. As a result the 
100(M 1) 

number of multiplications is reduced by %. 
M 

 
 

 

 

 

Implementation of Interpolator The process of interpolation consists of an up-sampler 

followed by an anti-imaging (low pass) filter. We repeat below the block diagram developed 

earlier. 

 

 

 

 

 

x(n) 

h(0) 


y(n) 

h(1) 



h(2) 



h(N–2) 



h(N–1) 

$M 

$M 

$M 

$M 

$M 

z–1 

x(n) 

z–1 

z–1 

y(n) ‡L 

Up sampler 

H(z) 

Anti-imaging filter 
 

|H(ω)| 

 
1 

 

ω 



 

Taking the filter H(z) to be an FIR filter, the interpolator is implemented as shown below, 

using a direct form structure for H(z). Note that the coefficients {bi, i = 0 to (N–1)}, used in 
earlier formulations, are the same as {h(i), i = 0 to (N–1)} used in this diagram. Further, the FIR 
filter here is implemented with N coefficients rather than (N+1) coefficients. 

We shall find it more convenient to use the transposed form of the FIR filter rather than 

the structure actually shown here, so here follows a digression on the transposed structure. 
 

x(n) h(0) 


y(n) 

h(1) 



h(2) 



h(N–2) 



h(N–1) 

z–1 

z–1 

z–1 

‡L 



Start of Digression 

Transposed Structure According to the transposition theorem the transposed form of a filter 

has the same transfer function as the filter. The transposed form of a given filter structure is 

found as follows: 

1. Construct the signal flow graph of the filter. 
2. Reverse the direction of arrow on every branch. 

3. Interchange the inputs and outputs. 

4. Reverse the roles of all nodes: an adder becomes a pick-off point and a pick-off 

point becomes an adder. 

If we apply this procedure to the FIR structure in the above interpolator the result is the transpose 

shown below. The intermediate steps are omitted. 
 

 
 

 

 

 
 

 
Start of Aside 

As an aside note that the FIR structure is simple enough that the following algebraic 

manipulation can be used to proceed from the original FIR structure to the transpose structure. 

Let the system function be 

u(n) 
h(0) 


v(n) 

h(1) 



h(2) 


h(N–2) 



h(N–1) 

z–1 

z–1 

z–1 

z–1 

u(n) 
h(0) 


v(n) 

h(1) 



h(2) 



h(N–2) 



h(N–1) 
z–1 

z–1 

z–1 

Original Transpose 



V (z) 
 

U (z) 
= H(z) = h(0) + h(1)z

1 
+ h(2)z

2 
+ h(3)z

3 
+ h(4)z

4 
+ … + h(N 1)z

(N1)
 

This may be rearranged as 

V ( z) = H ( z)U (z) 

= h(0)U(z) + h(1)z
1 

U(z) + h(2) z
2 

U(z) + h(3)z
3 

U(z) + h(4) z
4 

U(z) + … 

+ h(N 1) z 
( N 1) 

U (z) 

= h(0)U(z) + z
1

(h(1)U(z) + z
1 

(h(2)U(z) + z
1 

( h(3)U(z) + … 

… + z
1

(h(N 2)U(z)+z
1 

h(N 1)U(z) )))) 

This last equation, proceeding from right to left, performs the following in the time domain: 

 Multiply u(n) by h(N 1), giving h(N 1)u(n) 

 Delay by 1 unit, givingh(N 1)u(n 1) 

 Add to h(N  2)u(n), giving h(N  2)u(n)  h(N 1)u(n 1) 

 Delay by 1 unit, giving h(N 2)u(n1)h(N 1)u(n2) 

 Add to h(N 3)u(n), giving h(N 3)u(n)  h(N 2)u(n1)  h(N 1)u(n  2) 

 Delayby1 unit, giving h(N 3)u(n1)h(N 2)u(n2)h(N 1)u(n3) 

 … 

 Add to h(0)u(n) 

all of which yields the implementation of the difference equation 

v(n) = h(0)u(n) + h(1) u(n 1) + h(2)u(n  2) + … 

…+h(N 2)u(n N 2)+ h(N 1)u(n N 1) 

Further, the equation 

V( z) = h(0)U(z) + z
1

(h(1)U(z) + z
1 

(h(2)U(z) + z
1 

( h(3)U(z) + … 

… + z
1

(h(N 2)U(z)+z
1 

h(N 1)U(z) )))) 

also suggests the transpose structure previously developed according to the rules. 

End of Aside 

End of Digression 



Resumption of Implementation of Interpolator Using the transposed form of the FIR filter the 

structure of the interpolator appears as below: 
 
 

x(n) 
 

Transpose 

h(0) 

―u(n)‖ 


y(n) 

―v(n)‖ 

h(1) 



h(2) 



h(N–2) 



h(N–1) 

z–1 

z–1 

z–1 

z–1 

‡L 



We may use identity #4 and the result of Example 6.2 to move the up-sampler to the right 

of the multipliers as shown below. As a result the number of multiplications is reduced by 

100(L  1) 
%.

 
L 

 

x(n) h(0) 

h(1) 

h(2) 

h(N–2) 

h(N–1) 

‡L 

z–1 

‡L 



z–1 

‡L 

z–1 


y(n) 

‡L 

‡L 

z–1 



0 m1 

Polyphase structures 
 

The polyphase structure for FIR Filters was developed for the efficient implementation of 

sampling rate converters; however, it can be used in other applications. Further, the polyphase 

structure can be developed for any filter, FIR or IIR. We give below an introduction. 

 

Polyphase Structure for FIR Filters The impulse response of the FIR filter h(n) is of finite 

length, N. The system function with N coefficients is 
N 1 

H(z) = h(n)z
n 

= h(0) + h(1)z
1 

+ h(2)z
2 

+ h(3)z
3 

+ h(4)z
4 

+ … + h(N 1)z
(N1) 

n  0 

We shall use another parameter M: we shall divide the number of coefficients into M groups (or 
branches or phases), modulo M. In other words the N terms in H(z) are arranged into M branches 

with each branch containing at most Int N 1/ M 1terms. 

Type 1 polyphase decomposition For illustration, let N = 11 and M =2 so that one group 

contains 6 coefficients and the other 5 as developed below: 
10 

H(z) = h(n) z
n 

= h(0) + h(1) z
1 

+ h(2) z
2 

+ h(3) z
3 

+ h(4) z
4 

+ … + h(10) z
10

 

n  0 

= h(0) + h(2) z
2 

+ h(4) z
4 

+ h(6) z
6  

+ h(8)z
8 

+ h(10)z
10 

› 1
st
 group 

+ h(1)z
1

+ h(3)z
3 

+ h(5)z
5 

+ h(7)z
7 

+ h(9)z
9 

› 2
nd

 group 

= h(0) + h(2) z 
2 

+ h(4) z 
4 

+ h(6) z 
6 

+ h(8) z 
8 

+ h(10) z 
10

 

+ z 
1 

{ h(1) + h(3) z 
2 

+ h(5) z 
4 

+ h(7) z 
6 

+ h(9) z 
8 

} 

Define 

Int N 1/ M = integer part of the argument 

P0(z) = h(0) + h(2)z
1 

+ h(4)z
2 

+ h(6)z
3 

+ h(8)z
4 

+ h(10)z
5 

= 

Int N 1 / M 

(More generally, P0(z) = h(Mn  0) z
n 

) 
n  0 

 
 

Int 111/ 

2

h(2n  0) z 
n 

n  0 

Int 111/ 2

P1(z) = h(1)+ h(3)z
1 

+ h(5)z
2 

+ h(7)z
3 

+ h(9)z
4 

= h(2n 1) z
n

 
n  0 

 
(h(11) = 0) 

(More generally, P1(z) = 

In this specific case we have 

Int N 1/ M 

h(Mn  1) z 
n 

) 
n  0 

 
1 

Y (z) 

X (z) 
= H(z) = P (z 

2 
) + z

1 
P (z 

2 
) = z 

m 
P (z

2 
) 

n  0 



0 1 

0 1 
z P m 

This decomposition of H(z) is known as type 1 polyphase decomposition. The 

corresponding structure is shown below. The functions P (z 
2 
) and P (z 

2 
) can each be 

implemented as a direct form. 
 
 

 

 

By observing the expressions for P0(z) and P1(z) we can further generalize the functions 
Pm(z) for any m as 

 
Pm(z) = 

Int N1/ M 

h(Mn m)z
n 

), m = 0 to (M–1) 
n  0 

Further, the system function becomes  
M 1 

Y (z) 
X (z) = H(z) = P (z 

M 
) + z

1 
P (z 

M 
) + … + ( M 1) 

M 1 (z
M 

) = 
m  0 

z 
m 

P (z 
M 

) 

 

Example 5.8.1 As another example, let N = 11 and M =3. 
10 

H(z) = h(n) z
n 

= h(0) + h(1) z
1 

+ h(2) z
2 

+ h(3) z
3 

+ h(4) z
4 

+ … + h(10) z
10

 

n  0 

= h(0) + h(3)z
3 

+ h(6) z
6  

+ h(9)z
9 

– 1
st
 group 

 

 

 

 

 

 

Define 

+ h(1)z
1 

+ h(4) z
4 

+ h(7) z
7 

+ h(10)z
10

 

+ h(2) z 
2 

+ h(5) z 
5 

+ h(8) z 
8

 

H(z) = h(0) + h(3) z
3 

+ h(6) z
6 

+ h(9) z 
9

 

+ z 
1 

{ h(1) + h(4) z 
3 

+ h(7) z 
6 

+ h(10) z 
9 

} 

+ z 
2 

{ h(2)+ h(5) z
3 

+ h(8) z
6 

} 

Int N 1/ M = integer part of the argument 

Int 111 / 3

– 2nd
 group 

– 3rd
 group 

P0(z) = h(0) + h(3)z
1 

+ h(6) z
2 

+ h(9)z
3 

= h(3n 0)z
n

 
n  0 

Int N 1 / M 

(More generally, P0(z) = h(Mn  0) z
n 

) 
n  0 

 

P1(z) = h(1) + h(4)z
1 

+ h(7)z
2 

+ h(10)z
3 

= 

Int N 1/ M 

Int 111/ 3

h(3n  1) z 
n 

n  0 

(More generally, P1(z) = h(Mn  1) z n ) 
n  0 

x(n) 
P0(z

2
) 

y(n) 


P1(z
2
) 

z–1 



P1(z
3
) 

z–1 

 
P2(z) = h(2)+ h(5)z

1 
+ h(8)z

2 
= 

(More generally, P2(z) = 

In this specific case we have 

Int 111/ 3

h(3n  1) z 
n 

n  0 

Int N1/M

h(Mn 1)z
n 

) 
n  0 

 
(h(11) = 0) 

Y (z) = H(z) = P (z
3 
)+ z

1 
P (z

3 
) + z

2 
P (z

3 
) = 2 z 

m 
P (z

3 
) 

0 1 2  m 

X (z) m  0 

 

 
 

 

x(n) y(n) 




P2(z
3
) 

z–1 

P0(z
3
) 



0 1 
z P m 

Generalization As mentioned earlier, in the general case for an arbitrary M (≤ N) we have 
Int N 1/ M 

Pm(z) = h(Mn m)z
n 

, m = 0 to (M–1) 
n  0 

and  
Y (z) 
X (z) 

 
= H(z) = P (z 

M 
) + z

1 
P (z 

M 
) + … + 

 

 

( M 1) 

M 1 

 

(z
M 

) = 

 
M 1 


m  0 

 

z 
m 

P (z 
M 

) 

This overall operation is known as polyphase filtering. 
 

 

 

 
x(n) y(n) 











(M–1)
th
 

Delay 

PM–1(z
M

) 

z–1 

PM–2(z
M

) 

z–1 

Pm(z
M

) 

z–1 

P2(z
M

) 

z–1 

P1(z
M

) 

z–1 

P0(z
M

) 



0 1 z P 

0 1 M 1 

0 1 z P 

k 

Type 2 polyphase decomposition Given  
M 1 

Y (z) 
X (z) = H(z) = P (z 

M 
) + z

1 
P (z 

M 
) + … + ( M 1) 

M 1 (z
M 

) = 
m  0 

z 
m 

Pm  (z 
M 

) 

set m = M–1–k: as m goes from 0 to M–1, k goes from M–1 to 0. Thus 
0 

H(z) = z 
( M 1k ) PM 1k (z

M ) 
k  M 1 

Let  
Q (z M ) = z (M 1k ) P (zM ) 

k M 1k 

This gives us the type 2 polyphase decomposition 
0 M 1 

k Qk (z 
M 

) = Q (z
M 

) + Q (zM ) + … + Q (zM ) 
k  M 1 k  0 

 

Type 3 polyphase decomposition Given  
M 1 

Y (z) 
X (z) = H(z) = P (z 

M 
) + z

1 
P (z 

M 
) + … + ( M 1) 

M 1 (z
M 

) = 
m  0 

z 
m 

Pm  (z 
M 

) 

set m = –k: as m goes from 0 to M–1, k goes from 0 to –(M–1) to 0. Thus 
( M 1) 

H(z) =   z
k P  (z

M 
) 

Let 

k  0 

 
 

R (z 
M 

) = z 
k 
P (z

M 
) 

k k 



0 2 4 6 1 3 5 

1 3 5 

0 2 
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0 

Example 5.8.2 For the system 
6 

H(z) = h(n) z
n 

= h(0) + h(1)z
1 

+ h(2)z
2 

+ h(3)z
3 

+ h(4)z
4 

+ h(5)z
5 

+ h(6)z
6

 

n  0 

= { h  + h  z
2 

+ h  z 
4
+ h  z  }

6 
+ { h  z 


+
1  

h  z 
+3  h  z  }5 

= { h0 + h2 z
2 

+ h z 
4

+ h z  }
6 

+ z 
1 

{ h + h z 
2 

+ h z 
4 

} 

P0(z) = h  + h  z 

+
1
 h4 z 

+2 
h6 z 

P1(z) = h1 + h3 z
1 

+ h z 2 

The structure is shown below (left). As mentioned earlier P (z 
2 
) and P (z 

2 
) can each be 

0 1 

implemented as a direct form. 

 
Polyphase realization Canonical polyphase realization 

 

 

The structure shown on the right is obtained by moving the delay element z 
1 

to the right of 

P (z 
2 
) these two being in series in the second phase. In this latter case the two systems P (z 

2 
) 

1 0 

and P (z 
2 
) can share the same delay elements (that is, storage locations) even though each has its 

own set of coefficients, thus resulting in a canonical polyphase realization, shown below. 

 
P (z

2 
) 

P (z
2 
) 

1 

x(n) 


y(n) 

P1(z
2
) 

z–1 

P0(z
2
) 

x(n) 


y(n) 

P1(z
2
) 

z–1 

P0(z
2
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h0 h2 h4 h6 

x(n) 


y(n) 

z–1 

h5 h3 h1 

z–2 z–2 z–2 
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5 

6 

3 



Polyphase Structure for IIR Filters The anti-aliasing filter in a decimator and the anti-imaging 

filter in an interpolator may each be either an FIR or an IIR filter. The polyphase structure can be 

developed for any filter, FIR or IIR, and any finite value of M. We now proceed to the case 

where h(n) is an infinitely long sequence: 


H(z) = h(n) z 
n 

= …+ h(M ) z 
M 

+… h(2) z 
2 
+ h(1) z

1
 

n   

+ h(0)+ h(1) z
1 

+ h(2) z 
2 

+…+ h(M 1) z
(M 1)

 

+ h(M ) z 
M 

+ h(M 1) z 
(M 1) 

… 

Once again we arrange the terms into M groups or branches in a modulo-M fashion. Each branch 

contains infinitely many terms. The terms are arranged in tabular form below: 

 


H(z) = h(n)z
n

 

n   

1
st
 branch‹ … + h(M ) z 

M
 + h(0) + h(M ) z

M
 … 

2
nd

 branch‹ … + h(M 1) z 
M 1

 + h(1) z 
1

 + h(M 1) z
(M 1)

 … 

 … … + h(2) z 
2

 + h(M  2) z 
(M 2)

 … 

 … … … … … 

i
th

 branch‹ … h(M  i 1) z 
(M i1)

 h(i 1)z 
(i1)

 h(M i1)z
(M i1)

 … 

 … … … … … 
 … + h(2) z 

2
 +h(M 2)z

(M 2)
 +h(2M 2)z

(2M 2)
 … 

M
th

 branch‹ … + h(1) z
1
 + h(M 1) z

(M 1)
 + h(2M 1) z 

(2M 1)
 … 

 

 

H(z) = […+h(M)z
M 

+h(0)+h(M)z
M 

+h(2M)z
2M 

+…] 1
st
 row 

+[…+h(M 1)z
M1

+h(1)z
1

+h(M 1)z
(M1)

+…] 2
nd

 row 

+ […] + … 

+ […+ h(M  i 1) z 
(M i1) 

+ h(i 1)z 
(i1) 

+ h(M  i 1) z 
(M i1)

 

+ h(2M  i 1) z 
(2M i1) 

+…] 

 

 

 
 

We factor out 

i
th

 row to get 

 

 

 

 

 

 

 
Define 

… 

+ […+ h(2) z 
2 
+ h(M  2) z 

(M 2) 
+ h(2M  2) z 

(2M 2) 
+…] 

+ […+h(1)z
1
+h(M 1)z

(M 1)
+h(2M 1)z

(2M 1)
+…] M

th
 row 

z 
0 
from the first row (branch), z 

1 
from the 2

nd
 row, and, in general, z 

(i1) 
from the 

 

H(z) = […+h(M)z
M 

+h(0)+h(M)z
M 

+h(2M)z
2M 

+…] 1
st
 row 

+ z
1 

[…+h(M 1)z
M 

+h(1)+h(M 1)z
M 

+…] 2
nd

 row 

+ z 
2 

[…] + … 

+ z
(i1) 

[…+h(M i1)z
M 

+h(i1)+h(M i1)z
M 

+h(2M i1)z
2M 

+…] 

… 

+ z
(M 2) 

[…+h(2) z
M 

+h(M  2)+h(2M  2)z
M 

+…] 

+ z 
(M 1) 

[…+ h(1) z 
M 

+ h(M 1)+ h(2M 1) z 
M 

+…] 




y(n) 

z–1 

P0(z
3
) 

0 

m 

2 

m  0 

 

 
 

so that 



P0 ( z 
M 

) = […+h(M)z
M 

+ h(0)+ h(M) z
M 

+h(2M)z 
2M 

+…] = h(nM)z 
nM

 

n   

P ( z) = […+h(M)z +h(0)+ h(M) z 
1 

+ h(2M) z
2 

+…] = 



h(nM) z
n

 

 

Similarly, 

1 

n  






In general 

P (z) = […+h(M 1)z +h(1)+h(M 1)z 
1

+ h(2M 1) z
2 

+…]= 

 


P (z) = h(nM m)z 
n , m = 0 to (M–1) 

h(nM 1) z 
n

 

n   

n  

And the system function can now be written 
M 1 

H ( z) =  z 
m 

Pm (z 
M 

) 
m  0 

This is called the M-component polyphase decomposition of H(z). The M functions Pm ( z) are the 

polyphase components of H(z). This overall operation is known as polyphase filtering. 

As an example, for M = 3, we have 

 Y (z) = H ( z) =  z 
m 

P (z 
3 
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This last equation leads to the structure below (left): 
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We may also rearrange the output equation as 
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This last equation leads to the polyphase structure shown above (right), known as the transpose 

polyphase structure because it is similar to the transpose FIR filter realization. 



P2(z
3
) 

z–1 

P1(z
3
) 

x(n) y(n) 




P2(z
3
) 

z–1 

P1(z
3
) 

z–1 

P0(z
3
) 



0 1 M 1 

Polyphase structure for a decimator 
 

The decimator block diagram is shown below: it consists of an anti-aliasing filter, H(z), which 

could be an FIR or an IIR filter, followed by an M-fold down sampler. 
 
 

 
We replace the filter H(z) by its M-component polyphase decomposition 

M 1 

H ( z) =  z 
m 

Pm (z 
M 

) 
m  0 

The sub filters P  (z
M 

) , P  (z
M 

) , …, P (
M
z ) could be FIR or IIR depending on H(z). The block 

diagram then appears as below. 
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We may use identity #1 to move the down-sampler to the immediate right of P (z 
M 

) in 

each branch, and then use identity #3 to move the down-sampler from the immediate right to the 

immediate left of Pm (.) while at the same time changing Pm (
Mz ) to Pm (z) . The result appears as 

below. It can be seen from this diagram that in this structure the number of multiplications is 

reduced by a factor of M. 
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**** Continuing with the development, comparing 

P  ( z) =    h(rM  m) z 
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with the defining equation of the z-transform 

P ( z) =   p  (r)z 
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r  

we identify 

pm (r) = h(rM  m) 

Note that M is a constant and m is a parameter. Upon substituting for Pm ( z) in the system function 
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The output transform is 
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xm (r) = x(rM  m) 

Note that M is a constant and m is a parameter. 

xm (r) = x(rM  m) 

Shifting the sequence by n units we get 

xm (n  r) = x(n  rM  m) 

The output now may be written 
M 1    

y(n) =   pm (r) xm (n  r) 
m  0 r   

Define the operation of polyphase convolution as 


y(m) = pm (n)* xm (n) = pm (r) xm (n  r) 
r   

Then 
 

M 1 M 1 

y(n) = pm (n)*xm (n) = ym (n) 
m  0 m  0 

This overall operation is known as polyphase filtering. 



 

FINITE WORD LENGTH EFFECTS 

 
Finite Wordlength Effects 

All the signals and systems are digital in DSP. The digital implementation has finite accuracy. When numbers are 

represented in digital form, errors are introduced due to their finite accuracy. These errors generate finite precision 

effects or finite wordlength effects. 

Let us consider an example if the first order IIR filter to illustrate how errors are encountered in 

discretization. Such filter can be described as, 

y(n)=  y(n-1)+x(n) .......(1) 

The z-transform of above equation gives 

z[y(n)]= z[y(n-1)+x(n)] 

X(z)= z1 Y(z)+X(z) 

Hence the transfer function 

1 z 
H(z)= = 

1 z 1 z  

Here observe that ‗ ‘ is the filter coefficient when this filter is implemented on some DSP processor or 

software, ‗ ‘ can have only discrete values. Let the discrete values of  be represented by  . 

Hence the actual transfer function which is implemented is given as, 

z 
H (z) 




z  

The transfer function given by above equation is slightly different from H(z). Hence the actual frequency 

response will be different from desired response. 

The input x(n) is obtained by sampling the analog input signal. Since the quantizer takes only fixed(discrete) 

values of x(n) ,error is introduced. The actual input can be denoted by x(n) . 
 

x(n) =x(n)+e(n) 

Here e(n) is the error introduced during A/D conversion process due to finite wordlength of the quantizer. 

Similarly error is introduced in the multiplication of  and y(n-1) in equation(1). This is because the product 

 y(n-1) has to be quantized to one of the available discrete values. This introduces error. These errors generate 

finite wordlength effects. 

Finite Wordlength Effects in IIR Digital Filters 

When an IIR filter is implemented in a small system, such as an 8-bit microcomputer, errors arise in representing 

the filter coefficients and in performing the arithmetic operations indicated by the difference equation. These 

errors degrade the performance of the filter and in extreme cases lead to instability. 

Before implementing an IIR filter, it is important to ascertain the extent to which its performance will be 

degraded by finite wordlength effects and to find a remedy if the degradation is not acceptable. The effects of 

these errors can be reduced to acceptable levels by using more bits but this may be at the expense of increased 

cost. 

The main errors in digital IIR filters are: 

i. ADC Quantization Noise: 

This noise is caused by representing the samples of the input data ,by only a small number of bits. 
 

 
 



ii. Coefficient quantization errors: 

These errors are caused by representing the IIR filter coefficients by a finite number of bits. 

iii. Overflow errors 

These errors are caused by the additions or accumulation of partial results in a limited register length. 

iv. Product round-offerrors 

These errors are caused when the output ,and results of internal arithmetic operations are rounded to the permissible 

wordlength. 

Finite Wordlength Effects in FFT Filters 

As in most DSP algorithms, the main errors arising from implementing FFT algorithms using fixed point arithmetic 

are 

i. Round off errors 

These errors are produced when the product W k B is truncated or rounded to the system wordlength. 

ii. Overflow errors 

These errors result when the output of a butterfly exceeds the permissible wordlength. 

iii. Coefficient quantization errors 

These errors result from representing the twiddle factors using a limited number of bits. 

LIMIT CYCLES 
 

5.2.1 Overflow oscillations 

Limit Cycle: The finite wordlength effects are analyzed using the linear model of the digital systems. But 

nonlinearities are introduced because of quantization of arithmetic operations. Because of these nonlinearities, 

the stable digital filter under infinite precision may become unstable under finite preision.Because of this instability, 

oscillating periodic output is generated.Such output is called limit cycle.The limit cycle occur in IIR filters due to 

feedback paths. 

Types of Limit Cycles 

There are two types of limit cycles. 

(1) Granular and 

(2) Overflow. 

1. Granular Limit Cycles 

The granular limit cycles are of low amplitude. These cycles occur in digital filters when the input signal levels 

are very low. The granular limit cycles are of two types. They are 

i. Inaccessible limit cycles 

ii. Accessible limit cycles. 

2. Overflow Limit Cycles 

Overflow limit cycles occur because of overflow due to addition in digital filters implemented with finite precision. 

The amplitudes of overflow limit cycles are very large and it can cover complete dynamic range of the register. 

This further leads to overflow causing cumulative effect. Hence overflow limit cycles are more serious than 

granular limit cycles. 
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Transfer Characteristics and Example 

f(v ) 

Figure: Transfer characteristics of adder having overflow limit cycles 

Because of overflow limit cycle oscillations the output fluctuates between minimum and maximum values. 

The above figure shows the transfer characteristic of an adder that exihibit overflow limit cycle oscillations. Here 

f(v) indicates addition operation. Consider the addition of following two numbers in sign magnitude form. 

7 

x1 = 0.111 i.e., 
8
 

 
2 

 

5 
 

 

x2 = 0.101 i.e., 
8
 

Then 
x + x

 = 1.010 i.e., 
1 2 8 

Here overflow has occured in addition due to finite precision and the digit before decimal point makes the 

number negative. 

Signal Scaling: 

Need for Scaling: Limit cycle oscillations can be avoided by using the nonlinear transfer characteristic. But it 

introduces distortion in the output. Hence it is better to perform signal scaling such that overflow or underflow 

does not occur and hence limit cycle oscillations can be avoided. 

Implementation of Signal Scaling 

Figure shows the direct form-II structure of IIR filter. Let the input xnbe scaled by a factor s0 before the 

summing node to prevent overflow. With the scaling, the transfer function will be, 
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Figure: Direct form-II realization for second order IIR filter 

Let us define the transfer function 
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From figure we can write above transfer function as, 
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Evaluating z-transform on unit circle, we put z  e j in above equation, 
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Schwartz inequality states that, 
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Using this relation we can write above equation as, 
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Parseval‘s theorem states that 
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Putting these values in equation 
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Here 
2n represents instantaneous energy of signal after first summing node. And x

2 nrepresents 

instantaneous energy of input signal. Overflow will not occur if 
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For this equation to be true we get following condition from equation 
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Earlier we have defined   . Hence above condition becomes, 
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Above equation gives the value of scaling factor s0 to avoid overflow 
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5.3 ROUND OFF NOISE IN IIR DIGITAL FILTERS 

Statistical Model for Analysis of Round-off Error Multiplication: 

We perform arithmetic operations like addition and multiplication some errors will be occured. Those errors are 

called arithmetic errors. The results of arithmetic operations are required to be quantized so that they can occupy 

one of the finite set of digital levels. Such operation can be visualized as multiplier (or other arithmetic operation) 

with quantizer at its output. 
 



u(n) v(n) 

 

Figure: Quantization of multiplication or product 

The above process can be represented by a statistical model for error analysis. The output  (n) and error 

e (n) in product quantization process.i.e., 

(n)  (n)  e (n) 

The statistical model is shown below. 
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Figure: Statistical model for analysis of round-off error multiplication 

For the analysis purpose following assumptions are made. 

i) The error sequence e is the sample sequence of a stationary white noise process. 

ii e (n) is having uniform distribution over the range of quantization error. 

iii) The sequence e (n) is uncorrelated with the sequence (n)  and input sequence x(n). 

Computational output round off noise 

Product Round-off Errors and its Reduction: 

The results of product or multiplication operations are quantized to fit into the finite wordlength,when the digital 

filters are implemented using fixed point arithmetic. Hence errors generated in such operation are called product 

round off errors. 

The effect of product Round-off errors can be analyzed using the statistical model of the quantization 

process. The noise due to product round-off errors reduces the signal to noise ratio at the output of the filter. 

Some times this ratio may be reduces below acceptable levels. Hence it is necessary to reduce the effects of 

product round-off errors. 

There are two solutions available to reduce product round-off errors. 

a) Error feedback structures and 

b )State space structure. 

The error feedback structures use the difference between the unquantized and quantized signal to reduce 

the round-off noise. The difference between unquantized and quantized signal is fed back to the digital filter 

structure in such a way that output noise power due to round-off errors is reduced. 
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First Order Error-feedback Structure to reduce Round-off Error: 

The results of product or multiplication operations are quantized to fit into the finite wordlength, when the digital 

filters are implemented using fixed point arithmetic. Hence errors generated in such operation are called product 

round off errors. 

The effect of product round-off errors can be analyzed using the statistical model of the quantization 

process. 

Let the quantization error signal be given as the difference between unquantized signal y(n) and quantized signal 

 (n) .i.e., 

e(n) = y(n)- (n) 
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Figure: First order error feedback structure to reduce product round-off error 

This error signal is fed back in the structure such that round-off noise is reduced. Such structure for first order 

digital filter is shown in figure. 

The incorporation of quantization error feedback as shown in figure helps in reducing the noise power at the 

output . This statement can be proved mathematically. 

Round-off Errors in FFT Algorithms: 

FFT is used in large number of applications. Hence it is necessary to analyze the effects due to finite wordlengths 

in FFT algorithms. The most critical error in FFT computation occurs due to arithmetic round-off errors. 

The DFT is used in large number of applications such as filtering, correlation, spectrum analysis etc. In 

such applications DFT is computed with the help of FFT algorithms. Therefore it is important to study the 

quantization errors in FFT algorithms. These quantization effects mainly take place because of round-off errors. 

These errors are introduced when multiplications are performed in fixed point arithmetic. 

FFT algorithms require less number of multiplications compared to direct computation of DFT. But it 

does not mean that quantization errors are also reduced in FFT algorithms. 
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 represents the variance of output DFT coefficients i.e., X (k ) . 
 

For N-point DFT  x is given as, 
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For direct computation of DFT, the variance of quantization errors in multiplications is given as, 
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Here 
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is variance of quantization errors and  is step size which is given as, 
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And b is the number of bits to represent one level. 

Hence equation (2) becomes, 

2  N 
.22b 

 
.....(4) 

3 

The signal to noise power ratio at the output (i.e., DFT coefficients) can be considered as the measure of 

quantization errors. This ratio is the ratio of variance of DFT coefficients 2  to the variance of quantization 

errors 2  i.e., 

Signal to noise ratio in direct computation of 

From equation (1) and equation (2) we have, 
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When DFT is computed using FFT algorithms, the variance of the signal remains same i.e., 

2 1 

x  from equation (1) ......(6) 
3N 

But with algorithms the variance of the quantization errors is given as, 
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Hence signal to noise ration in FFT algorithms is, 
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In the above expression, the signal to noise ration is inversely proportional to N. whereas in direct DFT 

computation the signal to noise ratio is inversely proportional to N2 as given by equation (5). This means 

quantization errors increase fast with increase in ‗N‘ in direct computation of DFT. But in FFT algorithms the 

quantization errors increase slowly with increase in ‗N‘. 

Product of Round-off Errors in IIR Digital Filters: 

The results of product or multiplication operations are quantized to fit into the finite wordlength, when the digital 

filters are implemented using fixed point arithmetic. Hence errors generated in such operation are called product 

round off errors. 

Product round-off error analysis is an extensive topic.Our presentation here will be brief and aims to 

make you aware of the nature of the errors, their effects and how to reduce them if necessary. 

The basic operations in IIR filtering are defined by the familiar second- order difference equation: 
 

2 2 

y(n)   bk x(n  k)   ak y(n  k ) 
k 0 k 1 

 

Where x(n-k) and y(n-k) are the input and output data samples,and bk and ak are the filter coefficients. In 

practice these variables are often represented as fixed point numbers. Typically , each of the products bk x(n-k) 
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and ak y(n-k) would require more bits to represent than any of the operands. For example, the product of a B-bit 

data and a B-bit coefficient is 2B bits long. 

Truncation or rounding is used to quantize the products back to the permissible wordlength. Quantizing 

the products leads to errors,popularly known as round-off errors,in the output data and hence a reduction in the 

SNR. These errors can also lead to small-scale oscillations in the output of the digital filter,even when there is no 

input to the filter. 
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Figure: Representation of the product quantization error: (a) a block diagram representation of the 

quantization process; (b) a linear model of the quantization process 

The figure(a) represents a block diagram of the product quantization process,and figure (b) represents a 

linear model of the effect of product quantization. The model consists of an ideal multiplier,witk infinite precision, 

in series with an adder fed by a noise sample, e(n), representing the error in the quantized product ,where we have 

assumed,for simplicity,that x(n),y(n), and K are each represented by B bits. Thus 

y(n) = Kx(n) + e(n) 

The noise power, due to each product quantization, is given by 

  
2 
 

q 2
 

r 
12

 

Where r symbolizes the round-off error and q is the quantization step defined by the wordlength to which 

product is quantized. The round-off noise is assumed to be a random variable with zero mean and constant 

variance. Although this assumption may not always be valid, it is useful in assesing the performance of the filter. 

Product of Round-off Errors on Filter Performance: 

The effects of round-off errors on filter performance depend on the type of filter structure used and the point at 

which the results are quantized. 

The above figure represents the quantization noise model for the direct form building block. It is assumed 

in the figure that the input data,x(n),output data,y(n),and the filter coefficients are represented as B-bit numbers 

(including the sign bit). The products are quantized back to B bits after multiplication by rounding (or truncation). 
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Figure: Product quantization noise model for the direct form filter section. All the noise sources in (a) have 
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been combined in (b) as they feed to the same point 

Since all five noise sources, e1 to e5 in figure(a),feed to the same point (that is into the middle adder), the 

total output noise power is the sum of the individual noise powers(figure(b)). 
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Figure: Product quantization noise model for the canonic filter section. The noise sources feeding the same 

point in (a) have been combined in (b) 
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 is the intrinsic product round-off noise power. The total 

noise power at the filter output is the sum of the product round-off noise and the ADC quantization noise. 
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For canonic section, figure(a) , the noise model again includes a scale factor as this generates a round-off 

error of its own. The noise sources e1(n) to e3 (n) all feed to the left adder, whilst the noise sources e4 (n) to 

e6 (n) feed directly into the filter output. Combination of the noise sources feeding to the same point leads to the 

noise model of figure(b). Assuming uncorrelated noise sources, the total noise contribution is simply the sum of 

the individual noise contributions: 
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METHODS TO PREVENT OVERFLOW 

Prevent Overflow Limit Cycle Oscillations: The overflow limit cycles occur because of overflow due to addition 

in digital filters implemented with finite precision. The amplitudes of overflow limit cycles are very large and it 

can cover complete dynamic range of the register. 

The specific design of filter coefficients do not assure prevention of overflow limit cycle oscillations. The 

transfer characteristic can be modified to avoid overflow limit cycle oscillations. 

f(v ) 
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Figure: Prevention of overflow limit cycle oscillations 

As shown in figure when an overflow or underflow is sensed, the output of the adder is set to its full scale 

value of  1. This prevents oscillatory output. This nonlinearity of the characteristic causes very small distortion 

in the output because overflow/underflow occurs rarely. 

Scaling is also used to prevent overflow limit cycle oscillations. Limit cycle free structures are normally 

used to avoid the effects of limit cycles. 

Characteristics of a Limit Cycle Oscillation with respect to the System by the following Difference equation 

y(n)  0.95 y(n 1)  x(n) . 

Let y n be the output of the system after the product term 0.95 yn 1 is quantized after rounding. i.e., 

y n Q 0.95yn 1 xn


Let 

0.75 
x n  

for n  0 

  0 for n  0 

Let b  4 bits are used to represent the quantized product excluding sign bit. 

With n=0 
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y n Q 0.95y n 1 xn

 y 0 Q 0.95y 1 x0  Q 0.95 0 0.75 

Since yr 1 0  0.75 

0.7510  0.112 

 4-bits rounded value of 0.112    will be 0.1100 i.e., 0.75 only. 

 y 0 0.75 after 4 bits rounding 

With n = 1 

y 1 Q 0.95y 0 x1  Q 0.95 0.75 0  Q 0.7125

0.7125  0.1 0 1 1 0 1 1 0 0 1 1 0 0 

Note that 0.7125 requires infinite binary digits for its representation. Let us round it to 4 bits. 

  Q 0.712510    0.1 0 1 12   upto 4 bits 

But decimal equivalent of 0.1 0 1 1 is 0.6875. 

 yr 1  0.6875 

This means the actual value of y 1  0.7125 is changes to 0.6875 due to 4-bits quantization. 

With n = 2 

y 2 Q 0.95y 1 x2  Q 0.950.6875 0  Q 0.653125

0.653125  0.1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 

  Q 0.65312510  0.1 0 1  02 

 y 2 0.625 

With n = 3 

y 3 Q 0.95y 2 x3

0.5937510  0.1 0 1 0 12 

  Q 0.5937510  0.1 0 1 12 

 y 3 0.625 

upto 4 bits  0.62510 

 
 
 Q 0.950.625 0  Q 0.59375


upto 4 bits  0.625 

Thus y 2 y 3 ........  0.625 

Thus the system enters into limit oscillation when n  2 . 

To calculate dead band 

Consider equation 
6/2 

yn1
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1 0.95 
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1 
Here 

2b 

 
1 
 0.0625 

24 

yn 1 
0.0625/2 

 0.625 

Dead band = [-0.625, +0.625] 

Signal Scaling to Prevent Limit Cycle Oscillations: This is zero input condition. Following table lists the 

values of yn before and after quantization. Here the values are rounded to nearest integer value. 
 

n yn before quantization yn after quantization 

-1 12 12 

0 10.8 11 

1 9.72 10 

2 8.748 9 

3 7.8732 8 

4 7.08588 7 

5 6.377292 6 

6 5.7395628 6 

7 5.1656065 5 

8 4.6490459 5 

Table: Values of yn before and after quantization 

From table observe that if y1  5 , yn y1 for n  0 for zero input. Hence the dead band will be  5,5. 

Since the values are rounded to nearest integer after quantization, the step size will be   1. Hence 

dead band can also be calculated as follows: 
 

yn1 ,Here   0.9 , yn 1
1 

Thus the dead band is  5,5. 

1/ 2 
 

 

1 0.9 
5
 

Dynamic Range Scaling to Prevent the Effects of Overflow: The overflow can take place at some internal 

nodes when the digital filters are implemented by using fixed point arithmetic. Such nodes can be inputs/outputs 

of address or multipliers. This overflow can take place even if the inputs are scaled. Because of such overflow at 

intermediate points,produces totally undesired output or oscillations. The overflow can be avoided by scaling the 

internal signal levels with the help of scaling multipliers. These scaling multipliers are inserted at the apprppriate 

points in the filter structure to avoid possibilities of overflow. Sometimes these scaling multipliers are absorbed 

with the existing multipliers in the structure to reduce the total number and complexity. 

At which node the overflow will take place is not known in advance. This is because the overflow 

depends upon type of input signal samples. Hence whenever overflow takes place at some node, the scaling 

should be done dynamically. Hence dynamic range scaling in the filter structure can avoid the effects of overflow. 

Let ur (n) be the signal sample at r th node in the structure. Then the scaling should ensure that, 

ur (n)  1 for all r and n. 
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TRADE OFF BETWEEN ROUND-OFF AND OVERFLOW NOISE, MEASUREMENT OF 

COEFFICIENT QUANTIZATION EFFECTS THROUGH POLE-ZERO MOVEMENT 

Errors in Rounding and Truncation Operations : The computations like multiplication or addition are performed 

the result is truncated or rounded to nearest available digital level. This operation introduces an error. Hence the 

performance of the system is changed from expected value. 

Truncation Error: This error is introduced whenever the number is represented by reduced number of bits. 

Let Qt (x) be the value after truncation ,then truncation error will be, 

 r  Qt (x)  (x) 

Here x is the original value of the number. 

Rounding Error : This error is introduced whenever the number is rounded off to the nearest digital level.The 

number of bits used to represent the rounded number are generally less than the number of bits required for actual 

number. 
 

Let Qr (x) be the value after rounding.Then rounding error will be, 

 r  Qr (x)  x 

Here x is the original value of a number. 

Tradeoff between roundoff and overflow noise: 

Scaling operation 

Scaling is a process of readjusting certain internal gain parameters in order to constrain internal signals to a range 

appropriate to the hardware with the constraint that the transfer function from input to output should not be 

changes. 

The filter in figure with unscaled node x has the transfer function 

H(z) = D(z)+F(z)G(z) ......(1) 

To scale the node x, we divide F(z) by some number  and multiply G(z) by the same number as in 

figure. Although the transfer function does not change by this operation, the signal level at node x has been 

changes. The scaling parameter  can be chosen to meet any specific scaling rule such as 



l1scaling:  fi
i0 

......(2) 

 

l2 scaling:   …..(3) 

 
Where f(i) is the unit-sample response from input to the node x and the parameter  can be interpreted 

to represent the number of standard deviations 
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Figure: A filter with unscaled node x and (b) A filter with scaled node x’ 

Representable in the register at node x if the input is unit-variance white noise. If the input is bound by 

un  1 , then, 

 

xn  f (i)u(n  i)   f i ......(4) 
i0 i0 

 

Equation represents the true bound on the range of x and overflow is completely avoided by l1 scaling in (2), 

which is the most stringent scaling policy. 

In many cases, input can be assumed to be white noise. Although we cannot compute the variance at node 

x. for unit-variance white noise input, 

 2  2 

E x n f 
i0 

i .....(5) 

Since most input signals can be assumed to be white noise, l2 scaling is commonly used. In addition, (5) can be 

easily computed. Since (5) is the variance (not a strict bound), there is a possibility of overflow, which can be 

reduced by increasing  in (3). For large values of  , the internal variables are scaled conservatively so that no 

overflow occurs. However, there is a trade –off between overflow and roundoff noise, since increasing  deteriorates 

the output SNR (signal to noise ratio). 

a 
 

 

 

 

 
 

u( n x( n) 

u(n x(n ) 
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Figure: Model of roundoff error 

Roundoff Noise: If two W-bit fixed point fraction numbers are multiplies together, the product is (2W-1) bit 

long. This product must eventually be quantized to W-bits by rounding or truncation. For example, consider the 

1st –order IIR filter shown in figure. Assume that the input wordlength is W=8bits. If the multiplier coefficient 

wordlength is also the same, then to maintain full precision in the output we need to increase the output wordlength 

by 8 bits per iterations. This is clearly infeasible. The alternative is to roundoff (or truncate) the output to its 

nearest 8-bit representation. 
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Figure: Error probability distribution 

The result of such quantization introduces roundoff noise e(n). For mathematical ease a system with 

roundoff can be modeled as an infinite precision system with an external error input. For example in the previous 

case (shown in figure) we round off the output of the multiply add operation and an equivalent model is shown in 

figure. 

Although rounding is not a linear operation, its effect at the output can be analyzed using linear system 

theory with the following assumptions about e(n): 

1. E(n) is uniformly distributed white noise. 

2. E(n) is a wide –sense stationary random process, i.e., mean and covariance of e(n) are independent of the 

time index n. 

3. E(n) is uncorrelated to all other signals such as input and other noise signals. 

Let the wordlength of the output be W-bits, then the roundoff error e(n) can be given by 

 2w1 




2 
en

2 w1

2 

 
.....(6) 

Since the error is assumed to be uniformly distributed over the interval given in (6), the corresponding 

probability distribution is shown in figure, where  is the length of the interval (i.e., 2w1 ). 

Let us compute the mean E[e(n)] and variance Ee2 n of this error function. 
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Note that since mean is zero, variance is simply Ee2 n

Ee2 n 2  x 
2
P xdx 
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Figure: Signal flow graph 

In other words (8) can be rewritten as 


2 
 22w 

 

 
......(9) 

e 
3
 

Where 
2 
is the variance of the roundoff error in a finite precision, W-bit wordlength system. Since the 

variance is proportional to 22w , increase in wordlength by 1 bit decreases the error by a factor of 4. 

The purpose of analyzing roundoff noise is to determine its effect at the output signal. If the noise 
variance at the output is not negligible in comparison to the output signal level, the worlength should be increase 

or some low noise structures should be used. Therefore, we need to compute SNR at the output, not just the noise 

gain to the output. In the noise analysis, we use a double length accumulator model, which means rounding is 

performed after two (2w-1)-bit products are added. Also, notice that multipliers are the sources for roundoff 

noise. 

Effects of Coefficient Quantization in FIR filters: Let us consider the effects of coefficient quantization in FIR 

filters. Consider the transfer function of the FIR filter of length M, 

M 1 

H(z) =  h(n)z
n

 

n0 

The quantization of h(n) takes place during implementation of filter. Let the quantized coefficeints be 

denoted by h(n) and e(n) be the error in quantization. Then we can write, 

h(n) = h(n)+e(n) 

And the new filter transfer function becomes, 

M 1 M 1 M 1 M 1 

H (z)   h(n)z n = h(n)  e(n)z n =  h(n)z n   e(n)z n = H(z)+E(z) 
n0 n0 n0 n0 

 
M 1 

Where, E(z)=  e(n)z n

 

n0 
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Figure: Model of FIR filter with quantizer coefficients 

Here observe that the FIR filter with quantized coefficients can be modelled as parallel connection of two 

FIR filters H(z) and E(z). 

In the figure, H(z) is the FIR filter with unquantized coefficients, and E(z) is the FIR filter representing 

coefficient quantization error. 

The frequency response of FIR filter with quantized coefficients as, 
 

 

 
 

H( z) 
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E( z) 



r 

r 

H ()  H ()  E() 

Here E() is the error in the desired frequency response which is given as, 

M 1 

E( ) =  e(n)e
 jn 

n0 

Consider the magnitude of error i.e., 

M 1 

E()  e(n)e
 jn 

n0 

M 1 

 E()   e(n) e jn 
n0 

M 1 

   e(n) 
n0 

 
(  e

 jn  1) 

The upper bound is reached if all the errors have same sign and have the maximum value in the range. If 
we consider e(n) to be statistically independent random variables, then more realistic bound is given by standard 

derivation of E(  ) i.e.; 

 E () is the standard derivation of error in frequency response i.e., E(  ). 
 

DEADBAND EFFECTS 
 

Deadband and Deadband of First Order Filter: Dead band is the range of output amplitudes over which limit 

cycle oscillations takeplace 

Dead band of first order filter 

Consider the first order filter, 

yn yn 1 xn

Here  yn 1 is the product term. After rounding it to ‗b‘ bits we get, 

yn Q yn 1 xn

When limit cycle oscillations take place, 

Q yn 1 yn 1



…..(1) 

 
 

The error due to rounding is less than 
2 

.Hence, 

Qyn 1 yn 1 
2 

From equation (1) above equation can be written as, 
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